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Student Learning Targets, and Objectives SLOs: Finite-Dimensional Vector Spaces

Student Learning Targets, and Objectives

Target Span
Objective Know how to build a finite-dimensional vector space using

spanning vectors.

Target Linear Independence
Objective Know how to determine whether a set of vectors is linearly

independent, and how to remove linearly dependent vectors
from a set to generate a linearly independent set.

Target Bases
Objective Be able to reduce a spanning list to a basis of a vector space
Objective Be able to extend a linearly indepenent list to a basis of a

vector space

Target Dimension
Objective Know how to determine the dimension of a subspace
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Finite-Dimensional Vector Spaces, i
Finite-Dimensional Vector Spaces, ii Span and Linear Independence

Introduction

Previously, we discussed vector spaces; and we even included one
brief mention of C∞.

However in Linear Algebra the main focus is on finite-dimensional
vector spaces (which we will formally introduce shortly).

The study of infinite-dimensional vector spaces mainly fall
under the umbrella of

Functional Analysis ≈ Linear Algebra + Real Analysis
see e.g. Hilbert Spaces, Banach Spaces. The Road to Infinity...

Time-Target: 3×75-minute lectures.

Image Credit: Creative Commons BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1160957
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Span and Linear Independence

Linearly independent vectors in R3 — 3D Visualization

Image Credit: Creative Commons Attribution-Share Alike 4.0 International License.
https://commons.wikimedia.org/wiki/File:Vec-indep.png
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Linear Combination :: Definition

Definition (Linear Combination)
A linear combination of a set {v1, . . . , vm} vectors vk ∈ V is a
vector of the form

w =
m∑

k=1
akvk ,

with ak ∈ F.

Rewind (Notation)
V is a vector space.
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Linear Combination :: Examples

We follow the Axler’s notation, writing vectors as lists:

Example (Linear Combination)
The vector (5, 10, 12 + 2i , 30) ∈ F4 is a linear combination of the
vectors (1, 2, i , 3), and (1, 2, 4, 8) since

(5, 10, 12 + 2i , 30) = 2(1, 2, i , 3) + 3(1, 2, 4, 8)

Example (Not Linear Combination)
The vector (1, 1, 1) ∈ F3 is not a linear combination of the vectors
(1, 0, 0), and (1, 1, 0) since ∀a1, a2 ∈ F:

(1, 1, 1) 6= a1(1, 0, 0) + a2(1, 1, 0).

Or, if you prefer: ∄a1, a2 ∈ F: (1, 1, 1) = a1(1, 0, 0) + a2(1, 1, 0)
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Span

Definition (Span)
The set of all linear combinations of a list of vectors
v1, . . . , vm ∈ V is called the span of v1, . . . , vm, denoted
span(v1, . . . , vm). In other words,

span(v1, . . . , vm) = {a1v1 + · · · + amvm : a1, . . . , am ∈ F}.

We define the span of the empty list () to be {0}.

Peter Blomgren 〈blomgren@sdsu.edu〉 2. Finite Dimensional Vector-Spaces — (8/67)



Finite-Dimensional Vector Spaces, i
Finite-Dimensional Vector Spaces, ii Span and Linear Independence

Span :: Examples

Revisiting the previous examples

Example (Span)

(5, 10, 12 + 2i , 30)︸ ︷︷ ︸
w

∈ span


(1, 2, i , 3)︸ ︷︷ ︸

v1

, (1, 2, 4, 8)︸ ︷︷ ︸
v2




since there is a linear combination so that w = a1v1 + a2v2.

Example (Not Linear Combination)

(1, 1, 1)︸ ︷︷ ︸
w

6∈ span


(1, 0, 0)︸ ︷︷ ︸

v1

, (1, 1, 0)︸ ︷︷ ︸
v2




since there is no linear combination so that w = a1v1 + a2v2.
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Rewind :: Span and Linear Independence Connecting with Previous Classes

On vectors in Cn and Rn we can directly re-use row-reductions
from [Math 254] to Reduced Row Echelon Form to determine
existence of linear combinations:
Rewind (Span and Linear Independence)

rref







1 1 5
2 2 10
i 4 12 + 2i
3 8 30





 =




1 0 2
0 1 3
0 0 0
0 0 0


 ⇒ a1 = 2, a2 = 3.

rref







1 1 1
0 1 1
0 0 1





 =




1 0 0
0 1 1
0 0 1


 ⇒ No Solutions;

not in the span
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Span is the Smallest Containing Subspace

Theorem (Span is the Smallest Containing Subspace)
The span of a list of vectors in V is the smallest subspace of V
containing all the vectors in the list.

We notice that this statment is similar to

Rewind (Sum of Subspaces is the Smallest Containing Subspace [Notes#1])

Suppose U1, . . . ,Um are subspaces of V . Then U1 + · · · + Um is the
smallest subspace of V containing U1, . . . ,Um.

and, not surprisingly, the proof is also similar...
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Proof :: Span is the Smallest Containing Subspace 1/2

Proof (Span is the Smallest Containing Subspace)
Let v1, . . . , vm ∈ V .
(1) Show that W = span(v1, . . . , vm) is a subspace of V :

0 ∈ W since 0 =
∑m

k=1 0vk
W is closed under addition since∑m

k=1 akvk +
∑m

k=1 bkvk =
∑m

k=1(ak + bk)vk
W is closed under scalar multiplication since ∀λ ∈ F :
λ

(∑m
k=1 akvk

)
=

∑m
k=1(λak)vk

Therefore W is a subspace of V .
Next, we show that it is the smallest subspace...
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Proof :: Span is the Smallest Containing Subspace 2/2

Proof (Span is the Smallest Containing Subspace)
Each vℓ ∈ W = span(v1, . . . , vm), since vℓ =

∑m
k=1 δℓkvk , where

δℓk =
{

1 if ℓ = k
0 if ℓ 6= k

Conversely, every subspace Ŵ of V which contains each of the vectors
v1, . . . , vm must contain span(v1, . . . , vm) (since subspaces are closed
under addition and scalar multiplication).
Therefore W is the smallest subspace of V .

Note: δℓk is known as the Kronecker delta; (Leopold Kronecker, 1823 –
1891). It is a very convenient notation for generating coefficients
that are either zero or one, with predicable patterns.
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Challenge :: Alternative Proof

Challenge (Alternative Proof)
Can you formulate a different proof, which directly uses the
Sum-of-Subspaces result from [Notes#1]?
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Finite-Dimensional Vector Space :: Formal Definition

Definition (Language: “Spans”)
If V = span(v1, . . . , vm), then we say that the set of vectors
{v1, . . . , vm}, or if you prefer the list of vectors v1, . . . , vm spans
the vector space V .

Definition (Finite-Dimensional Vector Space)
A vector space is called finite-dimensional if some list [Finite
Length, n, by Definition] of vectors in it spans the space.

Definition (Infinite-Dimensional Vector Space)
A vector space is called infinite-dimensional if it is not
finite-dimensional.
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Polynomial Detour

Polynomials will have many uses for us going forward, so let’s
introduce some (familiar?) definitions:

Definition (Polynomial, P(F))
A function p : F → F is called a polynomial with coefficients
on F if there exists a0, . . . , am ∈ F such that ∀z ∈ F

p(z) =
m∑

k=0
akz

k .

P(F) is the set of all polynomials with coefficients in F.
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Polynomial Detour P(F) ⊂ FF

With the usual definitions of addition and scalar multiplication, P(F) is a
subspace of FF

Definition (Degree of a Polynomial)

A polynomial p ∈ P(F) is said to have degree m if there exist
scalars a0, . . . , am ∈ F, with am 6= 0 such that

p(z) =
m∑

k=0
akz

k .

∀z ∈ F. If p has degree m, we write deg(p) = m.
We define the degree of the zero-polynomial p(z) ≡ 0 to be −∞.
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Polynomial Detour

Definition (Pm(F))
For a non-negative integer m, Pm(F) denotes the set of all
polynomials with coefficients in F and degree at most m.

Note: Pm(F) = span (1, z , . . . , zm).

Note: Pm(F) is a finite-dimensional vector space for each non-
negative integer m.

Note: P(F) is infinite-dimensional.
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Linear Independence

Let v1, . . . , vm ∈ V , and v ∈ span(v1, . . . , vm). By our definitions
we must have a1, . . . , am ∈ F so that v =

∑m
k=1 akvk .

Question: Are the scalars a1, . . . , am ∈ F unique?

If they are not, then we can find b1, . . . , bm ∈ F so that
v =

∑m
k=1 bkvk , and

0 = (v − v) =
m∑

k=1
(ak − bk)vk

Clearly ak = bk (k = 1, . . . ,m) provides one possibility.
The case where that is the only linear combination which gives 0 is
extremely important; we call that linear independence...
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Linear Independence :: Definition

Definition (Linear Independence)
A list v1, . . . , vm ∈ V is called linearly independent if the
only choice of a1, . . . , am ∈ F so that 0 =

∑m
k=1 akvk is

ak = 0 (k = 1, . . . ,m).
The empty list is also linearly independent by definition.

Definition (Linearly Dependent)
A list of vectors ∈ V is called linearly dependent if it is not
linearly independent.
A list v1, . . . , vm ∈ V is linearly dependent if there exists
a1, . . . , am ∈ F, not all zeros, such that 0 =

∑m
k=1 akvk .
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Linear Independence/Dependence :: Examples

⊕ A single vector v ∈ V is linearly independent if and only if
v 6= 0.

⊕ u, v ∈ V are linearly independent if and only if neither is a
scalar multiple of the other.

⊕ The “Standard Coordinate Vectors”
ek = (δ1k , . . . , δmk) ∈ Fm, k = 1, . . . ,m are linearly
independent in Fm.

⊕ The list 1, z , . . . , zm is linearly independent in P(F) for each
non-negative integer m.

⊖ If some vector in a list of vectors ∈ V is a linear combination
of the other vectors, then the list is linearly dependent.

⊖ Every list of vectors ∈ V containing the 0-vector is linearly
dependent.
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Linear Dependence

Theorem (Linear Dependence)
Suppose v1, . . . , vm is a linearly dependent list ∈ V . Then there
exists ℓ ∈ {1, . . . ,m} such that the following hold:
(1) vℓ ∈ span(v1, . . . , vm),
(2) if the ℓth term is removed from v1, . . . , vm, the span of the

remaining list equals span(v1, . . . , vm):

span(v1, . . . , vℓ−1, vℓ+1, . . . vm) = span(v1, . . . , vm)
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Proof :: Key Pieces

Sketch-Proof

(1) from the expression
m∑

k=1
akvk = 0, we can explicitly solve for

vℓ = −
ℓ−1∑

k=1

ak
aℓ

vk .

(2) we can replace vℓ by this sum in the expression for u =
m∑

k=1
ckvk ∈ V , and thus have an expression for u using only

(m − 1) terms.
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Length of Linearly Independent List ≤ Length of Spanning List

!

Theorem (Length of Linearly Independent List ≤ Length of Spanning
List)
In a finite-dimensional vector space, the length of every linearly
independent list of vectors is less than or equal to the length of
every spanning list of vectors.

!
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Proof :: Length of Linearly Independent List ≤ Length of Spanning List 1/2

Proof (Length of Linearly Independent List ≤ Length of Spanning List)
Suppose u1, . . . , um is linearly independent in V . Suppose also that
w1, . . . ,wn spans V . We need to prove that m ≤ n. We do so through
the multi-step process described below; in each step we add one of the
u’s and remove one of the w ’s.
Step 1 Let B be the list w1, . . . ,wm, which spans V . Thus adjoining any

vector in V to this list produces a linearly dependent list (because
the newly adjoined vector can be written as a linear combination
of the other vectors). In particular, the list u1,w1, . . . ,wm is lin-
early dependent. Thus by the previous theorem, we can remove
one of the w ’s so that the new list B (of length n) consisting of
u1 and the remaining w ’s spans V .

Peter Blomgren 〈blomgren@sdsu.edu〉 2. Finite Dimensional Vector-Spaces — (25/67)

Finite-Dimensional Vector Spaces, i
Finite-Dimensional Vector Spaces, ii Span and Linear Independence

Proof :: Length of Linearly Independent List ≤ Length of Spanning List 2/2

Proof (Length of Linearly Independent List ≤ Length of Spanning List)
Step j The list B (of length n) from step (j − 1) spans V . Thus adjoin-

ing any vector to this list produces a linearly dependent list. In
particular, the list of length (n + 1) obtained by adjoining uj to
B , placing it just after u1, . . . , uj , is linearly dependent. By the
previous theorem, one of the vectors in this list is in the span of
the previous ones, and because u1, . . . , uj is linearly independent,
this vector is one of the w ’s, not one of the u’s. We can remove
that w from B so that the new list B (of length n) consisting of
u1, . . . , uj and the remaining w ’s spans V .

After Step m, we have added all the u’s and the process stops. At each
step as we add a u to B , the previous theorem implies that there is some
w to remove. Thus there are at least as many w ’s as u’s.
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Finite-Dimensional Subspaces

Theorem (Finite-dimensional subspaces)
Every subspace of a finite-dimensional vector space is
finite-dimensional.

Rewind (Finite-Dimensional Vector Space)
A vector space is called finite-dimensional if some list [Finite
Length, n, by Definition] of vectors in it spans the space.
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Proof :: Finite-Dimensional Subspaces

Proof (Finite-Dimensional Subspaces)
Suppose V is finite-dimensional and U is a subspace of V . We need to
prove that U is finite-dimensional:
Step 1 If U = {0}, then U is finite-dimensional and we are done; oth-

erwise choose a nonzero vector v1 ∈ U.
Step ℓ If U = span(v1, . . . , vℓ−1), then U is finite-dimensional and we

are done; otherwise choose a vector vℓ ∈ U such that vℓ 6∈
span(v1, . . . , vℓ−1).

After each step, we have constructed a list of vectors such that no vector
in this list is in the span of the previous vectors. Thus after each step we
have constructed a linearly independent list.
This linearly independent list cannot be longer than any spanning list of
V . Thus the process must terminate, which means that U is
finite-dimensional.
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〈〈〈 Live Math 〉〉〉

e.g. 2A-{1, 3}
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Live Math :: Covid-19 Version 2A-3

2A-3: Find a number t such that
(3, 1, 4), (2, −3, 5), (5, 9, t)

is not linearly independent in R3.

> Strategy: Leverage [Math 254] Knowledge >

In the language and notation of [Math 254], we make the vectors columns
in a matrix (even though we have not formally defined a matrix yet), and
recall that the row-reduced-echelon-form (RREF) reveals whether the
columns of a matrix are linearly (in)dependent. Even simpler, it is
sufficient to forward-reduce to lower-triangular form and look for the
(non)existence of free variables (zeros on the diagonal).
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Live Math :: Covid-19 Version 2A-3

> Computations (Row-Reductions) >

M =

2

4

3 2 5
1 −3 9
4 5 t

3

5

{r1 ↔ r2} :

2

4

1 −3 9
3 2 5
4 5 t

3

5 , {r2 ← r2 − 3r1} :

2

4

1 −3 9
0 11 −22
4 5 t

3

5 ,

{r3 ← r3 − 4r1} :

2

4

1 −3 9
0 11 −22
0 17 t − 36

3

5 , {r2 ← r2/11} :

2

4

1 −3 9
0 1 −2
0 17 t − 36

3

5 ,

{r3 ← r3 − 17r2} :

2

4

1 −3 9
0 1 −2
0 0 t − 2

3

5 ,

We have a free variable and linear dependence if and only if (t − 2) = 0 ⇔ t = 2.
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Bases

Figure: A vector (here in 3D, shown the purple arrow) can be represented
in terms of two different bases (green and blue arrows), each basis vector
is scalar-multiplied appropriately so they add to the vector.
Copyright: Creative Commons CC0 1.0 Universal Public Domain.

https://en.wikipedia.org/wiki/Basis (linear algebra)
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Basis :: Definition

Definition (Basis)
A basis of V is a list of vector ∈ V that is linearly independent and
spans V .

Rewind (Linear Independence, Spans)

A list v1, . . . , vm ∈ V is called linearly independent if the only
choice of a1, . . . , am ∈ F so that 0 =

∑m
k=1 akvk is ak = 0

(k = 1, . . . ,m).
If V = span(v1, . . . , vm), then we say that the set of vectors
{v1, . . . , vm}, or if you want the list of vectors v1, . . . , vm spans the
vector space V .

In a finite-dimensional vector space, the length of every linearly
independent list of vectors is less than or equal to the length of
every spanning list of vectors.
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Bases :: Examples

Example (Bases)
⊕ ek = (δ1k , . . . , δmk) ∈ Fm, k = 1, . . . ,m is a basis of Fm,

called the standard basis.
⊕ Any two linearly independent vectors ∈ F2 is a basis of F2.
⊕ 1, z , . . . , zm is a basis for Pm(z)
⊖ Two linearly independent vectors ∈ F3 is NOT a basis of F3,

since they cannot span F3.
⊖ A list of linearly dependent vectors that span Fn is not a basis.

Application (Signal Processing :: Basis Pursuit)
https://scholar.google.com/scholar?q=basis+pursuit

See also, “frame” and “tight frame” (requires inner products, which we dont have... yet.)

Peter Blomgren 〈blomgren@sdsu.edu〉 2. Finite Dimensional Vector-Spaces — (34/67)

Finite-Dimensional Vector Spaces, i
Finite-Dimensional Vector Spaces, ii

Bases
Dimension

Basis :: Criterion

Theorem (Criterion for Basis)
A list v1, . . . , vn of vectors ∈ V is a basis for V if and only if
∀v ∈ V can be written uniquely in the form

v =
n∑

ℓ=1
aℓvℓ, where a1, . . . , an ∈ F

Proof (Sketch Proof :: Criterion for Basis)

Pick a basis, show uniqueness ∀v ∈ V (just like the proof for linear
independence)
Assume uniqueness ∀v ∈ V ⇒ the collection of vectors v1, . . . , vn
spans V ; use v = 0, which forces a1 = · · · = an = 0, this shows
linear independence  a basis of V .
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Spanning List Contains a Basis

Theorem (Spanning List Contains a Basis)
Every spanning list in a vector space can be reduced to a basis of
the vector space.

Comment
A spanning list in a vector space may not be a basis because it is
not linearly independent. The theorem says that given any
spanning list, some (possibly none) of the vectors in it can be
discarded so that the remaining list is linearly independent and still
spans the vector space.
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Proof :: Spanning List Contains a Basis

Proof (Spanning List Contains a Basis)
Suppose v1, . . . , vn spans V . We want to remove linearly
dependent vectors from v1, . . . , vn so that the remaining set form a
basis for V :

0 Start with B = {v1, . . . , vn}.
1 if v1 = 0, delete it from B .
k if vk ∈ span(v1, . . . , vk−1), delete vk from B .

Repeat until k = n. The final list B still spans V and contains only
linearly independent vectors. ⇒ We have a basis.
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Rewind :: Spanning List Contains a Basis Connecting with Previous Classes

Rewind (Spanning List Contains a Basis)
Given a set of spanning vectors in R4:

v1 = (2, 2, 2, 4), v2 = (2, 4, 1, 3), v3 = (1, 4, 1, 3),
v4 = (2, 2, 4, 1), v5 = (1, 3, 3, 4), v6 = (1, 2, 2, 3)

rref







2 2 1 2 1 1
2 4 4 2 3 2
2 1 1 4 3 2
4 3 3 1 4 3





 =




1 0 0 0 29/38 12/19
0 1 0 0 −26/19 −13/19
0 0 1 0 30/19 15/19
0 0 0 1 6/19 3/19




The columns with leading ones — {1, 2, 3, 4} tell us that {v1, . . . , v4}
form a basis for R4.
The fact that we have 4 leading ones confirms that we indeed have a
spanning set of vectors.
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Basis of Finite-Dimensional Vector Space

Theorem (Basis of Finite-Dimensional Vector Space)
Every finite-dimensional vector space has a basis.

Proof (Basis of Finite-Dimensional Vector Space)
By definition, a finite-dimensional vector space has a spanning list.
The previous result tells us that each spanning list can be reduced
to a basis.
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Linearly Independent List Extends to a Basis

Theorem (Linearly Independent List Extends to a Basis)
Every linearly independent list of vectors in a finite-dimensional
vector space can be extended to a basis of the vector space.

Comment
We have shown that every spanning list can be reduced to a basis.
The statement above is the “dual” that result; giving us a path in
the opposite direction.
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Proof :: Linearly Independent List Extends to a Basis

Proof (Linearly Independent List Extends to a Basis)
Suppose u1, . . . , um is linearly independent in a finite-dimensional
vector space V . Let w1, . . . ,wn be a basis of V . Thus the list

u1, . . . , um,w1, . . . ,wn

spans V . Applying the steps from the proof for [Spanning List
Contains Basis] to this list produces a list of the vectors u1, . . . , um
(all of them since they are linearly independent), and some of the
w -vectors. This list must be a basis since w1, . . . ,wn is a basis.
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Rewind :: Linearly Independent List Extends to a Basis Connecting with Previous Classes

Rewind (Linearly Independent List Extends to a Basis)
Given a set of linearly independent vectors in R5:

v1 = (7, 3, 7, 4, 2), v2 = (5, 7, 7, 4, 4), v3 = (3, 5, 4, 6, 7)
and let w1, . . . ,w5 be the standard basis for R5:

rref

0

B

B

B

@

2

6

6

6

4

7 5 3 1 0 0 0 0
3 7 5 0 1 0 0 0
7 7 4 0 0 1 0 0
4 4 6 0 0 0 1 0
2 4 7 0 0 0 0 1

3

7

7

7

5

1

C

C

C

A

=

2

6

6

6

4

1 0 0 0 0 −1/13 33/52 −1/2
0 1 0 0 0 4/13 −41/52 1/2
0 0 1 0 0 −2/13 7/26 0
0 0 0 1 0 −7/13 −17/13 1
0 0 0 0 1 −15/13 59/26 −2

3

7

7

7

5

The columns with leading ones — {1, 2, 3, 4, 5} tell us that
{v1, . . . , v3,w1, . . . ,w2} form a basis for R5.
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Every Subspace of V is Part of a Direct Sum equal to V

Theorem (Every Subspace of V is Part of a Direct Sum equal to V )
Suppose V is finite-dimensional and U is a subspace of V . Then
there is a subspace W of V such that V = U ⊕ W .

Comment: The proof is a direct application of the previous theo-
rem...
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Proof :: Every Subspace of V is Part of a Direct Sum equal to V 1/2

Proof (Every Subspace of V is Part of a Direct Sum equal to V )
Construction: Since V is finite-dimensional, so is U. There is a basis
u1, . . . , um of U; u1, . . . , um is a linearly independent list in V . We can
extend this list to a basis u1, . . . , um,w1, . . . ,wn of V ; Let
W = span(w1, . . . ,wn).
To show V = U ⊕ W , we have to show

1 V = U + W , and 2 U ∩ W = {0}.

1 let v ∈ V . Since u1, . . . , um,w1, . . . ,wn spans V , we can find
a1, . . . , am, b1, . . . , bn ∈ F such that

v = a1u1 + · · · + amum︸ ︷︷ ︸
u∈U

+ b1w1 + · · · + bnwn︸ ︷︷ ︸
w∈W

.

This shows v ∈ U + W , which shows V = U + W .
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Proof :: Every Subspace of V is Part of a Direct Sum equal to V 2/2

Proof (Every Subspace of V is Part of a Direct Sum equal to V )
2 let v ∈ U ∩ W . Then ∃a1, . . . , am, b1, . . . , bn ∈ F, so that

v = a1u1 + · · · + amum︸ ︷︷ ︸
∈U

= b1w1 + · · · + bnwn︸ ︷︷ ︸
∈W

0 = (v − v) = a1u1 + · · · + amum − b1w1 − · · · − bnwn

Since u1, . . . , um,w1, . . . ,wn is linearly independent, we must have

a1 = · · · = am = b1 = . . . bn = 0

which makes v = 0, and therefore U ∩ W = {0}
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Example: Every Subspace of V is Part of a Direct Sum equal to V

Revisiting with the “Rewind” Example (Linearly Independent List
Extends to a Basis) —

Let
U = span ((7, 3, 7, 4, 2), (5, 7, 7, 4, 4), (3, 5, 4, 6, 7))

the previous example shows that with
W = span ((1, 0, 0, 0, 0), (0, 1, 0, 0, 0))

we have
R5 = U ⊕ W
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〈〈〈 Live Math 〉〉〉

e.g. 2B-{2, 8}
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Live Math :: Covid-19 Version 2B-8

2B-8: Suppose U and W are subspaces of V such that V = U ⊕ W .
Suppose also that u1, . . . , um is a basis of U and w1, . . . ,wn is a
basis of W . Prove that

u1, . . . , um,w1, . . . ,wn

is a basis of V .

> Solution :: Linear Independence >
Suppose we have coeffiecients a1, . . . , am, and b1, . . . , bn, so that the
“joint” linear combination:

a1u1 + · · · + amum + b1w1 + · · · + bnwn = 0,

then (by well-defined algebra)
a1u1 + · · · + amum︸ ︷︷ ︸

∈U

= − (b1w1 + · · · + bnwn)︸ ︷︷ ︸
∈W
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Live Math :: Covid-19 Version 2B-8

Since V = U ⊕ W , we have U ∩ W = {0}, which makes
a1u1 + · · · + amum = 0
b1w1 + · · · + bnwn = 0

Both the u1, . . . , um, and w1, . . . ,wn are linearly independent (one of the
properties of being a basis); therefore

a1 = · · · = am = b1 = · · · = bn = 0
it follows that the joint list u1, . . . , um, w1, . . . ,wn is linearly independent.

> Solution :: Spanning the Space >
We need to show that span (u1, . . . , um,w1, . . . ,wn) = V .
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Suppose v ∈ V . Then (since V = U ⊕ W ), ∃u ∈ U and w ∈ W :
v = u + w .

Since span (u1, . . . , um) = U, and span (w1, . . . ,wn) = W , we can find
a1, . . . , am, b1, . . . , bn ∈ F such that

u = a1u1 + · · · + amum, w = b1w1 + · · · + bnwn

which gives
v = a1u1 + · · · + amum + b1w1 + · · · + bnwn

which shows that span (u1, . . . , um,w1, . . . ,wn) spans V .

> Solution :: Basis >
Linearly Independent + Spanning  Basis.
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Dimension

Figure: The 4D-hypercube, layered according to distance from one corner.
As described in ”Alice in Wonderland” by the Cheshire Cat, this vertex-
first-shadow of the tesseract forms a rhombic dodecahedron. The two
central vertices would coincide in an orthogonal projection from 4 to 3
dimensions, but here they were drawn slightly apart. .
Copyright: Public Domain.

https://commons.wikimedia.org/wiki/File:Hypercubeorder.svg
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Dimension

We have discussed finite-dimensional vector spaces, but not yet
formally defined the dimension of a vector space; it is time to
patch that hole.

There are no big surprises; the dimension of Fn is indeed n.

First, we note that the list of standard basis vectors
{ek = (δ1k , . . . , δnk), k = 1, . . . , n} of Fn has length n.

However, a finite-dimensional vector space in general has infinitely
many different bases; so if we can show that all bases to have the
same length, we can define the dimension as the length of the
basis.
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Basis Length Does Not Depend on Basis

Theorem (Basis Length Does Not Depend on Basis)
Any two bases of a finite-dimensional vector space have the same
length.

Proof (Basis Length Does Not Depend on Basis)
Suppose V is finite-dimensional. Let B1 and B2 be two bases of V . Then
B1 is linearly independent in V and B2 spans V , so the length of B1 is at
most the length of B2 (by [Length of Linearly Independent List ≤
Length of Spanning List].)
Interchanging the roles of B1 and B2, we also see that the length of B2 is
at most the length of B1. Thus the length of B1 equals the length of B2.
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Dimension of a Finite-Dimensional Vector Space

Definition (Dimension, dim(V ))
The dimension of a finite-dimensional vector space is the
length of any basis of the vector space.
The dimension of V is denoted by dim(V ).

Example (Dimensions)
dim(Fn) = n.
dim(Pm(F)) = (m + 1) since the basis {1, z , . . . , zm} has
(m + 1) basis vectors.
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Dimension of a Subspace

Theorem (Dimension of a Subspace)
If V is finite-dimensional and U is a subspace of V , then
dim(U) ≤ dim(V ).

Proof (Dimension of a Subspace)
Suppose V is finite-dimensional and U is a subspace of V . Think of a
basis of U as a linearly independent list in V , and think of a basis of V
as a spanning list in V . Now use [Length of Linearly Independent List ≤
Length of Spanning List] to conclude that dim(U) ≤ dim(V ).
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Linearly Independent List of length dim(V ) is a Basis

Theorem (Linearly Independent List of length dim(V ) is a Basis)
Suppose V is finite-dimensional. Then every linearly independent
list of vectors in V with length dim(V ) is a basis of V .

Comment: This means the second property “the list spans V ” is
automatically satisfied.

Proof (Linearly Independent List of length dim(V ) is a Basis)
Suppose dim(V ) = n, and v1, . . . , vn is linearly independent in V . The
list v1, . . . , vn can be extended to a basis of V (by [Linearly Independent
List Extends to a Basis]). However, every basis of V has length n, so in
this case the extension is the trivial one, meaning that no elements are
adjoined to v1, . . . , vn. In other words, v1, . . . , vn is a basis of V .
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Spanning List of length dim(V ) is a Basis

Theorem (Spanning List of Length dim(V ) is a Basis)
Suppose V is finite-dimensional. Then every spanning list of
vectors in V with length dim(V ) is a basis of V .

Comment: This means the first property “the list is linearly inde-
pendent” is automatically satisfied.

Proof (Spanning List of Length dim(V ) is a Basis)
Suppose dim(V ) = n, and v1, . . . , vn spans V . The list v1, . . . , vn can be
reduced to a basis of V (by [Spanning List Contains a Basis]). However,
every basis of V has length n, so in this case the reduction is the trivial
one, meaning that no elements are deleted from v1, . . . , vn. In other
words, v1, . . . , vn is a basis of V .
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Dimension of a Sum of Subspaces

We close out this discussion of Dimension by stating the result for
subspaces:

Theorem (Dimension of a Sum of Subspaces)
If U1 and U2 are subspaces of a finite-dimensional vector space,
then dim(U1 + U2) = dim(U1) + dim(U2) − dim(U1 ∩ U2).
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Proof :: Dimension of a Sum of Subspaces 1/3

Proof (Dimension of a Sum of Subspaces)
Let u1, . . . , um be a basis of U1 ∩U2; thus dim(U1 ∩U2) = m. u1, . . . , um
must be linearly independent, and can therefore be extended to a basis
[Linearly Independent List Extends to a Basis] of U1 and U2
(independently):

basis(U1) = u1, . . . , um, v1, . . . , vj dim(U1) = m + j

basis(U2) = u1, . . . , um,w1, . . . ,wk dim(U2) = m + k

Showing that
u1, . . . , um, v1, . . . , vj ,w1, . . . ,wk

is a basis for U1 + U2 completes the proof; since we will have
dim(U1 + U2) = m + j + k

= (m + j) + (m + k) − m

= dim(U1) + dim(U2) − dim(U1 ∩ U2).
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Proof :: Dimension of a Sum of Subspaces 2/3

Proof (Dimension of a Sum of Subspaces)
span(u1, . . . , um, v1, . . . , vj ,w1, . . . ,wk) contains U1 and U2, and
span(u1, . . . , um, v1, . . . , vj ,w1, . . . ,wk) = U1 + U2. We need to show
that u1, . . . , um, v1, . . . , vj ,w1, . . . ,wk is linearly independent.
Consider (aγ , bδ, cζ ∈ Fn; we need to show all are 0)

m∑

γ=1
aγuγ +

j∑

δ=1
bδvδ +

k∑

ζ=1
cζwζ = 0

Rearrange
k∑

ζ=1
cζwζ

︸ ︷︷ ︸
∈U2

=
m∑

γ=1
−aγuγ +

j∑

δ=1
−bδvδ

︸ ︷︷ ︸
∈U1

⇒ ∑k
ζ=1 cζwζ ∈ U1 ∩ U2. ⇒ ∑k

ζ=1 cζwζ =
∑m

γ=1 dγuγ
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Proof (Dimension of a Sum of Subspaces)

We have
∑k

ζ=1 cζwζ =
∑m

γ=1 dγuγ , but u1, . . . , um,w1, . . . ,wk is linearly
independent, which forces c1,...,k = d1,...,m = 0.

k∑

ζ=1
cζwζ

︸ ︷︷ ︸
0

=
m∑

γ=1
−aγuγ +

j∑

δ=1
−bδvδ

︸ ︷︷ ︸
∈U1

but u1, . . . , um, v1, . . . , vj is linearly independent, which forces
a1,...,m = b1,...,j = 0. Collecting all a, b, cs:

a1,...,m = b1,...,j = c1,...,k = 0

which is what we needed.
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〈〈〈 Live Math 〉〉〉

e.g. 2C-{1, 4, 12, 14, 17}
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Live Math :: Covid-19 Version 2C-1

2C-1: Suppose V is finite-dimensional and U is a subspace of V such
that dim(U) = dim(V ). Prove that U = V .

> Solution >

Let u1, . . . , un be a basis of U. Thus n = dim(U), and therefore
n = dim(V ). Thus u1, . . . , un is a linearly independent (since it is a basis)
list of vectors in V , with length dim(V ). Using [Linearly Independent
List of length dim(V ) is a Basis], u1, . . . , un must be a basis of V .
∀v ∈ V can be written as a linear combination of u1, . . . , un, and since
uk ∈ U ⇒ U = V .

Peter Blomgren 〈blomgren@sdsu.edu〉 2. Finite Dimensional Vector-Spaces — (63/67)

Problems, Homework, and Supplements
Suggested Problems
Assigned Homework
Supplements

Suggested Problems

2.A — 1, 3, 8, 9, 11

2.B — 2, 3, 5, 8

2.C — 1, 4, 5, 9, 12, 14, 17 (some of these are quite challenging)
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Assigned Homework HW#2, Due Date in Canvas/Gradescope

2.A — 8, 9, 11

2.B — 3, 5

2.C — 5, 9

Note: Assignment problems are not official and subject to change
until the first lecture on the chapter has been delivered (or
virtually “scheduled.”)

Upload homework to www.Gradescope.com
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“Frame” Just for Fun!

Definition (Frame — Generalization of bases to linearly dependent sets of vectors)

A frame of an inner product space is a generalization of a basis of a
vector space to sets that may be linearly dependent. In the terminology
of signal processing, a frame provides a redundant, stable way of
representing a signal. Frames are used in error detection and correction
and the design and analysis of filter banks and more generally in applied
mathematics, computer science, and engineering.

[https://en.wikipedia.org/wiki/Frame (linear algebra)]
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Useless Wiki-Knowledge

Q: “Do our fields have anything to do with the Fields medal?”

A: The Fields medal is named after John Charles Fields (1863 – 1932).
The term “Field” is due to work by (non-exhaustive list) Lagrange
(1770), Vandermonde (1770), Ruffini (1799), Gauss (1801), Abel
(1824), Galois (1832).
Dedekind (1871) introduced the word “Körper” (German — “Body” /
“Corpus”), and Moore (1893) “Field” (English).
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