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Student Learning Targets, and Objectives SLOs: Linear Maps

Student Learning Targets, and Objectives

Target Isomorphic Vector Spaces
Objective Know the condition for finite-dimensional vector spaces to be isomorphic
Objective Be familiar with the definition and special properties of operators

Target Product Spaces
Objective Be able to form product spaces, and find dimensions, and bases for them

Target Quotient Spaces
Objective Be able to form quotient spaces, and define and use the quotient map; as

well as find dimensions

〈〈supplemental〉〉

Target Dual Space of a Vector Space & the Dual of a Linear Map
Objective Be familiar with the language and notation of duality; and properties of

dual maps
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Invertible Linear Maps

Definition (Invertible, Inverse)
A linear map T ∈ L(V ,W ) invertible if there exists a linear
map S ∈ L(W ,V ) such that ST equals the identity map on
V and TS equals the identity map on W

A linear map S ∈ L(W ,V ) satisfying ST = I and TS = I is
called an inverse of T (note that the first I is the identity
map on V and the second I is the identity map on W ).
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Inverse is Unique

Theorem (Inverse is Unique)
An invertible linear map has a unique inverse.

Proof (Inverse is Unique)
Suppose T ∈ L(V ,W ) is invertible, and S1 and S2 are inverses of T :

S1 = S1I = S1(TS2) = (S1T )S2 = IS2 = S2.

Notation (The Inverse of T : T−1)
If T is invertible, then its inverse is denoted by T−1. In other words, if
T ∈ L(V ,W ) is invertible, then ∃!T−1 ∈ L(W ,V ) such that T−1T = I
and TT−1 = I .
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Invertibility ⇔ Injectivity and Surjectivity

Theorem (Invertibility is Equivalent to Injectivity and Surjectivity)
A linear map is invertible if and only if it is injective and surjective.

Proof (Invertibility is Equivalent to Injectivity and Surjectivity)
Suppose T ∈ L(V ,W ).
⇒ First, we assume T is invertible

(i) To show injectivity, let u,w ∈ V , and T (u) = T (w):

u = T−1(T (u)) = T−1(T (w)) = w .
√

injective

(ii) To show surjectivity, let w ∈ W , then w = T (T−1(w)),
which shows w ∈ range(T ) → W = range(T ). √

surjective
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Proof :: Invertibility is Equivalent to Injectivity and Surjectivity 1/2

Proof (Invertibility is Equivalent to Injectivity and Surjectivity)
Suppose T ∈ L(V ,W ).
⇐ Now, assume T is injective and surjective; we need to show T is

invertible.
∀w ∈ W , let S(w) ∈ V (unique) such that T (S(w)) = w (exis-
tence + uniqueness of such an element follows from surjectivity +
injectivity of T ). Clearly TS = IW .
To show that ST = IV , let v ∈ V :

T ((ST )(v)) = (TS)(T (v)) = I (T (v)) = T (v)
so (ST )(v) = v , which makes ST = IV .

We must also show that S is linear...
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Proof :: Invertibility is Equivalent to Injectivity and Surjectivity 2/2

Proof (Invertibility is Equivalent to Injectivity and Surjectivity)
Suppose T ∈ L(V ,W ).
⇐ The final piece is to show that S is linear. Let w1,w2 ∈ W :

T (S(w1) + S(w2)) = T (S(w1)) + T (S(w2)) = w1 + w2

thus S(w1) + S(w2) ∈ V (unique) that maps to w1 + w2 ∈ W ; by
definition of S ⇒ S(w1 + w2) = S(w1) + S(w2). √

additive property

Let w ∈ W and λ ∈ F:

T (λS(w)) = λT (S(w)) = λw

thus λS(w) ∈ V is the unique element that T maps to λw ∈ W .
By the definition of S ⇒ S(λw) = λS(w). √

homogeneity property

√
additive property + √

homogeneity property ⇒ S is linear.
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Examples: Non-Invertible Linear Maps

Example (Linear Maps that are not Invertible)
The differentiation map: D ∈ L(P3(R),P2(R)) is not
invertible since null(D) = span (1) 6= {0} [Not Injective]

The multiplication-by-zq map: T ∈ L(P(F),P(F)) defined by
Tp ≡ T (p) = zqp(z), for z ∈ F is not invertible for q ≥ 1
since span (1) 6∈ range(T ). [Not Surjective]

The shift map: T ∈ L(F∞,F∞) defined by
T (z1, z2, z3, . . . ) = (z2, z3, z4, . . . ) is not invertible since
(z , 0, 0, . . . ) ∈ null(T ). [Not Injective]
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Isomorphic Vector Spaces

Definition (Isomorphism, Isomorphic)

An isomorphism is an invertible linear map.
Two vector spaces are called isomorphic if there is an isomorphism
from one vector space onto the other one.

Isomorphic spaces are the “same” in some sense; since the maps
T : V 7→ W , and T−1 : W 7→ V “tie” the elements from the spaces
together anything we do in one space can be translated to the other
space (via the map).

Comment (Linear Maps are Homomorphisms [Text adopted from Wikipedia])
In algebra, a homomorphism is a structure-preserving map between two algebraic
structures of the same type (such as two groups, two rings, or two vector spaces). A
homomorphism may also be an isomorphism, an endomorphism, an automorphism, etc.
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Morphisms: auto-, endo-, homo-, iso- Wikipedia & Dictionary.com

a morphism is a structure-preserving map from one mathematical structure to
another one of the same type.

a homomorphism is a structure-preserving map between two algebraic structures
of the same type (such as two groups, two rings, or two vector spaces).
“homo” ≈ “same”

an isomorphism is a structure-preserving mapping between two structures of the
same type that can be reversed by an inverse mapping.
“iso” ≈ “equal”

an automorphism is an isomorphism from a mathematical object to itself. It is,
in some sense, a symmetry of the object, and a way of mapping the object to
itself while preserving all of its structure. The set of all automorphisms of an
object forms a group, called the automorphism group.
“auto” ≈ “self”

an endomorphism is a morphism from a mathematical object to itself. An
endomorphism that is also an isomorphism is an automorphism.
“endo” ≈ “within”
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Dimension Shows Whether Vector Spaces are Isomorphic

Theorem (Dimension Shows Whether Vector Spaces are Isomorphic)
Two finite-dimensional vector spaces over F are isomorphic if and only if
they have the same dimension.

Proof (Dimension Shows Whether Vector Spaces are Isomorphic)
⇒ First suppose V and W are isomorphic finite-dimensional vector

spaces. Thus there exists an isomorphism T from V onto W .
Because T is invertible, we have null(T ) = {0} and range(T ) =
W . Thus dim(null(T )) = 0 and dim(range(T )) = dim(W ).
Using the [Fundamental Theorem of Linear Maps (Notes#3.1)]

dim(V ) = dim(null(T )) + dim(range(T ))

gives dim(V ) = dim(W ), completing the proof in one direction.
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Proof :: Dimension Shows Whether Vector Spaces are Isomorphic

Proof (Dimension Shows Whether Vector Spaces are Isomorphic)
⇐ Next, suppose V and W are finite-dimensional vector spaces with

the same dimension, n. Let v1, . . . , vn be a basis of V and
w1, . . . ,wn be a basis of W . Let T ∈ L(V ,W ) be defined by

T (c1v1 + · · · + cnvn) = c1w1 + · · · + cnwn

Then T is a well-defined linear map because v1, . . . , vn is a basis
of V . Also, T is surjective because w1, . . . ,wn spans W .
Also, null(T ) = {0} because w1, . . . ,wn is linearly independent;
thus T is injective.
Because T is injective and surjective, it is an isomorphism. Hence
V and W are isomorphic.
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Why Not Stay in Fn???

Since every finite-dimensional vector space is isomorphic to some
Fn, why not just study Fn instead of more general vector spaces?
Investigation of Fn would soon lead to other vector spaces. For
example, we would encounter the null-space and range-space of
linear maps.
Although each of these vector spaces is isomorphic to some Fn,
thinking of them that way often adds complexity but no new
insight.

Thinking of vector spaces “in the abstract” makes us focus on the
structures which drive the properties, instead of getting bogged down
in “implementation details.”

E.g. [terminus.sdsu.edu/SDSU/Math254/Lectures/2.3/index.php?subdir=2.3 Lecture&page=17]
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L(V ,W ) and Fm×n are Isomorphic M : L(V ,W ) 7→ Fm×n

Theorem (L(V ,W ) and Fm×n are Isomorphic)
Let v1, . . . , vn be a basis for V , and w1, . . . ,wm a basis for W ; then M
(the “matrixification”) is an isomorphism between L(V ,W ) and Fm×n.

Proof (L(V ,W ) and Fm×n are Isomorphic)
M is linear. We need to show that it is injective and surjective.
injective: Let T ∈ L(V ,W ), and M(T ) = 0, then T (vk) = 0,
k = 1, . . . , n. Thus T = 0, and null(M(T )) = {0} ⇔ M is injective.
surjective: Let A ∈ Fm×n, T : V 7→ W such that

T (vk) =
m∑

j=1
aj,kwj , k = 1, . . . , n

thus M(T ) = A, and range(M(T )) = Fm×n.
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dim(L(V ,W )) = (dim(V )) (dim(W ))

Theorem (dim(L(V ,W )) = (dim(V )) (dim(W )))
Suppose V and W are finite-dimensional. Then L(V ,W ) is
finite-dimensional, and

dim(L(V ,W )) = (dim(V )) (dim(W ))

Rewind
L(V ,W ) and Fm×n are Isomorphic

Let v1, . . . , vn be a basis for V , and w1, . . . ,wm a basis for W ; then M (the
“matrixification”) is isomorphism between L(V ,W ) and Fm×n.

Dimension Shows Whether Vector Spaces are Isomorphic
Two finite-dimensional vector spaces over F are isomorphic if and only if they
have the same dimension.

Dimension of Fm×n

With addition and scalar multiplication defined as above, Fm×n is a vector space
with dim(Fm×n) = mn.
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Linear Maps as Matrix Multiplication

To “complete” our language / framework, we formally define:

Definition (Matrix of a Vector, M(v))
Suppose v ∈ V , and v1, . . . , vn is a basis of V . The matrix of v
with respect to the basis is

M(v) =



c1
...
cn


 ∈ Fn×1

where c1, . . . , cn are the (unique) scalars (a.k.a. “coordinates”)
such that v = c1v1 + · · · + cnvn.
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Matrix “Slicing” — Columns of M(T )

Notation (The k-th Column of a Matrix)
Let A ∈ Fm×n, then ak ∈ Fm×1 is the k-th column of A.

Theorem (Columns of M)
Let T ∈ L(V ,W ) and v1, . . . , vn is a basis of V and w1, . . . ,wm is
a basis of W , k ∈ [1, . . . , n], then the k-th column of M(T ) is
given by

M(T )k = M(vk)
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Linear Maps Act Like Matrix Multiplication

Theorem (Linear Maps Act Like Matrix Multiplication)
Let T ∈ L(V ,W ), v ∈ V ; v1, . . . , vn a basis of V ; w1, . . . ,wm a basis of
W . Then

M(T (v)) = M(T )M(v)

Proof (Linear Maps Act Like Matrix Multiplication)

Given v ∈ V , write v
!= c1v1 + · · · + cnvn

T (v) = c1T (v1) + · · · + cnT (vn)
M(T (v)) = M(c1T (v1) + · · · + cnT (vn))

= c1M(T (v1)) + · · · + cnM(T (vn))
= c1M(T )1 + · · · + cnM(T )n
= M(T )M(v)

Peter Blomgren 〈blomgren@sdsu.edu〉 3.2. Linear Maps — (19/69)

Linear Maps, iii
Linear Maps, iv Invertibility and Isomorphic Vector Spaces

Operators, L(V )
Linear maps from a vector space to itself are important, and get their
own name and notation:

Definition (Operator, L(V ))

A linear map from a vector space to itself is called an operator.
The notation L(V ) denotes the set of all operators on V . In other
words, L(V ) = L(V ,V ).

Theorem (For L(V ): Injectivity ⇔ Surjectivity in Finite Dimensions)
Suppose V is finite-dimensional and T ∈ L(V ); the following are
equivalent:

T is invertible;
T is injective;
T is surjective.
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Proof :: For L(V ): Injectivity ⇔ Surjectivity in Finite Dimensions

Proof (For L(V ): Injectivity ⇔ Surjectivity in Finite Dimensions)
T invertible ⇒ injective + surjective. √

since ⇔ holds

Assume T is injective: ⇒ null(T ) = {0};
[Fundamental Theorem of Linear Maps (Notes#3.1)]:

dim(range(T )) = dim(V ) − dim(null(T )) = dim(V )
which makes T surjective; injective + surjective ⇒ invertible. √

Assume T is surjective: ⇒ range(T ) = V ;
[Fundamental Theorem of Linear Maps (Notes#3.1)]:

dim(null(T )) = dim(V ) − dim(range(T )) = 0
which makes T injective; injective + surjective ⇒ invertible. √
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Example T ∈ L(Pm(F))

Example (T ∈ L(Pm(F)))
(Q) Show that ∀q ∈ P(F) ∃p ∈ P(F) : ((z2 + 5z + 7)p(z))′′ = q.

(A) dim(P(F)) = ∞, so the theorem does not apply.
However, for any given q ∈ P(F), deg(q) = m < ∞; we restrict
ourselves to Pm(F): Let T ∈ L(Pm(F)) be defined by

Tp = ((z2 + 5z + 7)p(z))′′

multiplication by (z2+5z+7) takes us to Pm+2(F); then the deriva-
tives takes us to Pm+1(F), and Pm(F). (yes, T ∈ L(Pm(F)))
Only sub-quadratic polynomials have zero second derivative, there-
fore null(T ) = {0} (⇒ T is injective).
The theorem guarantees surjectivity; so there must be a polynomial
p ∈ Pm(F) : T (p) = q. √

Peter Blomgren 〈blomgren@sdsu.edu〉 3.2. Linear Maps — (22/69)

Linear Maps, iii
Linear Maps, iv Invertibility and Isomorphic Vector Spaces

Example, continued — Matrixification 1 of 2

Again, we consider T ∈ L(Pm(F),Pm(F)) defined by
T (z) = ((z2 + 5z + 7)p(z))′′; we will compute
M(T , {1, z , . . . , zm}, {1, z , . . . , zm}).
First off, we need to transform the input basis vectors:




T (1) = 2
T (z) = 6z + 10
T (z2) = 12z2 + 30z + 14
T (z3) = 20z3 + 60z2 + 42z
T (z4) = 30z4 + 100z3 + 84z2

T (z5) = 42z5 + 150z4 + 140z3

...
T (zk) = (k2 + 3k + 2︸ ︷︷ ︸

(k+2)(k+1)

)zk + (5k2 + 5k︸ ︷︷ ︸
5(k+1)k

)zk−1 + (7k2 − 7k︸ ︷︷ ︸
7k(k−1)

)zk−2
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Example, continued — Matrixification 2 of 2

Now, we can assemble matrices:

O
ut

pu
t

Ba
sis

Input Basis
1 z z2 z3 z4 z5 · · · · · · · · · zk

1 2 10 14
z 6 30 42
z2 12 60 84
z3 20 100 140

z4 30 150 . . .

z5 42 . . . . . .
... . . . . . . . . .

zk−2 . . . . . . (7k2 − 7k)

zk−1 . . . (5k + 5k2)
zk (3k + 2 + k2)
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Anti-Examples on Infinite-Dimensional Vector Spaces

Example (When dim(V ) = ∞, Neither Injectivity nor Surjectivity
implies Invertibility)

The multiplication-by-zp, p ∈ Z+ operator on P(F) is
injective, but not surjective. {1, . . . , zp−1} 6∈ range(∗zp)

The sequence-[left]shift operator on F∞ is surjective but not
injective. (z1, 0, 0, . . . ) ∈ null()

(we need both Surjectivity and Injectivity for Invertibility)
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〈〈〈 Live Math 〉〉〉

e.g. 3D-{1, 4, 5}
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Live Math :: Covid-19 Version 3D-1

3D-1: Suppose T ∈ L(U,V ), and S ∈ L(V ,W ) are both invertible
linear maps. Prove that ST ∈ L(U,W ) is invertible and that
(ST )−1 = T−1S−1.

> Solution >

Using the definitions for products, and associativity:

(ST )(T−1S−1) = S(TT−1)S−1 = SS−1 = I
(T−1S−1)(ST ) = T−1(S−1S)T = T−1T = I

which by definition makes (ST ) invertible, with inverse (T−1S−1).
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Products of Vector Spaces

Convention: When dealing with more than one vector space, all the vector
spaces in use will be over the same field.

Definition (Products of Vector Spaces)
Suppose V1, . . . ,Vm are vector spaces over F.

The product V1 × · · · × Vm is defined by

V1 × · · · × Vm = {(v1, . . . , vm) : v1 ∈ V1, . . . , vm ∈ Vm}

Addition on V1 × · · · × Vm is defined by

(u1, . . . , um) + (v1, . . . , vm) = (u1 + v1, . . . , um + vm)

Scalar multiplication on V1 × · · · × Vm is defined by

λ(v1, . . . , vm) = (λv1, . . . , λvm)
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Products of Vector Spaces

Theorem (Product of Vector Spaces is a Vector Space)
Suppose V1, . . . ,Vm are vector spaces over F. Then V1 × · · · × Vm

is a vector space over F.

The proof follows directly from how the spaces are joined, and then
joining additive-identity-objects and additive-inverse-object in the
same way. Closure(s) follow from closure(s) of the joined spaces.
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Example: Fp × Fq and Fp+q, p, q ∈ Z+

s ∈ Fp are lists of length p: s = (s1, . . . , sp)

t ∈ Fq are lists of length q: t = (t1, . . . , tq)

u ∈ Fp × Fq are lists of length 2, where the first list-element is
a list of length p, and the second list-element is a list of
length q: u = ((u11, . . . , u1p), (u21, . . . , u2q)).

v ∈ Fp+q are lists of length p + q: v = (v1, . . . , vp+q)

Clearly Fp × Fq 6≡ Fp+q, but they are isomorphic; and yes, the
isomorphism is “obvious!”
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A Basis for P2(F) × F3

A basis for P2(F) is given by {1, z , z2}

A basis for F3 is given by {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

Elements in P2(F) × F3 are of the form
(p(z) ∈ P2(F), v ∈ F3)

We can build a basis:
{

(1, (0, 0, 0)) (z , (0, 0, 0)), (z2, (0, 0, 0))
(0, (1, 0, 0)) (0, (0, 1, 0)), (0, (0, 0, 1))

}

This gives away the “big secret” revealed in the next theorem:
is seems like dim(P2(F) × F3) = dim(P2(F)) + dim(F3)
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Dimension of a Product is the Sum of Dimensions

Theorem (Dimension of a Product is the Sum of Dimensions)
Suppose V1, . . . ,Vm are finite-dimensional vector spaces. Then
V1 × · · · × Vm is finite-dimensional, and

dim(V1 × · · · × Vm) = dim(V1) + · · · + dim(Vm)

Proof (Dimension of a Product is the Sum of Dimensions)
Choose a basis for each Vk , for each basis vector, consider the element in
V1 × · · · × Vm which is the appropriately zero-padded version of the basis
vector. The list of all such vectors is linearly independent, and spans
V1 × · · · × Vm. The length of this basis is dim(V1) + · · · + dim(Vm)
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Products and Direct Sums

Theorem (Products and Direct Sums)
Suppose that U1, . . . ,Um are subspaces of V . Define a linear map
T : U1 × · · · × UM 7→ U1 + · · · + Um by

T (u1, . . . , um) = u1 + · · · + um.

Then U1 + · · · + Um is a direct sum if and only if T is injective.

Rewind ([Condition for a Direct Sum (Notes#1)])
Suppose U1, . . . ,Um are subspaces of V . Then U1 + · · · + Um is a direct sum if and
only if the only way to write 0 as a sum u1 + · · · + um, where each uj ∈ Uj , is by
taking each uj = 0.

Proof (Products and Direct Sums)
The linear map T is injective if and only if the only way to write 0 as a sum
u1 + · · · + um, where each uj ∈ Uj , is by taking uj = 0. [Injectivity ⇔ null space
equals {0} (Notes#3.1)] Thus T is injective if and only if U1 + · · · + Um is a
direct sum. [Condition for a Direct Sum (Notes#1)]
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A Sum is a Direct Sum if and only if Dimensions Add Up

Theorem (A Sum is a Direct Sum if and only if Dimensions Add Up)
Suppose V is finite dimensional and U1, . . . ,Um are subspaces of V .
Then U1 + · · · + Um is a direct sum if and only if

dim(U1 + · · · + Um) = dim(U1) + · · · + dim(Um).

Proof (A Sum is a Direct sum ⇔ Dimensions Add Up)
The linear map T (defined in the previous theorem/proof) is surjective.
By the [Fundamental Theorem of Linear Maps (Notes#3.1)], T is
injective if and only if

dim(U1 + · · · + Um) = dim(U1 × · · · × Um)
Combining [Dimension of a product is the sum of dimensions], and the
previous theorem shows that U1 × · · · × Um is direct sum if and only if

dim(U1 + · · · + Um) = dim(U1 ×· · ·×Um) = dim(U1) + · · · + dim(Um).
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Quotients of Vector Spaces “Quotient Spaces”

Definition (v + U)
Suppose v ∈ V , and U is a subspace of V . Then v + U is the
subset of V defined by

v + U = {v + u : u ∈ U}

Example (v + U)
Let U = {λ(1, 2, 3) : λ ∈ R} (a line ∈ R3 through the origin.)
Let v = (1, 0, 0) ∈ R3 (not on the line)
Then v + U = {(1 + λ, 2λ, 3λ) : λ ∈ R}
(a line ∈ R3 NOT through the origin ⇒ Not a Vector Space.)
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Affine Subset, Parallel

Definition (Affine Subset, Parallel)
An affine subset of V is a subset of V of the form v + U for
some v ∈ V and some subspace U of V .
For v ∈ V and U a subspace of V , the affine subset v + U is
said to be parallel to U.

Example (v + U)
If P = {(x1, 0, x3, 0, 0) ∈ R5 : x1, x3 ∈ R} then the affine
subsets parallel to P are the planes in R5 that are parallel to
the x1–x3 plane... (in the “obvious” 5-dimensional sense!)
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Quotient Space, V /U

Definition (Quotient Space, V /U)
Suppose U is a subspace of V . Then the quotient space V /U is
the set of all affine subsets of V parallel to U:

V /U = {v + U : v ∈ V }

Example (Quotient Spaces)
If L is a line in Rn containing the origin, then Rn/L is the set
of all lines in Rn parallel to L.
If P is a plane in Rn (n ≥ 2) containing the origin, then Rn/P
is the set of all planes in Rn parallel to P .
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Two Affine Subsets Parallel to U are Equal or Disjoint

Theorem (Two Affine Subsets Parallel to U are Equal or Disjoint)
Suppose U is a subspace of V and v ,w ∈ V . Then the following
are equivalent:
(a) v − w ∈ U

(b) v + U = w + U “The Affine Subsets are Equal”
(c) (v + U) ∩ (w + U) 6= ∅

Stated in the negative:

Theorem (Two Affine Subsets Parallel to U are Equal or Disjoint)
(a−) v − w 6∈ U

(b−) v + U 6= w + U

(c−) (v + U) ∩ (w + U) = ∅ “The Affine Subsets are Disjoint”
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Proof :: Two Affine Subsets Parallel to U are Equal or Disjoint

Proof (Two Affine Subsets Parallel to U are Equal or Disjoint)
(b)⇒(c) This one is for free.
(a)⇒(b) Suppose (a) v − w ∈ U. If u ∈ U, then

v + u = w + ((v − w) + u) ∈ w + U

so v + U ⊂ w + U. In the same way w + U ⊂ v + U; and
therefore (b) v + U = w + U

(c)⇒(a) Suppose (c) (v + U) ∩ (w + U) 6= ∅. ∃u1, u2 ∈ U

v + u1 = w + u2 v − w = u2 − u1 ∈ U

which shows (a) v − w ∈ U.

(a)⇒(b)⇒(c)⇒(a) √
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Addition and Scalar Multiplication on V /U Quotient Space is a Vector Space

Definition (Addition and Scalar Multiplication on V /U)
Suppose U is a subspace of V . The addition and scalar multiplication
are defined on V /U by:

(v + U) + (w + U) = (v + w) + U

λ(v + U) = (λv) + U

for v ,w ∈ V , λ ∈ F.

Theorem (Quotient Space is a Vector Space)
Suppose U is a subspace of V . Then V /U, with the operations of
addition and scalar multiplication as defined above, is a vector space.
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Proof :: Quotient Space is a Vector Space

Problem: Non-Unique Representation
The representation of an affine subset parallel to U is not unique.
Let v , v̂ ,w , ŵ ∈ V : (v + U) = (v̂ + U), and (w + U) = (ŵ + U).
We must show (v + w) + U = (v̂ + ŵ) + U.

Proof (Quotient Space is a Vector Space)
+ By [Two Affine Subsets Parallel to U are Equal or Disjoint] we have

(v − v̂) ∈ U, and (w − ŵ) ∈ U. Since U is a subspace of V (and
therefore closed under addition), we have (v − v̂) + (w − ŵ) ∈ U and
therefore (v+w)−(v̂+ŵ) ∈ U. Invoking [Two Affine Subsets Parallel
to U are Equal or Disjoint] again, gives (v + w) + U = (v̂ + ŵ) + U.

* Let λ ∈ F. Since U is a subspace of V (and therefore closed under
scalar multiplication, we have λ(v − v̂) ∈ U. Thus λv − λv̂ ∈ U. Yet
another invocation of the theorem gives us (λv) + U = (λv̂) + U.
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Proof :: Quotient Space is a Vector Space — wrap-up

Proof (Quotient Space is a Vector Space — wrap-up)
Now, addition and scalar multiplication are well-defined on V /U; it
remains to show that V /U is a vector space:

0 The additive identity is (0 + U)
− The additive inverse of (v + U) is ((−v) + U)
Now, the rest of the vector space properties follow the fact that V
is a vector space, and the definitions of (+, ∗, 0,−).
We leave the details as an excercise for a dark and stormy night...
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Quotient Map, π Dimension of a Quotient Space

Definition (Quotient Map, π)
Suppose U is a subspace of V . The quotient map π is the linear map
π : V 7→ V /U defined by

π(v) = v + U

for v ∈ V . (A more complete notation would be π(v ,U), but usually the
subspace U is assumed to be “obvious from context.”)

Theorem (Dimension of a Quotient Space)
Suppose V is finite-dimensional and U is a subspace of V . Then

dim(V /U) = dim(V ) − dim(U)

Sometimes, codim(U) = dim(V/U) — “the co-dimension of U in V .”
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Proof :: Dimension of a Quotient Space

Proof (Dimension of a Quotient Space)
Let π : V 7→ V /U. We have null(π) = U; and range(π) = V /U;
therefore

dim(V ) = dim(U)︸ ︷︷ ︸
dim(null(π))

+ dim(V /U)︸ ︷︷ ︸
dim(range(π))

re-arranging gives the result.

We used [Two Affine Subsets Parallel to U are Equal or Disjoint], and
[The Fundamental Theorem of Linear Maps (Notes#3.1)]...
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The Induced Map T̃

Definition (The Induced Map T̃ )
Suppose T ∈ L(V ,W ). Define T̃ : (V /null(T)) 7→ W by

T̃ (v + null(T )) = T (v)

This is well-defined since for u, v ∈ V : u + null(T ) = v + null(T ).
[Two Affine Subsets Parallel to U are Equal or Disjoint] guarantees
(u − v) ∈ null(T );
i.e. 0 = T (u − v) = T (u) − T (v) ⇒ T (u) = T (v). √

Peter Blomgren 〈blomgren@sdsu.edu〉 3.2. Linear Maps — (45/69)

Linear Maps, iii
Linear Maps, iv Products and Quotients of Vector Spaces

Null Space and Range of T̃

Theorem (Null Space and Range of T̃ )
Suppose T ∈ L(V ,W ), then

1. T̃ is a linear map from (V /(null(T )) to W

2. T̃ is injective
3. range(T̃ ) = range(T )
4. (V /null(T )) is isomorphic to range(T )

Proof (Null Space and Range of T̃ )

1. The usual “closure mechanics...” nothing exciting here
3. The is true by the construction of T̃
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Proof :: Null Space and Range of T̃

Proof (Null Space and Range of T̃ )

2. Let v ∈ V and T̃ (v + null(T )) = 0. Then T (v) = 0 ⇒
v ∈ null(T ). [Two Affine Subsets Parallel to U are Equal or
Disjoint] implies that (v + null(T )) = (0 + null(T )) ⇒ null(T̃ ) = 0
⇒ T̃ is injective. √

4. Parts (2.) and (3.) show that if we consider T̃ as a mapping into
range(T ), then T̃ is an isomorphism from V /(null(T )) onto
range(T ).
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More Abstraction?

If you want a more //////linear abstract [Math-320/520-ish] algebraic view of
the Quotient Space / Quotient Map framework...

The elements of the Quotient Space (V /U) are equivalence classes

[v ] = v + U = {v + U : v ∈ V }

under the equivalence relation v1 ∼ v2 ⇔ v1 + U = v2 + U.

We have scalar multiplication and addition on the equivalence classes
defined by

λ[v ] = [λv ] ∀λ ∈ F, v ∈ V

[v1] + [v2] = [v1 + v2], v1, v2 ∈ V

The quotient map simply maps v to its equivalence class [v ].
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〈〈〈 Live Math 〉〉〉

e.g. 3E-{5, 13}
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Live Math :: Covid-19 Version 3E-5

3E-5: Suppose W1, . . . ,Wm are vector spaces. Prove that
L(V ,W1 × · · · × Wm) and L(V ,W1) × · · · × L(V ,Wm) are
isomorphic spaces.

> Solution >

We show that Γ defined below is an isomorphism:

Γ : L(V ,W1 × · · · × Wm) 7→ L(V ,W1) × · · · × L(V ,Wm)
(Γ(T1, . . . ,Tm))(v) = (T1(v), . . . ,Tm(v))

Γ, being a “stacking” of linear maps, is “obviously” a linear map (it is
linear in each component, etc...)
We show that Γ is both injective (one-to-one) and surjective (onto); thus
showing that is an isomorphism...
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Live Math :: Covid-19 Version 3E-5

> Injectivity >
If (T1, . . . ,Tm) ∈ L(V ,W1 × · · · × Wm), and Γ(T1, . . . ,Tm) = 0, then
Tk = 0, k = 1, . . . ,m. Thus null(Γ) = {0} which makes Γ injective due to
[Injectivity ⇔ null space equals {0} (Notes#3.1)]

> Surjectivity >
Let T ∈ L(V ,W1 × · · · × Wm). Define Tk ∈ L(V ,Wk) by

T (v) = (T1(v), . . . ,Tm(v))

for v ∈ V . Then Γ(T1, . . . ,Tm) = T ... and Γ is surjective.

> Isomorphic Spaces >
[Invertibility is Equivalent to Injectivity and Surjectivity] + Definition
of Isomorphism (as an invertible linear map)  The Spaces are
Isomorphic.
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Suggested Problems

3.D—1, 2, 3, 4, 5, 6

3.E—2, 4, 5, 13
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Assigned Homework HW#3.2, Due Date in Canvas/Gradescope

3.D—2, 3

3.E—2, 4

∈ {Midterm#1 Material}

Note: Assignment problems are not official and subject to change
until the first lecture on the chapter has been delivered (or
virtually “scheduled.”)

Upload homework to www.Gradescope.com
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Duality

“In mathematics, a duality, generally speaking, translates concepts, theorems or mathe-
matical structures into other concepts, theorems or structures, in a one-to-one fashion,
often (but not always) by means of an involution operation: if the dual of A is B, then
the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A
is A itself. For example, Desargues’ theorem is self-dual in this sense under the standard
duality in projective geometry.”

“Many mathematical dualities between objects of two types correspond to pairings,
bilinear functions from an object of one type and another object of the second type to
some family of scalars. For instance, linear algebra duality corresponds in this way to
bilinear maps from pairs of vector spaces to scalars, the duality between distributions
and the associated test functions corresponds to the pairing in which one integrates
a distribution against a test function, and Poincaré duality corresponds similarly to
intersection number, viewed as a pairing between submanifolds of a given manifold”

https://en.wikipedia.org/wiki/Duality (mathematics)
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Duality

For the time being, we will not deep-dive into duality... we will return
to the topic later in the class with a slightly different perspective.
Still, a quick look at the results in this section provides some useful
scaffolding for future concepts.

At the end of the section, we have some formal definitions of con-
cepts we probably recognize, and definitely need...
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The Dual Space and the Dual Map

Linear maps into the scalar field F play a special role in linear algebra,
and thus they get a special name:

Definition (Linear Functional)
A linear functional on V is a linear map from V 7→ F. In other
words, a linear functional is an element of L(V ,F).
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Examples of Linear Functionals Dual Space V ′ = L(V ,F)

Example (Linear Functionals)
ϕ : R3 7→ R defined by ϕ(x1, x2, x3) = 4x1 − 5x2 + 6x3

Fix (c1, . . . , cn) ∈ Fn, then define ϕ : Fn 7→ R by
ϕ(x1, . . . , xn) = c1x1 + · · · + cnxn

This is the Math 254-familiar dot product ϕ(~x) = ~c · ~x .
ϕ : P(R) 7→ R defined by ϕ(p) = p′′(1) + 2p′(2) + 3p(p)
ϕ : P(R) 7→ R defined by ϕ(p) =

∫ 1
−1 p(x) dx

Definition (Dual Space V ′ = L(V ,F))
The dual space of V , denoted V ′ is the vector space of all linear
functionals on V . In other words, V ′ = L(V ,F).
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Dimension of the Dual Space

Theorem (dim(V ′) = dim(V ))
Suppose V is finite-dimensional. Then V ′ is also finite-dimensional and
dim(V ′) = dim(V ).

Proof (dim(V ′) = dim(V ))

dim(V ′) = dim(L(V ,F)) = dim(V ) dim(F) = dim(V )

Definition (Dual Basis)
If v1, . . . , vn is a basis of V , then the dual basis of v1, . . . , vn is the list
ϕ1, . . . , ϕn of element of V ′ where each ϕj is the linear functional on V
such that

ϕj(vk) = δjk

Peter Blomgren 〈blomgren@sdsu.edu〉 3.2. Linear Maps — (58/69)

Problems, Homework, and Supplements
Suggested Problems
Assigned Homework
Supplements :: Duality

The Dual Basis is a Basis of the Dual Space

Example (The Dual Basis of the Standard Basis of F)
ϕj(x1, . . . , xn) = xj

Theorem (The Dual Basis is a Basis of the Dual Space)
Suppose V is finite-dimensional. Then the dual basis of a basis of V is a
basis of V ′.

Proof (The Dual Basis is a Basis of the Dual Space)
Suppose v1, . . . , vn is a basis of V . Let ϕ1, . . . , ϕn denote the dual basis.
Linear Independence: Let a1, . . . , an ∈ F such that

a1ϕ1 + · · · + anϕn = 0
Now, (a1ϕ1 + · · · + anϕn)(vj) = aj , (j = 1, . . . , n); hence aj = 0
(j = 1, . . . , n). √ (lin.indep. + n elements ⇒ basis)
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Dual Map, T ′

Definition (Dual Map, T ′)
If T ∈ L(V ,W ), then the dual map of T is the linear map
T ′ ∈ L(W ′,V ′) defined by T ′(ϕ) = ϕ ◦ T for ϕ ∈ W ′.

Sorting it out:
With T ∈ L(V ,W ) (T : V 7→ W ), and ϕ ∈ W ′ = L(W ,F), then T ′(ϕ)
is defined the above composition V 7→ W 7→ F; i.e.
T ′(ϕ) ∈ L(V ,F) = V ′.
Linearity:

if ϕ,ψ ∈ W ′, then

T ′(ϕ+ ψ) = (ϕ+ ψ) ◦ T = ϕ ◦ T + ψ ◦ T = T ′(ϕ) + T ′(ψ)

if ϕ ∈ W ′, and λ ∈ F, then

T ′(λϕ) = (λϕ) ◦ T = λ(ϕ ◦ T ) = λT ′(ϕ)
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Example :: Dual Map

Here we take D ′ to mean the dual map of the differentiation operator D,
and let ∂ denote the derivative (as not to overload the prime(’) on a
single slide...)

Example
Let D ∈ L(P(R),P(R)) be defined by Dp = ∂p.

ϕ : P(R) 7→ R defined by ϕ(p) = p(3). Then D ′(ϕ) : P(R) 7→ R
defined by

(D ′(ϕ))(p) = (ϕ ◦ D)(p) = ϕ(Dp) = ϕ(∂p) = ∂p(3)

ϕ : P(R) 7→ R defined by ϕ(p) =
∫ 1

−1 p(t) dt. Then

(D′(ϕ))(p) = (ϕ ◦ D)(p) = ϕ(Dp) = ϕ(∂p) =
Z 1

−1
∂p dt = p(1) − p(−1)
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Algebraic Properties of Dual Maps

Theorem (Algebraic Properties of Dual Maps)

(S + T )′ = S ′ + T ′ ∀S ,T ∈ L(V ,W )
(λS)′ = λS ′ ∀λ ∈ F,S ∈ L(V ,W )
(ST )′ = T ′S ′ ∀S ∈ L(V ,W ),T ∈ L(U,V )

Proof (Algebraic Properties of Dual Maps)
The first two are standard “linearity procedure.” For the third, let
ϕ ∈ W ′:

(ST )′(ϕ) 1= ϕ◦(ST ) 2= (ϕ◦S)◦T 3= T ′(ϕ◦S) 4= T ′(S ′(ϕ)) 5= (T ′S ′)(ϕ)

1 3 4 — definition of the dual map
2 — associativity
5 — definition of composition.
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The Null Space and Range of the Dual of a Linear Map

Definition (Annihilator, U0)
For U ⊂ V , the annihilator of U, denoted U0 is defined by

U0 =
{
ϕ ∈ V ′ : ϕ(u) = 0 ∀u ∈ U

}

Example (Annihilator)
Suppose U is the subspace of P(F) consisting of all
polynomial multiples of z2. If ϕ is the linear functional on
P(F) defined by ϕ(p) = p′(0), then ϕ ∈ U0.
Let e1, . . . , e2n be the standard basis for F2n, and let
ϕ1, . . . , ϕ2n denote the dual basis of (F2n)′). Suppose
U = span(e1, e3, e5, . . . , e2n−1), then
U0 = span(ϕ2, ϕ4, ϕ6, . . . , ϕ2n).
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The Annihilator :: Subspace Properties, Dimension, Null Space

Theorem (The Annihilator is a Subspace)
Suppose U ⊂ V , then U0 is a subspace of V ′.

Theorem (Dimension of the Annihilator)
Suppose V is finite-dimensional and U is a subspace of V . Then

dim(U) + dim
(
U0)

= dim(V )

Theorem (The Null Space of T ′)
Suppose V and W are finite-dimensional and T ∈ L(V ,W ). Then

null(T ′) = (range(T ))0

dim(null(T ′)) = dim(null(T )) + dim(W ) − dim(V )
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The Dual Map, T ′ :: Injectivity, Surjectivity, Range

Theorem (T Surjective ⇔ T ′ Injective)
Suppose V and W are finite-dimensional and T ∈ L(V ,W ). Then T is
surjective if and only if T ′ is injective.

Theorem (The Range of T ′)
Suppose V and W are finite-dimensional and T ∈ L(V ,W ). Then

dim(range(T ′)) = dim(range(T ))
range(T ′) = (null(T ))0

Theorem (T Injective ⇔ T ′ Surjective)
Suppose V and W are finite-dimensional and T ∈ L(V ,W ). Then T is
injective if and only if T ′ is surjective.
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The Matrix of the Dual of a Linear Map

Definition (Transpose, AT )
The transpose of a matrix A, denoted AT , is the matrix obtained
from A by interchanging the rows and columns. More specifically,
if A ∈ Fm×n, then AT ∈ Fn×m is matrix whose entries are given by
the equation

(AT )k,j = Aj ,k

Theorem (The Transpose of the Product of Matrices)
If A ∈ Fm×n, and B ∈ Fn×p, then

(AB)T = BTAT ∈ Fp×m
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The Matrix of the Dual of a Linear Map The Rank of a Matrix

Theorem (The Matrix of T ′ is the Transpose of the Matrix of T )
Suppose T ∈ L(V ,W ). Then M(T ′) = (M(T ))T .

Definition (Row Rank, Column Rank)
Suppose A ∈ Fm×n

The row rank of A is the dimension of the span of the rows
of A in F1×n.
The column rank of A is the dimension of the span of the
columns of A in Fm×1.
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Problems, Homework, and Supplements
Suggested Problems
Assigned Homework
Supplements :: Duality

The Rank of a Matrix

Theorem (Dimension of range(T ) equals column rank of M(T ))
Suppose V and W are finite-dimensional and T ∈ L(V ,W ). Then
dim(range(T )) equals the column rank of M(T ).

Theorem (Row Rank Equals Column Rank)
Suppose A ∈ Fm×n. The the row rank of A equals the column rank
of A.

Definition (Rank)
The rank of a matrix A ∈ Fm×n is the column rank of A.
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Problems, Homework, and Supplements
Suggested Problems
Assigned Homework
Supplements :: Duality

Suggested Problems

3.F—1, 2, 3, 5, 8, 32
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