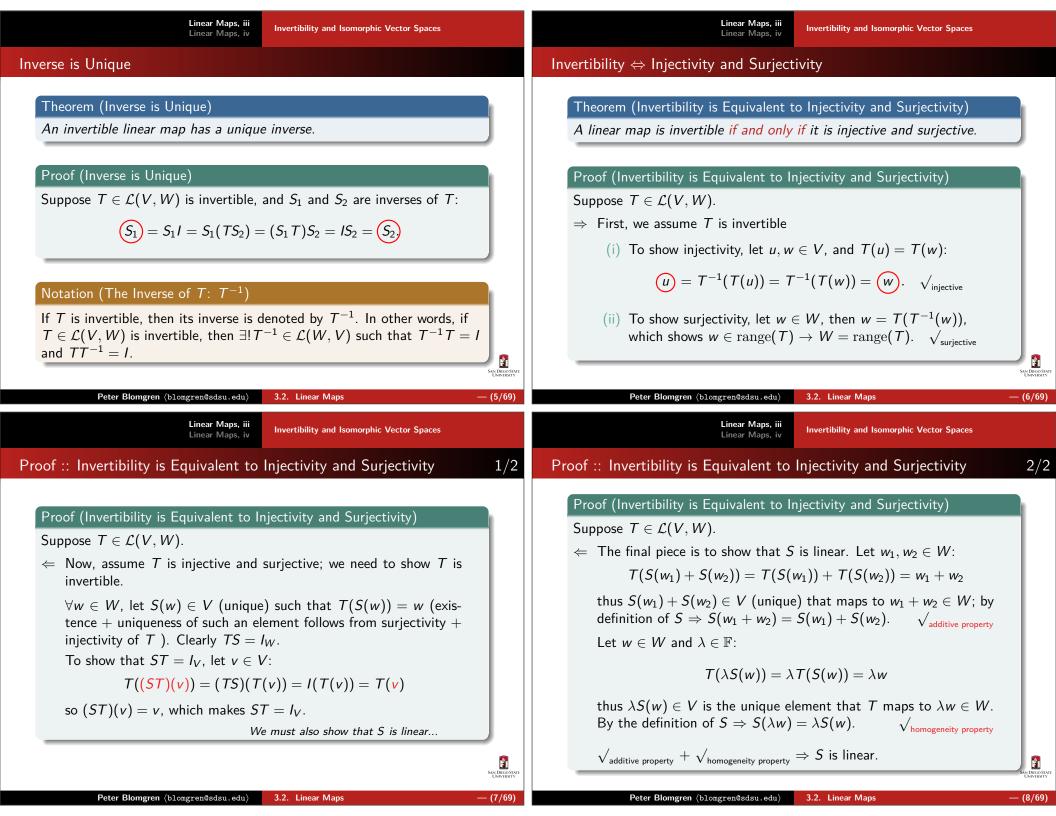
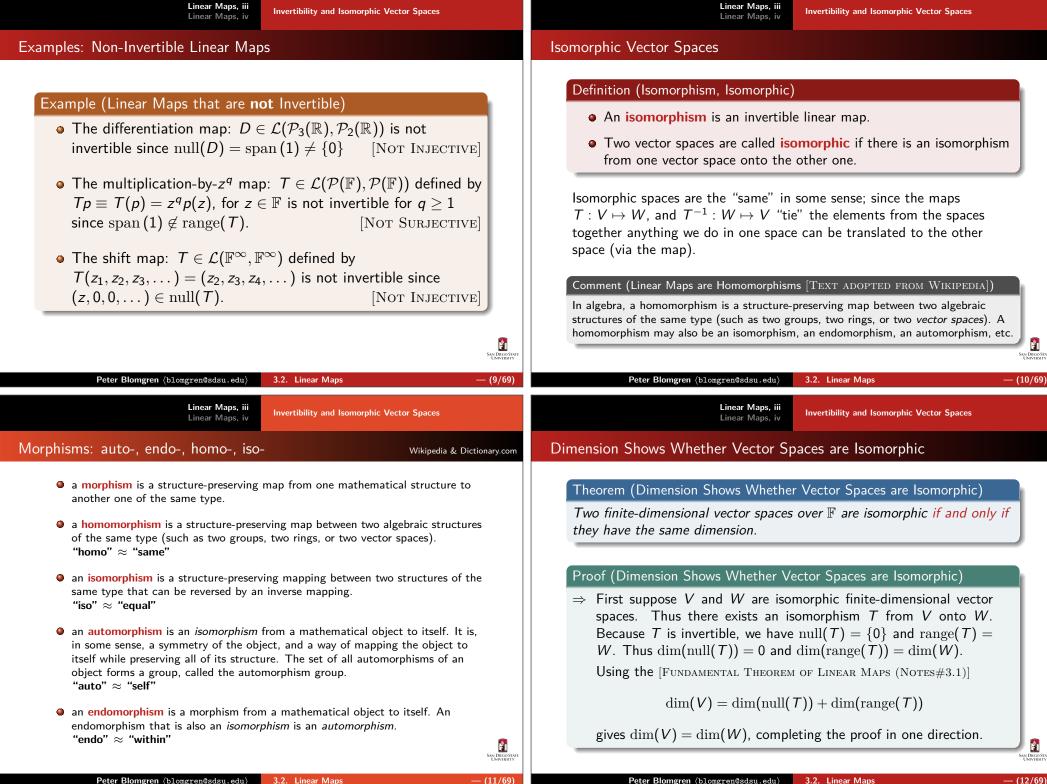
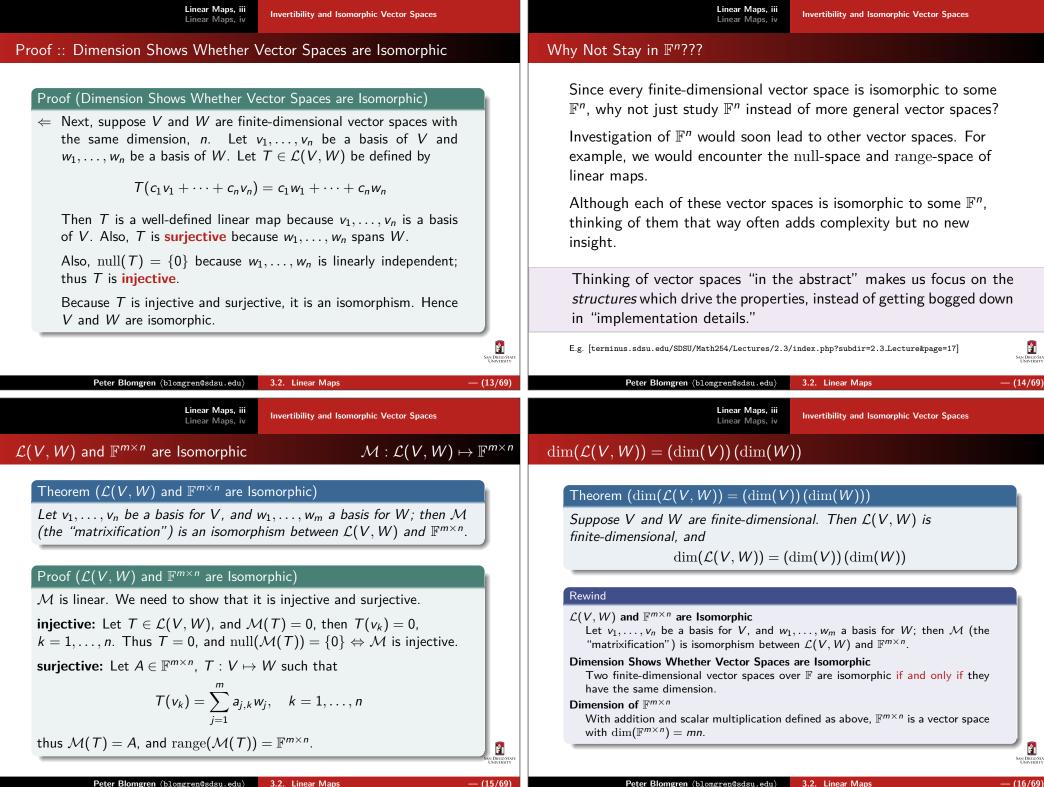
	Outline
Math 524: Linear Algebra Notes #3.2 — Linear Maps	 Student Learning Targets, and Objectives SLOs: Linear Maps
Peter Blomgren (blomgren@sdsu.edu) Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://terminus.sdsu.edu/ Fall 2021 (Revised: December 7, 2021)	 2 Linear Maps, <i>iii</i> Invertibility and Isomorphic Vector Spaces 3 Linear Maps, <i>iv</i> Products and Quotients of Vector Spaces 4 Problems, Homework, and Supplements Suggested Problems Assigned Homework Supplements :: Duality
Stephnop Start Deter Blomgren (blomgren@sdsu.edu) 3.2. Linear Maps	Peter Blomgren (blomgren@sdsu.edu) 3.2. Linear Maps — (2/69)
	Linear Mans iii
Student Learning Targets, and Objectives SLOs: Linear Maps	Linear Maps, iv
Student Learning Targets, and Objectives	Invertible Linear Maps
 Target Isomorphic Vector Spaces Objective Know the condition for finite-dimensional vector spaces to be isomorphic Objective Be familiar with the definition and special properties of operators Target Product Spaces Objective Be able to form product spaces, and find dimensions, and bases for them Target Quotient Spaces Objective Be able to form quotient spaces, and define and use the quotient map; as well as find dimensions 	 Definition (Invertible, Inverse) A linear map T ∈ L(V, W) invertible if there exists a linear map S ∈ L(W, V) such that ST equals the identity map on V and TS equals the identity map on W A linear map S ∈ L(W, V) satisfying ST = I and TS = I is called an inverse of T (note that the first I is the identity
$\langle \langle \text{supplemental} \rangle \rangle$	map on V and the second I is the identity map on W).
Target Dual Space of a Vector Space & the Dual of a Linear Map Objective Be familiar with the language and notation of duality; and properties of dual maps	SHEDURES FOR
Univisity Univisity	LAND ON OUT OF THE CASE OF THE



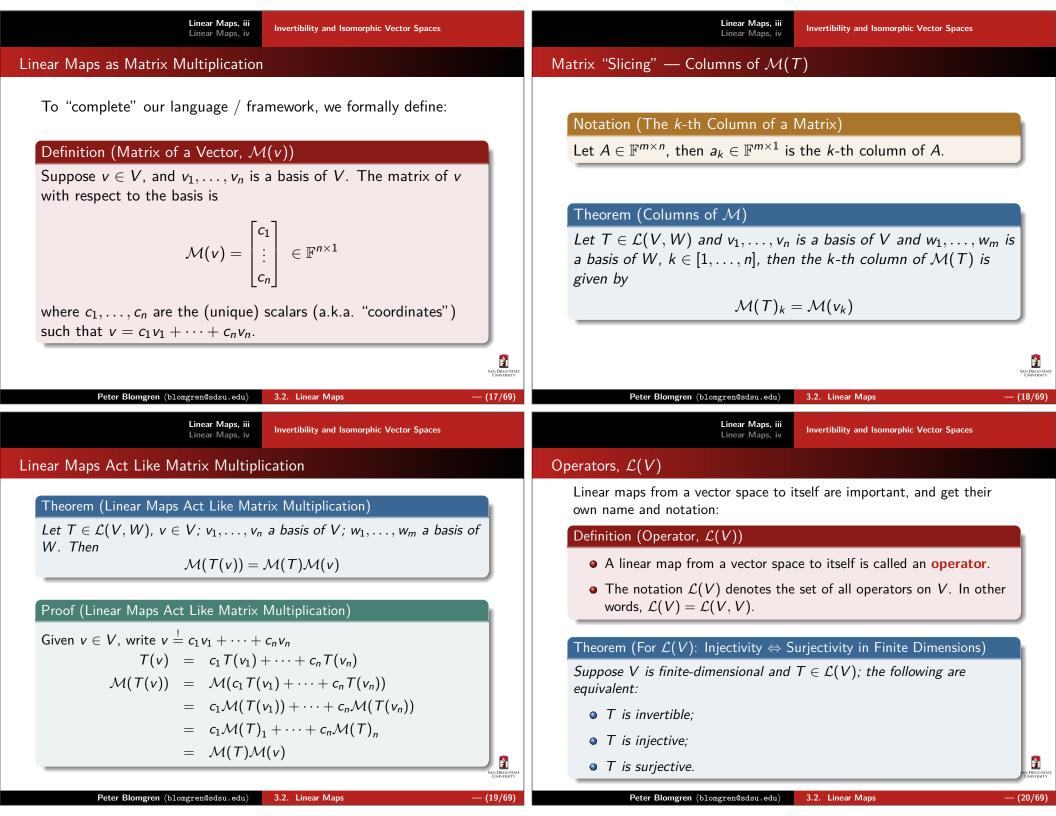


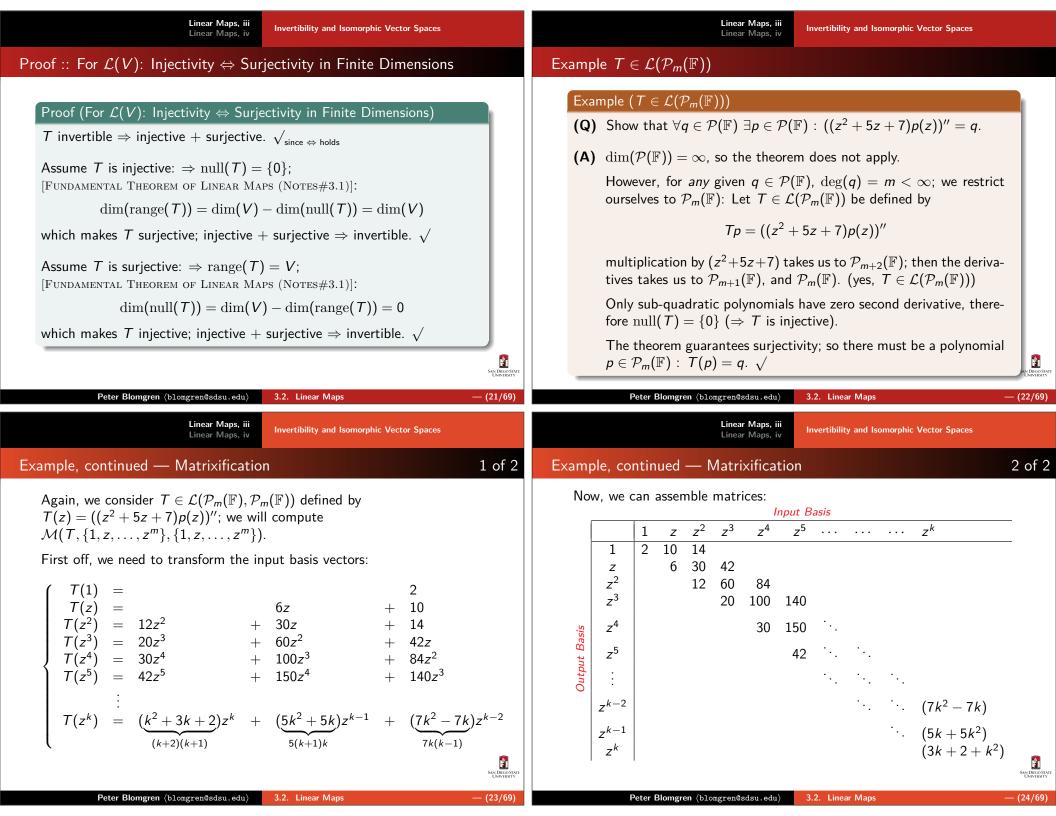
- (12/69)

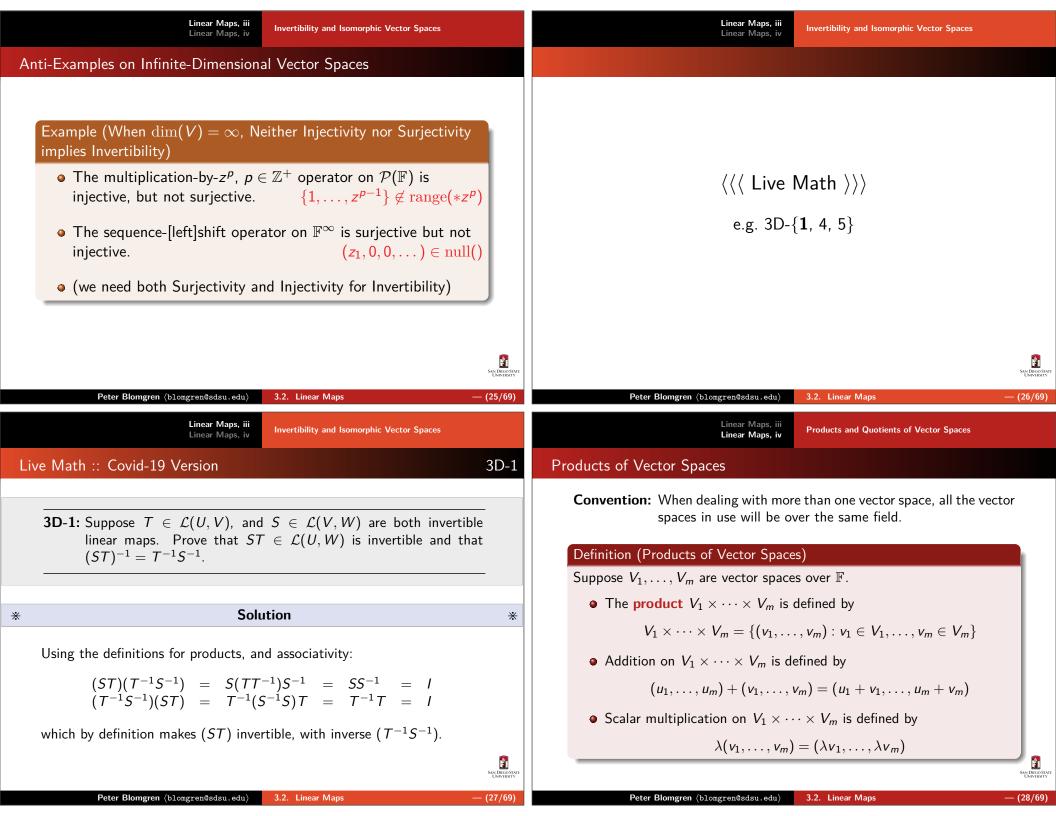


— (16/69)

Ê







Linear Maps, iii Linear Maps, iv Products and Quotients of Vector Spaces	Linear Maps, iii Linear Maps, iv Products and Quotients of Vector Spaces
Products of Vector Spaces	Example: $\mathbb{F}^p imes \mathbb{F}^q$ and \mathbb{F}^{p+q} , $p,q \in \mathbb{Z}^+$
Theorem (Product of Vector Spaces is a Vector Space) Suppose V_1, \ldots, V_m are vector spaces over \mathbb{F} . Then $V_1 \times \cdots \times V_m$ is a vector space over \mathbb{F} . The proof follows directly from how the spaces are joined, and then joining additive-identity-objects and additive-inverse-object in the same way. Closure(s) follow from closure(s) of the joined spaces.	 s ∈ ℝ^p are lists of length p: s = (s₁,, s_p) t ∈ ℝ^q are lists of length q: t = (t₁,, t_q) u ∈ ℝ^p × ℝ^q are lists of length 2, where the first list-element is a list of length p, and the second list-element is a list of length q: u = ((u₁₁,, u_{1p}), (u₂₁,, u_{2q})). v ∈ ℝ^{p+q} are lists of length p + q: v = (v₁,, v_{p+q}) Clearly ℝ^p × ℝ^q ∉ ℝ^{p+q}, but they are isomorphic; and yes, the isomorphism is "obvious!"
Peter Blomgren (blomgren@sdsu.edu) 3.2. Linear Maps — (29/69)	Peter Blomgren (blomgren@sdsu.edu) 3.2. Linear Maps — (30/69)
Linear Maps, iii Linear Maps, iv Products and Quotients of Vector Spaces	Linear Maps, iii Linear Maps, iv Products and Quotients of Vector Spaces
A Basis for $\mathcal{P}_2(\mathbb{F}) imes \mathbb{F}^3$	Dimension of a Product is the Sum of Dimensions
 A basis for P₂(𝔅) is given by {1, z, z²} A basis for 𝔅³ is given by {(1,0,0), (0,1,0), (0,0,1)} Elements in P₂(𝔅) × 𝔅³ are of the form (p(z) ∈ P₂(𝔅), v ∈ 𝔅³) 	Theorem (Dimension of a Product is the Sum of Dimensions) Suppose V_1, \ldots, V_m are finite-dimensional vector spaces. Then $V_1 \times \cdots \times V_m$ is finite-dimensional, and $\dim(V_1 \times \cdots \times V_m) = \dim(V_1) + \cdots + \dim(V_m)$
• We can build a basis: $ \left\{ \begin{array}{c} (1, (0, 0, 0)) & (z, (0, 0, 0)), & (z^2, (0, 0, 0)) \\ (0, (1, 0, 0)) & (0, (0, 1, 0)), & (0, (0, 0, 1)) \end{array} \right\} $	Proof (Dimension of a Product is the Sum of Dimensions) Choose a basis for each V_k , for each basis vector, consider the element in $V_1 \times \cdots \times V_m$ which is the appropriately zero-padded version of the basis vector. The list of all such vectors is linearly independent, and spans
• This gives away the "big secret" revealed in the next theorem: is seems like $\dim(\mathcal{P}_2(\mathbb{F}) \times \mathbb{F}^3) = \dim(\mathcal{P}_2(\mathbb{F})) + \dim(\mathbb{F}^3)$	$V_1 \times \cdots \times V_m$. The length of this basis is $\dim(V_1) + \cdots + \dim(V_m)$

Products and Quotients of Vector Spaces

Products and Direct Sums

Theorem (Products and Direct Sums)

Suppose that U_1, \ldots, U_m are subspaces of V. Define a linear map $T : U_1 \times \cdots \times U_M \mapsto U_1 + \cdots + U_m$ by

 $T(u_1,\ldots,u_m)=u_1+\cdots+u_m.$

Then $U_1 + \cdots + U_m$ is a direct sum if and only if T is injective.

Rewind ([CONDITION FOR A DIRECT SUM (NOTES#1)])

Suppose U_1, \ldots, U_m are subspaces of V. Then $U_1 + \cdots + U_m$ is a direct sum if and only if the only way to write 0 as a sum $u_1 + \cdots + u_m$, where each $u_j \in U_j$, is by taking each $u_j = 0$.

Proof (Products and Direct Sums)

The linear map T is injective if and only if the only way to write 0 as a sum $u_1 + \cdots + u_m$, where each $u_j \in U_j$, is by taking $u_j = 0$. [INJECTIVITY \Leftrightarrow NULL SPACE EQUALS {0} (NOTES#3.1)] Thus T is injective if and only if $U_1 + \cdots + U_m$ is a direct sum. [CONDITION FOR A DIRECT SUM (NOTES#1)]

Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} \rangle$	3.2. Linear Maps	— (33/69)	
Linear Maps, iii Linear Maps, iv	Products and Quotients of Vector Spaces		

Quotients of Vector Spaces

Definition (v + U)

Suppose $v \in V$, and U is a subspace of V. Then v + U is the subset of V defined by

$$v+U=\{v+u:u\in U\}$$

Example (v + U)

- Let $U = \{\lambda(1,2,3) : \lambda \in \mathbb{R}\}$ (a line $\in \mathbb{R}^3$ through the origin.)
- Let $v = (1, 0, 0) \in \mathbb{R}^3$ (not on the line)
- Then $v + U = \{(1 + \lambda, 2\lambda, 3\lambda) : \lambda \in \mathbb{R}\}\$ (a line $\in \mathbb{R}^3$ NOT through the origin \Rightarrow Not a Vector Space.)

A Sum is a Direct Sum if and only if Dimensions Add Up

Theorem (A Sum is a Direct Sum if and only if Dimensions Add Up)

Suppose V is finite dimensional and U_1, \ldots, U_m are subspaces of V. Then $U_1 + \cdots + U_m$ is a direct sum if and only if

 $\dim(U_1 + \cdots + U_m) = \dim(U_1) + \cdots + \dim(U_m).$

Proof (A Sum is a Direct sum \Leftrightarrow Dimensions Add Up)

The linear map T (defined in the previous theorem/proof) is surjective. By the [FUNDAMENTAL THEOREM OF LINEAR MAPS (NOTES#3.1)], T is injective if and only if

$$\dim(U_1+\cdots+U_m)=\dim(U_1\times\cdots\times U_m)$$

Combining [DIMENSION OF A PRODUCT IS THE SUM OF DIMENSIONS], and the previous theorem shows that $U_1 \times \cdots \times U_m$ is direct sum if and only if

$$\dim(\mathbf{U}_1 + \cdots + \mathbf{U}_m) = \dim(U_1 \times \cdots \times U_m) = \dim(\mathbf{U}_1) + \cdots + \dim(\mathbf{U}_m).$$

3.2. Linear Maps

Linear Maps, iii Linear Maps, iv

Peter Blomgren (blomgren@sdsu.edu)

— (34/69)

Products and Quotients of Vector Spaces

Affine Subset, Parallel

Ê

AN DIEGO

(35/69)

"Quotient Spaces"

Definition (Affine Subset, Parallel)

- An affine subset of V is a subset of V of the form v + U for some v ∈ V and some subspace U of V.
- For v ∈ V and U a subspace of V, the affine subset v + U is said to be parallel to U.

Example (v + U)

If P = {(x₁, 0, x₃, 0, 0) ∈ ℝ⁵ : x₁, x₃ ∈ ℝ} then the affine subsets parallel to P are the planes in ℝ⁵ that are parallel to the x₁-x₃ plane... (in the "obvious" 5-dimensional sense!)

Products and Quotients of Vector Spaces

Quotient Space, V/U

Definition (Quotient Space, V/U)

Suppose U is a subspace of V. Then the quotient space V/U is the set of all affine subsets of V parallel to U:

 $V/U = \{v + U : v \in V\}$

Example (Quotient Spaces)

- If L is a line in \mathbb{R}^n containing the origin, then \mathbb{R}^n/L is the set of all lines in \mathbb{R}^n parallel to L.
- If P is a plane in \mathbb{R}^n $(n \ge 2)$ containing the origin, then \mathbb{R}^n/P is the set of all planes in \mathbb{R}^n parallel to P.

Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} \rangle$	3.2. Linear Maps -	— (37/69)
Linear Maps, iii Linear Maps, iv	Products and Quotients of Vector Spaces	

Proof :: Two Affine Subsets Parallel to U are Equal or Disjoint

Proof (Two Affine Subsets Parallel to *U* are Equal or Disjoint)

- **(b)** \Rightarrow **(c)** This one is for free.
- (a) \Rightarrow (b) Suppose (a) $v w \in U$. If $u \in U$, then

$$v + u = w + ((v - w) + u) \in w + U$$

so $v + U \subset w + U$. In the same way $w + U \subset v + U$; and therefore **(b)** v + U = w + U

(c)
$$\Rightarrow$$
(a) Suppose (c) $(v + U) \cap (w + U) \neq \emptyset$. $\exists u_1, u_2 \in U$

$$v + u_1 = w + u_2$$
 $v - w = u_2 - u_1 \in U$

which shows (a) $v - w \in U$.

(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a) \checkmark

Two Affine Subsets Parallel to U are Equal or Disjoint

Theorem (Two Affine Subsets Parallel to U are Equal or Disjoint)

Suppose U is a subspace of V and $v, w \in V$. Then the following are equivalent:

(a) $v - w \in U$ (b) v + U = w + U(c) $(v + U) \cap (w + U) \neq \emptyset$

"The Affine Subsets are Equal"

Stated in the negative:

SAN DIEGO S

Ê

SAN DIEGO

(39/69)

Theorem (Two Affine Subsets P	arallel to U are Equal or Disjoint)	L.
(a ⁻) v − w ∉ U		
(b ⁻) $v + U \neq w + U$		
$(c^{-}) (v + U) \cap (w + U) = \emptyset$	"The Affine Subsets are Disjoint"	

Peter Blomgren (blomgren@sdsu.edu)	3.2. Linear Maps
Linear Maps, iii Linear Maps, iv	Products and Quotients of Vector Spaces

Addition and Scalar Multiplication on V/U

Quotient Space is a Vector Space

Definition (Addition and Scalar Multiplication on V/U)

Suppose U is a subspace of V. The addition and scalar multiplication are defined on V/U by:

$$(v+U) + (w+U) = (v+w) + U$$
$$\lambda(v+U) = (\lambda v) + U$$

for $v, w \in V$, $\lambda \in \mathbb{F}$.

Theorem (Quotient Space is a Vector Space)

Suppose U is a subspace of V. Then V/U, with the operations of addition and scalar multiplication as defined above, is a vector space.

Ê

— (38/69)

Proof :: Quotient Space is a Vector Space

Problem: Non-Unique Representation

The representation of an affine subset parallel to U is not unique. Let $v, \hat{v}, w, \hat{w} \in V$: $(v + U) = (\hat{v} + U)$, and $(w + U) = (\hat{w} + U)$. We must show $(v + w) + U = (\hat{v} + \hat{w}) + U$.

Proof (Quotient Space is a Vector Space)

Peter Blomgren (blomgren@sdsu.edu)

Quotient Map, π

 $\pi: V \mapsto V/U$ defined by

Linear Maps. iii

- + By [Two Affine Subsets Parallel to U are Equal or Disjoint] we have $(v - \hat{v}) \in U$, and $(w - \hat{w}) \in U$. Since U is a subspace of V (and therefore closed under addition), we have $(v - \hat{v}) + (w - \hat{w}) \in U$ and therefore $(v+w)-(\hat{v}+\hat{w}) \in U$. Invoking [Two Affine Subsets Parallel TO U ARE EQUAL OR DISJOINT] again, gives $(v + w) + U = (\hat{v} + \hat{w}) + U$.
- * Let $\lambda \in \mathbb{F}$. Since U is a subspace of V (and therefore closed under scalar multiplication, we have $\lambda(v - \hat{v}) \in U$. Thus $\lambda v - \lambda \hat{v} \in U$. Yet another invocation of the theorem gives us $(\lambda v) + U = (\lambda \hat{v}) + U$.

Suppose U is a subspace of V. The **quotient map** π is the linear map

 $\pi(v) = v + U$

for $v \in V$. (A more complete notation would be $\pi(v, U)$, but usually the

3.2. Linear Maps

Proof :: Quotient Space is a Vector Space — wrap-up

Proof (Quotient Space is a Vector Space — wrap-up)

Now, addition and scalar multiplication are well-defined on V/U; it remains to show that V/U is a vector space:

The additive identity is (0 + U)0

Peter Blomgren (blomgren@sdsu.edu)

The additive inverse of (v + U) is ((-v) + U)

Now, the rest of the vector space properties follow the fact that Vis a vector space, and the definitions of (+, *, 0, -).

3.2. Linear Maps

We leave the details as an excercise for a dark and stormy night...

Linear Maps. iii

Ê

- (43/69)

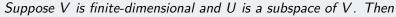
Ê

— (41/69)

Proof (Dimension of a Quotient Space) Let $\pi: V \mapsto V/U$. We have $\operatorname{null}(\pi) = U$; and $\operatorname{range}(\pi) = V/U$; therefore $\dim(V) = \dim(U) + \dim(V/U)$ $\dim(\operatorname{null}(\pi)) \quad \dim(\operatorname{range}(\pi))$

re-arranging gives the result.

We used [Two Affine Subsets Parallel to U are Equal or Disjoint], and [The Fundamental Theorem of Linear Maps (Notes#3.1)]...



Theorem (Dimension of a Quotient Space)

subspace U is assumed to be "obvious from context.")

$$\dim(V/U) = \dim(V) - \dim(U)$$

Sometimes, $\operatorname{codim}(U) = \dim(V/U)$ — "the co-dimension of U in V."

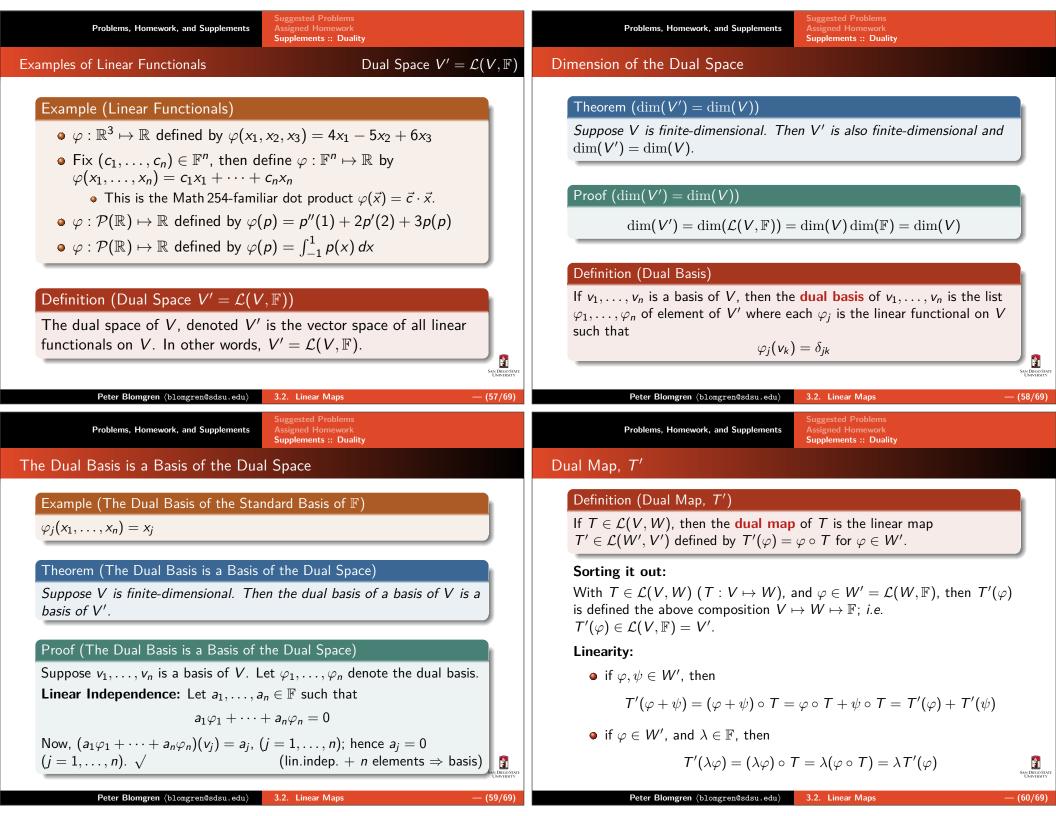
— (42/69)

Linear Maps, iii Linear Maps, iv	Linear Maps, iii Linear Maps, iv Products and Quotients of Vector Spaces
The Induced Map $ ilde{\mathcal{T}}$	Null Space and Range of $ ilde{\mathcal{T}}$
Definition (The Induced Map \tilde{T}) Suppose $T \in \mathcal{L}(V, W)$. Define $\tilde{T} : (V/\text{null}(T)) \mapsto W$ by $\tilde{T}(v + \text{null}(T)) = T(v)$ This is well-defined since for $u, v \in V : u + \text{null}(T) = v + \text{null}(T)$. [Two Affine Subsets Parallel to U are Equal or Disjoint] guarantees $(u - v) \in \text{null}(T)$; <i>i.e.</i> $0 = T(u - v) = T(u) - T(v) \Rightarrow T(u) = T(v)$. \checkmark	Theorem (Null Space and Range of \tilde{T})Suppose $T \in \mathcal{L}(V, W)$, then• 1. \tilde{T} is a linear map from $(V/(\operatorname{null}(T))$ to W• 2. \tilde{T} is injective• 3. range(\tilde{T}) = range(T)• 4. $(V/\operatorname{null}(T))$ is isomorphic to range(T)Proof (Null Space and Range of \tilde{T})• 1. The usual "closure mechanics" nothing exciting here• 3. The is true by the construction of \tilde{T}
Sun Direct Strett	• 5. The is true by the construction of 7
Peter Blomgren (blomgren@sdsu.edu) 3.2. Linear Maps (45/69)	Peter Blomgren (blomgren@sdsu.edu) 3.2. Linear Maps (46/69)
Linear Maps, iii Linear Maps, iv Products and Quotients of Vector Spaces	Linear Maps, iii Linear Maps, iv Products and Quotients of Vector Spaces
Proof :: Null Space and Range of $ ilde{\mathcal{T}}$	More Abstraction?
Proof (Null Space and Range of \tilde{T}) • 2. Let $v \in V$ and $\tilde{T}(v + \text{null}(T)) = 0$. Then $T(v) = 0 \Rightarrow$ $v \in \text{null}(T)$. [Two Affine Subsets Parallel to U are Equal or DISJOINT] implies that $(v + \text{null}(T)) = (0 + \text{null}(T)) \Rightarrow \text{null}(\tilde{T}) = 0$	If you want a more $i/n/2/2$ abstract [MATH-320/520-ISH] algebraic view of the Quotient Space / Quotient Map framework The elements of the Quotient Space (V/U) are equivalence classes $[v] = v + U = \{v + U : v \in V\}$

— (47/69)

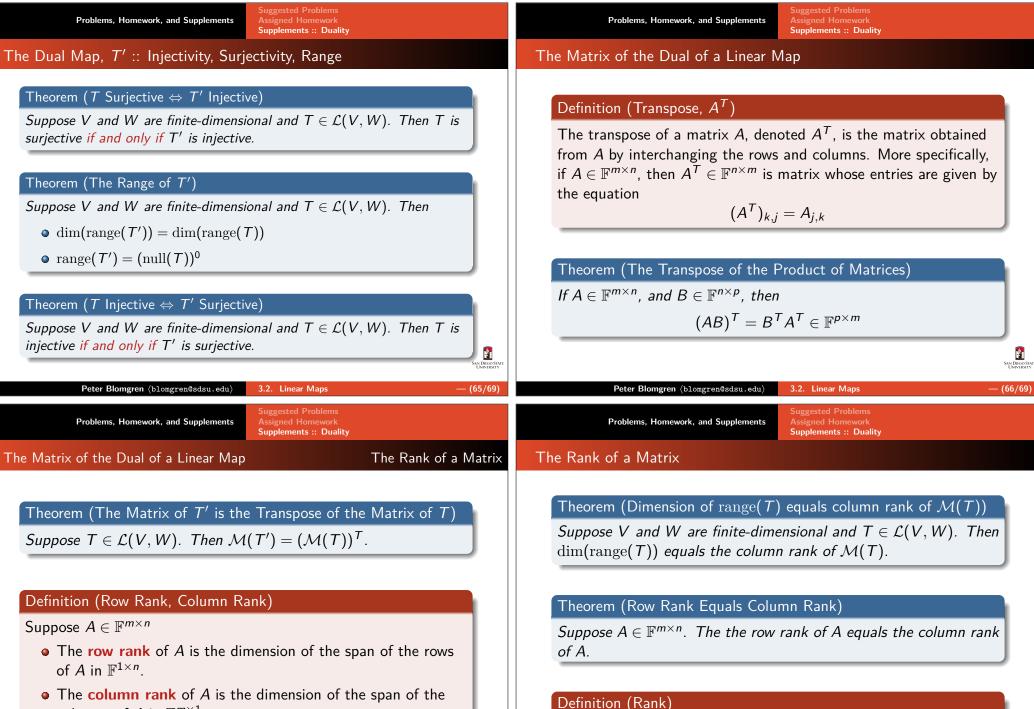
Linear Maps, iii Linear Maps, iv	Vector Spaces	Linear Maps, iii Linear Maps, iv	Products and Quotients of Vector Spaces	
		Live Math :: Covid-19 Version		3E-5
		3E-5: Suppose W_1, \ldots, W_m are $\mathcal{L}(V, W_1 \times \cdots \times W_m)$ and isomorphic spaces.	vector spaces. Prove that $\mathcal{L}(V, W_1) \times \cdots \times \mathcal{L}(V, W_m)$ are	
$\langle \langle \langle Live Math \rangle \rangle \rangle$		* Solu	ution	*
e.g. 3E-{ 5 , 13}		We show that Γ defined below is an	isomorphism:	
		$ \begin{aligned} & \Gamma : \mathcal{L}(V, W_1 \times \cdots \times W_m) & \mapsto \\ & (\Gamma(T_1, \ldots, T_m))(v) & = \end{aligned} $		
		Г, being a "stacking" of linear maps, linear in each component, etc)	, is "obviously" a linear map (it is	
		We show that Γ is both injective (on showing that is an isomorphism	, _ , ,	San Dirgo State University
Peter Blomgren (blomgren@sdsu.edu) 3.2. Linear Maps	— (49/69)	Peter Blomgren (blomgren@sdsu.edu)	3.2. Linear Maps — ((50/69)
Linear Maps, iii Products and Quotients of	Vector Spaces	Problems, Homework, and Supplements	Suggested Problems Assigned Homework	
Linear Maps, iv			Supplements :: Duality	
Linear Maps, iv Live Math :: Covid-19 Version	3E-5	Suggested Problems	Supplements :: Duality	
		Suggested Problems	Supplements :: Duality	
Live Math :: Covid-19 Version*InjectivityIf $(T_1, \ldots, T_m) \in \mathcal{L}(V, W_1 \times \cdots \times W_m)$, and $\Gamma(T_1, \ldots, T_m)$	3E-5 $(T_m) = 0$, then	Suggested Problems	Supplements :: Duality	
Live Math :: Covid-19 Version * Injectivity	3E-5 $(T_m) = 0$, then	Suggested Problems 3.D —1, 2, 3, 4, 5, 6	Supplements :: Duality	
Linear Waps, WLinear Waps, WLive Math :: Covid-19 Version	$3E-5$ $*$ $T_m) = 0, \text{ then}$ injective due to $*$		Supplements :: Duality	
Liter Maps, 10Liter Maps, 10Liter Maps, 10Liter Maps, 10InjectivityInjectivityIf $(T_1, \ldots, T_m) \in \mathcal{L}(V, W_1 \times \cdots \times W_m)$, and $\Gamma(T_1, \ldots, T_k = 0, k = 1, \ldots, m.$ Thus $\operatorname{null}(\Gamma) = \{0\}$ which makes Γ [INJECTIVITY \Leftrightarrow NULL SPACE EQUALS $\{0\}$ (NOTES#3.1)] * Surjectivity Let $T \in \mathcal{L}(V, W_1 \times \cdots \times W_m)$. Define $T_k \in \mathcal{L}(V, W_k)$	$3E-5$ $*$ $T_m) = 0, \text{ then}$ injective due to $*$	3.D —1, 2, 3, 4, 5, 6	Supplements :: Duality	
Linear Waps, WLinear Waps, WLive Math :: Covid-19 Version	$3E-5$ $*$ $T_m) = 0, \text{ then}$ injective due to $*$	3.D —1, 2, 3, 4, 5, 6	Supplements :: Duality	
Liter Maps, NLiter Maps, NLiter Maps, NLiter Maps, NInjectivityInjectivityIf $(T_1, \ldots, T_m) \in \mathcal{L}(V, W_1 \times \cdots \times W_m)$, and $\Gamma(T_1, \ldots, T_k = 0, k = 1, \ldots, m$. Thus $\operatorname{null}(\Gamma) = \{0\}$ which makes Γ [INJECTIVITY \Leftrightarrow NULL SPACE EQUALS $\{0\}$ (NOTES#3.1)]*SurjectivityLet $T \in \mathcal{L}(V, W_1 \times \cdots \times W_m)$. Define $T_k \in \mathcal{L}(V, W_k)$	$3E-5$ $*$ $T_m) = 0, \text{ then}$ injective due to $*$ by	3.D —1, 2, 3, 4, 5, 6	Supplements :: Duality	
Liter Maps, N Live Math :: Covid-19 Version * Injectivity If $(T_1,, T_m) \in \mathcal{L}(V, W_1 \times \cdots \times W_m)$, and $\Gamma(T_1,, T_k = 0, k = 1,, m$. Thus null $(\Gamma) = \{0\}$ which makes Γ [INJECTIVITY \Leftrightarrow NULL SPACE EQUALS $\{0\}$ (NOTES#3.1)] * Surjectivity Let $T \in \mathcal{L}(V, W_1 \times \cdots \times W_m)$. Define $T_k \in \mathcal{L}(V, W_k)$ $T(v) = (T_1(v),, T_m(v))$	$3E-5$ $*$ $T_m) = 0, \text{ then}$ injective due to $*$ by	3.D —1, 2, 3, 4, 5, 6	Supplements :: Duality	
Liter Maps, NLiter Maps, NLive Math :: Covid-19 Version $*$ InjectivityIf $(T_1, \ldots, T_m) \in \mathcal{L}(V, W_1 \times \cdots \times W_m)$, and $\Gamma(T_1, \ldots, T_k = 0, k = 1, \ldots, m.$ Thus $\operatorname{null}(\Gamma) = \{0\}$ which makes Γ [INJECTIVITY \Leftrightarrow NULL SPACE EQUALS $\{0\}$ (NOTES#3.1)] $*$ SurjectivityLet $T \in \mathcal{L}(V, W_1 \times \cdots \times W_m)$. Define $T_k \in \mathcal{L}(V, W_k)$ $T(v) = (T_1(v), \ldots, T_m(v))$ for $v \in V$. Then $\Gamma(T_1, \ldots, T_m) = T$ and Γ is surjective.	3E-5 * <i>T_m</i>) = 0, then injective due to * by ve. * TY] + Definition	3.D —1, 2, 3, 4, 5, 6		

Problems, Homework, and Supplements	Suggested Problems Assigned Homework Supplements :: Duality	Problems, Homework, and Supplements	Suggested Problems Assigned Homework Supplements :: Duality
Assigned Homework HW	#3.2, Due Date in Canvas/Gradescope	Duality	
3.D —2, 3			ing, translates concepts, theorems or mathe- prems or structures, in a one-to-one fashion,
3.E —2, 4		often (but not always) by means of an invo the dual of B is A. Such involutions someting	n is self-dual in this sense under the standard
$\in \{Midterm\#1 \; Material\}$		duality in projective geometry."	
Note: Assignment problems are r until the first lecture on th virtually "scheduled.") Upload homework to www.Grades	ne chapter has been delivered (or	bilinear functions from an object of one type some family of scalars. For instance, linear bilinear maps from pairs of vector spaces t and the associated test functions correspo	pjects of two types correspond to pairings, be and another object of the second type to r algebra duality corresponds in this way to to scalars, the duality between distributions ands to the pairing in which one integrates d Poincaré duality corresponds similarly to etween submanifolds of a given manifold"
	See Dimonstrater		.pedia.org/wiki/Duality_(mathematics)
Peter Blomgren (blomgren@sdsu.edu)	3.2. Linear Maps — (53/69)	Peter Blomgren (blomgren@sdsu.edu)	3.2. Linear Maps — (54/69)
Problems, Homework, and Supplements	Suggested Problems Assigned Homework Supplements :: Duality	Problems, Homework, and Supplements	Suggested Problems Assigned Homework Supplements :: Duality
Duality		The Dual Space and the Dual Map	
For the time being, we will not dee to the topic later in the class wit Still, a quick look at the results ir	th a slightly different perspective.	Linear maps into the scalar field ${\mathbb F}$ and thus they get a special name	play a special role in linear algebra, :
scaffolding for future concepts.	This section provides some userul		
		Definition (Linear Functional)	
At the end of the section, we have cepts we probably recognize, and	ve some formal definitions of con- definitely need	A linear functional on V is a line words, a linear functional is an ele	
	Son Direct Stort University		See Direct State University
Peter Blomgren (blomgren@sdsu.edu)	3.2. Linear Maps — (55/69)	Peter Blomgren (blomgren@sdsu.edu)	3.2. Linear Maps — (56/69)



Problems, Homework, and Supplements Suggested Problems Assigned Homework Supplements :: Duality	Problems, Homework, and Supplements Suggested Problems Assigned Homework Supplements :: Duality
Example :: Dual Map	Algebraic Properties of Dual Maps
Here we take D' to mean the dual map of the differentiation operator D , and let ∂ denote the derivative (as not to overload the prime(') on a single slide)	Theorem (Algebraic Properties of Dual Maps) • $(S + T)' = S' + T' \ \forall S, T \in \mathcal{L}(V, W)$
Example	$\bullet \ \ (\lambda S)' = \lambda S' \ \forall \lambda \in \mathbb{F}, S \in \mathcal{L}(V,W)$
Let $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ be defined by $Dp = \partial p$.	• $(ST)' = T'S' \ \forall S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V)$
 φ : P(ℝ) → ℝ defined by φ(p) = p(3). Then D'(φ) : P(ℝ) → ℝ defined by 	Proof (Algebraic Properties of Dual Maps)
$(D'(\varphi))(p) = (\varphi \circ D)(p) = \varphi(Dp) = \varphi(\partial p) = \partial p(3)$	The first two are standard "linearity procedure." For the third, let $\varphi \in W'$:
• $arphi:\mathcal{P}(\mathbb{R})\mapsto\mathbb{R}$ defined by $arphi(ho)=\int_{-1}^1 ho(t)dt.$ Then	$(ST)'(\varphi) \stackrel{\textcircled{1}}{=} \varphi \circ (ST) \stackrel{\textcircled{2}}{=} (\varphi \circ S) \circ T \stackrel{\textcircled{3}}{=} T'(\varphi \circ S) \stackrel{\textcircled{4}}{=} T'(S'(\varphi)) \stackrel{\textcircled{5}}{=} (T'S')(\varphi)$
$(D'(\varphi))(p) = (\varphi \circ D)(p) = \varphi(Dp) = \varphi(\partial p) = \int_{-1}^{1} \partial p dt = p(1) - p(-1)$	 ③ ④ — definition of the dual map ② — associativity ⑤ — definition of composition.
See Dii UNIY	GOSART IRSTY
Peter Blomgren (blomgren@sdsu.edu) 3.2. Linear Maps (61/	
Problems, Homework, and Supplements Suggested Problems Assigned Homework Supplements :: Duality	Problems, Homework, and Supplements Suggested Problems Assigned Homework Supplements :: Duality
The Null Space and Range of the Dual of a Linear Map	The Annihilator :: Subspace Properties, Dimension, Null Space
Definition (Annihilator, U^0)	Theorem (The Annihilator is a Subspace)
For $U \subset V$, the annihilator of U , denoted U^0 is defined by	Suppose $U \subset V$, then U^0 is a subspace of V' .
$U^0=ig\{arphi\in V':arphi(u)=0orall u\in Uig\}$	Theorem (Dimension of the Annihilator)
	Suppose V is finite-dimensional and U is a subspace of V. Then
Example (Annihilator)	$\dim(U) + \dim\left(U^0\right) = \dim(V)$
• Suppose U is the subspace of $\mathcal{P}(\mathbb{F})$ consisting of all polynomial multiples of z^2 . If φ is the linear functional on	Theorem (The Null Space of T')
$\mathcal{P}(\mathbb{F})$ defined by $\varphi(p) = p'(0)$, then $\varphi \in U^0$.	Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Then
• Let e_1, \ldots, e_{2n} be the standard basis for \mathbb{F}^{2n} , and let $\varphi_1, \ldots, \varphi_{2n}$ denote the dual basis of $(\mathbb{F}^{2n})'$). Suppose	
$U = \operatorname{span}(e_1, e_3, e_5, \dots, e_{2n-1})$, then	• $\operatorname{null}(T') = (\operatorname{range}(T))^0$ • $\operatorname{dim}(\operatorname{null}(T')) = \operatorname{dim}(\operatorname{null}(T)) + \operatorname{dim}(M) = \operatorname{dim}(M)$
	• $\dim(\operatorname{null}(T')) = \dim(\operatorname{null}(T)) + \dim(W) - \dim(V)$

— (63/69)



Ê

SAN DIEGO

- (67/69)

columns of A in $\mathbb{F}^{m \times 1}$

The rank of a matrix $A \in \mathbb{F}^{m \times n}$ is the column rank of A.

Ê

Problems, Homework, and Supplements

Suggested Problems Assigned Homework Supplements :: Duality

Suggested Problems

3.F—1, 2, 3, 5, 8, 32

 Peter Blomgren (blomgren@sdsu.edu)
 3.2. Linear Maps

— (69/69)

SAN DIEGO STATE UNIVERSITY