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Student Learning Targets, and Objectives SLOs: Invariant Subspaces; Eigen-{values, vectors, spaces}

Student Learning Targets, and Objectives

Target Invariant Subspaces
Objective Know how the restriction operator and invariant subspaces are

connected
Objective Be familiar with the 1-D “line-type” subspaces and their

connection with eigenvalues and eigenvectors.
Objective Know, and be able to use, the fact that eigenvectors

corresponding to distinct eigenvalues are linearly independent.

Target Eigenvalues, Eigenvectors, and Eigenspaces
Objective Know that every operator on a finite-dimensional, nonzero,

complex vector space has an eigenvalue and an
upper-triangular matrix with respect to some basis

Objective Know the the definitions of Eigenspaces of operators; and
understand the discussion of how “collecting” enough
eigenvalues can guarantee invertibility of an operator.
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Invariant Subspaces
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Eigenspaces and Diagonal Matrices
Invariant Subspaces

Introduction

We now turn our attention to one of the cornerstones of Linear Algebra,
the study of Operators on finite-dimensional vector spaces.

Rewind (Operator, L(V ))

A linear map from a vector space to itself is called an operator.
The notation L(V ) denotes the set of all operators on V . In other
words, L(V ) = L(V ,V ).

We will use our newly acquired abstract understanding of vector spaces
and linear maps to the study of eigen-values and eigen-vectors.

Time-Target: 3×75-minute lectures.
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Invariant Subspaces

Let T ∈ L(V ). If we have [Divide-and-Conquer “Theorem”]

V = U1 ⊕ · · · ⊕ Um

where each Uj is a proper subspace of V (i.e. dim(Uj) < dim(V )); then
it is sufficient to understand the action of T on each Uj .

Notation (Restriction, T |Uj )
T |Uj is the restriction of the linear map T ∈ L(V ) to the subspace Uj .

This only makes sense if T |Uj : Uj 7→ Uj , or if you want T |Uj ∈ L(Uj).
Such subspaces get their own name...

Definition (Invariant Subspace)
Let T ∈ L(V ). A subspace U of V is called invariant under T if
∀u ∈ U ⇒ T (u) ∈ U.
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Invariant Subspaces

Example (Invariant Subspaces)
Suppose T ∈ L(V ), then the following subspace are invariant under T

{0}
If u ∈ {0}, then u = 0. [Linearity] T (u) = T (0) = 0 ∈ {0}.

V
If u ∈ V , then — since T ∈ L(V ) — T (u) ∈ V

null(T ) — (could be {0})
If u ∈ null(T ), then T (u) = 0 ∈ null(T ) [Linearity]

range(T ) — (could be V )
If u ∈ range(T ), then T (u) ∈ range(T ), by definition of
range.
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Invariant Subspaces

Question
Must an operator T ∈ L(V ) have any invariant subspaces other than {0}
and V ?

— null(T ) and range(T ) do not necessarily provide useful insight.

We will see that the answer is yes, as long as dim(V ) > 1 (for F = C),
or dim(V ) > 2 (for F = R).

Example
Let D ∈ L(P(R)) is defined by Dp = p′, then for any fixed m, Pm(R) is
an invariant subspace of P(R).
In this case:

dim(null(D)) = 1, and dim(range(D)) = m = (dim(Pm(R)) − 1).
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Eigenvalues and Eigenvectors :: Eigenvalues

We will look at invariant subspaces in careful detail; first we turn
our attention to the case of invariant subspaces with dim = 1.

Consider the 1-dimensional (“line”-type) subspaces: let
v 6= 0 ∈ V , and define U = {λv : λ ∈ F} ≡ span(v).

If U is invariant under T ∈ L(V ), then T (v) ∈ U (∀v ∈ U), and
hence ∃λ ∈ F such that

T (v) = λv

The converse holds: if T (v) = λv for some v ∈ V , and λ ∈ F,
then span(v) is an invariant subspace of V under the linear map T .
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Eigenvalues and Eigenvectors :: Eigenvalues

In the past, we have surely seen eigenvalues (and eigenvectors)
defined for matrices, here we generalize the concept to operators
on all finite-dimensional subspaces...

Definition (Eigenvalue)
Suppose T ∈ L(V ). A scalar λ ∈ F is called an eigenvalue of T if
there exists v 6= 0 ∈ V such that T (v) = λv .
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Eigenvalues and Eigenvectors :: Eigenvalues

Theorem (Equivalent Conditions to be an Eigenvalue)
Suppose V is finite-dimensional, T ∈ L(V ), and λ ∈ F. The
following are equivalent:
(a) λ is an eigenvalue of T
(b) T − λI is not injective
(c) T − λI is not surjective
(d) T − λI is not invertible
Recall: I ∈ L(V ) : I (v) = v , ∀v ∈ V .

(a) ⇔ (b), by rearranging T (v) = λv
(b) ⇔ (c) ⇔ (d) by [Injectivity ⇔ Surjectivity in Finite Dimen-

sions (Notes#3.2)]
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Eigenvalues and Eigenvectors :: Eigenvectors

Definition (Eigenvector)
Suppose T ∈ L(V ) and λ ∈ F. A vector v ∈ V is called an
eigenvector of T corresponding to the eigenvalue λ if v 6= 0, and
T (v) = λv .

Note: Eigenvalues can be 0, but
Eigenvectors cannot be the zero-vector.
! Eigenvectors corresponding to λ = 0 come from null(T ).

Since T (v) = λv if and only if (T − λI )v = 0, v 6= 0 ∈ V is an
eigenvector of T corresponding to the eigenvalue λ if and only if
v ∈ null(T − λI ).
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Eigenvalues and Eigenvectors ::

Example (Rotation over R and C)
Suppose T ∈ L(F2), is defined by T (x , y) = (−y , x).
F = R T is a counterclockwise rotation by π/2 about the origin in R2.

There is no real scaling of a vector such that (−y , x) = λ(x , y).
T has no eigenvalue(s) and no eigenvector(s).

F = C We are looking for λ ∈ F such that (−y , x) = λ(x , y):
{

λx = −y
λy = x

⇒ −y = λx = λ(λy) = λ2y

Eigenvalues: λ2 = −1 ⇒ λ = ±i .

Eigenvectors:
{

(−y , x) = +i(x , y) ⇒ (x , y) = (w , −wi)
(−y , x) = −i(x , y) ⇒ (x , y) = (w , +wi)
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Eigenvectors Corresponding to Distinct Eigenvalues are Linearly Independent

Theorem (Linearly Independent Eigenvectors)
Let T ∈ L(V ). Suppose λ1, . . . , λm are distinct eigenvalues of T , and
v1, . . . , vm are the corresponding eigenvectors; then v1, . . . , vm is linearly
independent.

Proof (Linearly Independent Eigenvectors)
[By Contradiction] Suppose v1, . . . , vm is linearly dependent. Let k be the
smallest positive integer such that vk ∈ span(v1, . . . , vk−1). We can find
a1, . . . , ak−1 ∈ F such that
(1) vk = a1v1 + · · · + ak−1vk−1

T (vk) = T (a1v1 + · · · + ak−1vk−1)
(2) λkvk = a1λ1v1 + · · · + ak−1λk−1vk−1

λk(1) − (2) 0 = a1(λk − λ1)v1 + · · · + ak−1(λk − λk−1)v k−1
Since v1, . . . , vk−1 is linearly independent, λk is magically equal to all the
distinct λ1, . . . , λk−1. Contradiction!
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Number of Eigenvalues ≤ dim(V )

Theorem (Number of Eigenvalues)
Suppose V is finite-dimensional. Then each operator on V has at
most dim(V ) distinct eigenvalues.

Proof (Number of Eigenvalues)
Let m = dim(V ). We can find at most m linearly independent
vectors in V ; eigenvectors corresponding to distinct eigenvalues are
linearly independent (by previous theorem); so we can find at most
m eigenvectors; thus at most m distinct eigenvalues.
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Restriction and Quotient Operators

If T ∈ L(V ), and U is a subspace of V invariant under T , then U
determines two other operators:

Definition (Restriction Operator T |U ; and Quotient Operator T/U)
Suppose T ∈ L(V ), and U is a subspace of V invariant under T

The restriction operator T |U ∈ L(U) is defined by
T |U(u) = T (u), u ∈ U

The quotient operator T/U ∈ L(V /U) is defined by
(T/U)(v + U) = T (v) + U, v ∈ V
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Restriction and Quotient Operators :: Example 1/2

Example
Define T ∈ L(F2) by T (x , y) = (y , 0). Let U = {(x , 0) : x ∈ F}

U is invariant under T and T |U is the 0-operator on U:
T (x , 0) = (0, 0) ∈ U.
So U is invariant under T and T |U is the 0-operator on U.

∄ a subspace W of F2 that is invariant under T , and
U ⊕ W = F2.

Since dim(F2) = 2, dim(U) = 1, we must have dim(W ) = 1.
If W is invariant under T , then all w ∈ W are eigenvectors.
However, the only eigenvalue is λ = 0, and U contains the
corresponding eigenvectors.
Thus W cannot be invariant under T .
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Restriction and Quotient Operators :: Example 2/2

Example
Define T ∈ L(F2) by T (x , y) = (y , 0). Let U = {(x , 0) : x ∈ F}

T/U is the 0-operator on F2/U:
(x , y) ∈ F2

(T/U)((x , y) + U) = T (x , y) + U
= (y , 0) + U
= 0 + U

the last equality holds because (y , 0) ∈ U.

This example shows that sometimes the restriction and quotient
operators do not provide (enough) information about T . Here, both are
the 0-operators on their respective spaces, even though T is not.
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〈〈〈 Live Math 〉〉〉

e.g. 5A-{12}
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Live Math :: Covid-19 Version 5A-12

5A-12: Define T ∈ L(P4(R)) by (Tp)(x) = xp′(x) ∀x ∈ R. Find all
eigenvalue and eigenvectors of T .

> Solution >

We use the eigenvalue/eigenvector characterization T (p) = λp — here
xp′(x) = λp(x). We can write any p ∈ P4(R) in the form
p(x) = a0 + a1x + a2x2 + a3x3 + a4x4, which gives us

xp′(x) = a1x+2a2x
2+3a3x

3+4a4x
4 = λ(a0+a1x+a2x

2+a3x
3+a4x

4) = λp(x)

In order for the equality to hold, the coeffcients for each power must be
equal in the left and right expressions. Collecting those relations give us...
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Live Math :: Covid-19 Version 5A-12





0a0 = λa0
1a1 = λa1
2a2 = λa2
3a3 = λa3
4a4 = λa4

For any j ∈ {0, 1, 2, 3, 4}: a solution is given by

{ aj 6= 0, λ = j , ak 6=j = 0 } ,

which allows us to identify 5 eigenvalue-eigenvector pairs:
{

(0, 1), (1, x), (2, x2), (3, x3), (4, x4)
}

Technically, any non-zero scaling of the eigenvectors {1, x , x2, x3, x4} is
also an eigenvector.
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Polynomials Applied to Operators

The main reason that a richer theory exists for operators (which
map a vector space into itself) than for more general linear maps is
that operators can be raised to powers — composed with
themselves / applied multiple times:

Definition (Tm)
Suppose T ∈ L(V ) and m is a positive integer

Tm is defined by Tm = T ◦ · · · ◦ T︸ ︷︷ ︸
m times

T 0 is defined to be the identity operator on V

If T is invertible, with inverse T−1, then T−m = (T−1)m
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The Operator p(T )

Definition (The Operator p(T ))
Suppose T ∈ L(V ) and p ∈ P(F) is a polynomial given by

p(z) = a0 + a1z + a2z
2 + · · · + amz

m, z ∈ F

Then p(T ) is the operator defined by
p(T ) = a0I + a1T + a2T

2 + · · · + amT
m

Example (“The Gateway to Differential Equations.”)
Suppose D ∈ L(P(R)) is the differentiation operator defined by Dq = q′,
with p being the polynomial defined by p(x) = x2 + k , then
p(D) = D2 + k , and

p(D)q = q′′ + kq, ∀q ∈ P(R)
p(D)q = 0 is the Helmholtz Equation (in 1D).

https://en.wikipedia.org/wiki/Helmholtz_equation
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Product of Polynomials

Definition (Product of Polynomials)
If p, q ∈ P(F), then pq ∈ P(F) is the polynomial defined by

(pq)(z) = p(z)q(z), z ∈ F

Theorem (Multiplicative Properties)
Suppose p, q ∈ P(F) and T ∈ L(V ), then

(pq)(T ) = p(T )q(T )
p(T )q(T ) = q(T )p(T )

The proof is purely “mechanical” (distributive property +
bookkeeping)

Peter Blomgren 〈blomgren@sdsu.edu〉 5. Eigenvalues+vectors & Invariant Subspaces — (23/54)

Invariant Subspaces
Eigenvectors and Upper-Triangular Matrices

Eigenspaces and Diagonal Matrices

Polynomials Applied to Operators
Existence of Eigenvalues
Upper-Triangular Matrices

Existence of Eigenvalues

!
Theorem (Existence of Eigenvalues)
Every operator on a finite-dimensional, nonzero, complex vector space
has an eigenvalue.

!

Proof (Existence of Eigenvalues)
Suppose V is a complex vector space with dimension n > 0 and T ∈ L(V ). Let
v 6= 0 ∈ V , then

v ,T (v),T 2(v), . . . ,T n(v)

is not linearly independent, because V has dimension n and we have (n + 1) vectors.
Thus there exist complex numbers a0, a1, . . . , an, such that

0 = a0v + a1T (v) + a2T
2(v) + · · · + anT

n(v).

Not all a1, . . . , an can be zero, since that would force a0 = 0 (and this would make the
(n + 1) vectors linearly independent)...
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Existence of Eigenvalues

Proof (Existence of Eigenvalues)
Now, let the a’s be the coefficients of a polynomial; which by the
[Fundamental Theorem of Algebra] has a factorization

p(z) = a0 + a1z + a2z
2 + · · · + anz

n = c(z − λ1) · · · (z − λm)

where c is a nonzero complex number, λj ∈ C, and the equation holds
∀z ∈ C (here m is not necessarily equal to n, because an may equal 0).
We then have

0 = a0v + a1T (v) + a2T 2(v) + · · · + anT
n(v)

= (a0I + a1T + a2T 2 + · · · + anT
n)(v)

= c(T − λ1I ) · · · (T − λmI )v

Thus (T − λj I ) is not injective for at least one j . ⇔ T has an eigenvalue.
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Upper-Triangular Matrices

Definition (Matrix of an Operator, M(T ))
Suppose T ∈ L(V ) and v1, . . . , vn is a basis of V . The matrix of
T with respect to this basis is the (n × n) matrix

M(T ) =



a1,1 · · · a1,n

... ...
an,1 · · · an,n




whose entries aj ,k are defined by

T (vk) = a1,kv1 + · · · + an,kvn

If the basis is not “obvious from context,” then we use the
notation M(T , (v1, . . . , vn)).
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Upper-Triangular Matrices :: Comments

Note that matrices of operators are square, rather than the more
general rectangular case which we considered earlier for linear
maps.

If T is an operator on Fn and no basis is specified, assume that the
basis in question is the standard basis. The jth column of M(T ) is
then T applied to the jth basis vector.

A central /////goal milestone of linear algebra is to show that given an
operator T ∈ L(V ), there exists a basis of V with respect to which
T has a reasonably simple matrix.
For instance, we might try to choose a basis of V such that M(T )
has many 0’s.
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Upper-Triangular Matrices

If V is a finite-dimensional complex vector space, there is a basis
of V with respect to which the matrix of T looks like

v w1 · · · wn−1
v λ ∗ ∗ ∗
w1 0 ∗ ∗ ∗
... ... ∗ ∗ ∗

wn−1 0 ∗ ∗ ∗

Let λ be an eigenvalue of T (existence is guaranteed); and let v be
the corresponding eigenvector. Extend v to a basis of V :
v ,w1, . . . ,wn−1 [Linearly Independent List Extends to a
Basis (Notes#2)]. Then the matrix of T with respect to this basis
has the form given.
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Upper-Triangular Matrices

Definition (Diagonal of a Matrix)
The diagonal of a square matrix consists of the entries along the
line from the upper left corner to the bottom right corner.
— The ai ,i -entries.

Definition (Upper-Triangular Matrix)
A matrix is called upper triangular if all the entries below the
diagonal equal 0.
— ai ,j = 0 ∀i > j . “The strictly lower-triangular part is filled with zeros.”
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Conditions for Upper-Triangular Matrix

Theorem (Conditions for Upper-Triangular Matrix)
Suppose T ∈ L(V ) and v1, . . . , vn is a basis of V . Then the following are
equivalent:
(a) the matrix of T with respect to v1, . . . , vn is upper triangular
(b) T (vk) ∈ span(v1, . . . , vk), ∀k
(c) Uk = span(v1, . . . , vk) is invariant under T ∀k

Proof (Conditions for Upper-Triangular Matrix)
(a) ⇔ (b) follows from the definition, and (c) ⇒ (b). The only part that
requires work is (b) ⇒ (c).
Suppose (b) holds. Fix k ∈ {1, . . . , n} From (b) we know
T (vi ) ∈ span (v1, . . . , vi ) ⊂ span (v1, . . . , vk), i ∈ {1, . . . , k}. Thus if
v = a1v1 + · · · + akvk , then T (v) ∈ span (v1, . . . , vk), which shows that
span (v1, . . . , vk) is invariant under T .
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Over C, Every Operator has an Upper-Triangular Matrix

Theorem (Over C, Every Operator has an Upper-Triangular Matrix)
Suppose V is a finite-dimensional complex vector space and
T ∈ L(V ). Then T has an upper-triangular matrix with respect to
some basis of V .

Comment
The result does not hold on real vector spaces, because the first vector in
a basis with respect to which an operator has an upper-triangular matrix
is an eigenvector of the operator. Thus if an operator on a real vector
space has no eigenvalues, then there is no basis with respect to which the
operator has an upper-triangular matrix.

We skip the proof... but fear not, Axler provides 2 proofs in the book (pp.149–150).
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Determination of Invertibility from Upper-Triangular Matrix

The following two theorems indicate why we have gone through so much
trouble to (isomorphically) link operators on abstract vector spaces to
operators on T ∈ L(Fn)...

Theorem (Determination of Invertibility from Upper-Triangular Matrix)
Suppose T ∈ L(V ) has an upper-triangular matrix with respect to some
basis of V . Then T is invertible if and only if all the entries on the
diagonal of that upper-triangular matrix are nonzero.

Theorem (Determination of Eigenvalues from Upper-Triangular Matrix)
Suppose T ∈ L(V ) has an upper-triangular matrix with respect to some
basis of V . Then the eigenvalues of T are precisely the entries on the
diagonal of that upper-triangular matrix.

Unfortunately, identifying bases which reveal eigenvalues is non-trivial.
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e.g. 5B-{4, 5, 6, 10}
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5B-4: Suppose P ∈ L(V ) and P2 = P .
Prove that V = null(P) ⊕ range(P).

> (i) null(P) ∩ range(P) = {0} >

Let u ∈ null(P) ∩ range(P). Then P(u) = 0, and ∃w ∈ W : u = P(w).
Applying P to u = P(w) gives

0 = P(u) = P2(w) = P(w) = u,

hence the only vector in null(P) ∩ range(P) is u = 0.
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> (ii) V = null(P) + range(P) >

Next, let v ∈ V , then
v = v + 0 = v + (P(v) − P(v)) = (v − P(v)) + P(v),

where
P(v−P(v)) = P(v)−P2(v) = P(v)−P(v) = 0 ⇒ (v−P(v)) ∈ null(P),

and, by definition
P(v) ∈ range(P).

Thus
v = u + w , u ∈ null(P), w ∈ range(P)

Since v ∈ V was arbitrary, V = null(P) + range(P).

> (i) + (ii) ⇒ V = null(P) ⊕ range(P) >
[Direct Sum of Two Subspaces (Notes#1)]
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Eigenspaces and Diagonal Matrices

Definition (Diagonal Matrix)
A diagonal matrix is a square matrix that is 0 everywhere except possibly
along the diagonal.
Note: zeros ARE allowed on the diagonal.

If an operator has a diagonal matrix with respect to some basis, then the
entries along the diagonal are precisely the eigenvalues of the operator.

Definition (Eigenspace, E (λ,T ))
Suppose T ∈ L(V ) and λ ∈ F. The Eigenspace of T corresponding to
λ denoted E (λ,T ) is defined to be

E (λ,T ) = null(T − λI )
E (λ,T ) is the set of all eigenvectors of T corresponding to λ, along with
the 0 vector.
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The Operator Restricted to an Eigenspace

The Operator Restricted to an Eigenspace:
If λ is an eigenvalue of T ∈ L(V ), then

T |E(λ,T )(v) = λv , ∀v ∈ E (λ,T )

this indicates that eigenspaces are (non-trivial, and highly useful) invariant
subspaces; and we get a very simple description (scalar multiplication) of
the operator when restricted to such a subspace.

The is where our notation and language is starting to pay dividends!
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Sum of Eigenspaces is a Direct Sum

Theorem (Sum of Eigenspaces is a Direct Sum)
Suppose V is finite-dimensional and T ∈ L(V ). Suppose also that
λ1, . . . , λm are distinct eigenvalues of T . Then

E (λ1,T ) + · · · + E (λm,T )
is a direct sum:

E (λ1,T ) ⊕ · · · ⊕ E (λm,T )
Furthermore,

dim (E (λ1,T )) + · · · + dim (E (λm,T )) ≤ dim(V )

Eigenvalues and eigenspaces give us excellent understanding of
operator behavior, so this is worth showing... However, we need a
help-result...
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Filling in a Gap... Dimension of a Direct Sum of Finite Dimensional Subspaces

Theorem (Dimension of a Direct Sum of Finite Dimensional Subspaces)
Suppose U1, . . . ,Um are finite-dimensional subspaces of V such that
U1 + · · · + Um is a direct sum. Then U1 ⊕ · · · ⊕ Um is finite-dimensional
and

dim (U1 ⊕ · · · ⊕ Um) = dim (U1) + · · · + dim (Um)

Proof (Dimension of a Direct Sum of Finite Dimensional Subspaces)
Let W ,U1, . . . ,Um be subspaces of V such that

W = U1 ⊕ · · · ⊕ Um

Choose a (finite) basis {uj,k} for each Uj . Concatenate the bases into a
single list {wℓ}. By construction the (finite) list {wℓ} spans
W = U1 + · · · + Um. Thus W is finite dimensional...  
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Filling in a Gap... Dimension of a Direct Sum of Finite Dimensional Subspaces

Proof (Dimension of a Direct Sum of Finite Dimensional Subspaces)
! We need to show that the vectors in {wℓ} are linearly independent

(and thus a basis for W ), so that the dimension of W equals the
number of vectors in {wℓ}, and therefore

dim(W ) = dim (U1) + · · · + dim (Um) .

Assume: a1w1 + · · · + aNwN = 0; we can group the sum in m groups
(depending on what space Uj was the original source of the basis vector);
and thus write this sum as û1 + · · · + ûm = 0, where each ûj ∈ Uj .
Since W = U1 ⊕ · · · ⊕ Um, this forces 0 ≡ ûj ∈ Uj ∀j ; but since each
such vector is formed by a linear combination of the basis vectors {uj,k},
all the coefficients in each of those linear combinations must be 0;
translated back to a1w1 + · · · + aNwN = 0, ai ≡ 0, which makes {wℓ}
linearly independent. √
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Sum of Eigenspaces is a Direct Sum

With the help-result in hand, we can show the theorem:

Proof (Sum of Eigenspaces is a Direct Sum)
To show that E (λ1,T ) + · · · + E (λm,T ) is a direct sum, let

u1 + · · · + um = 0
where uj ∈ E (λj ,T ). Since the eigenvectors corresponding to distinct
eigenvalues are linearly independent [Linearly Independent Eigenvectors],
we get uj ≡ 0. Now, using [Condition for a Direct Sum (Notes#1)] this
implies that E (λ1,T ) + · · · + E (λm,T ) is a direct sum. Using the
[help-result], we now get

dim (E (λ1,T ) + · · · + E (λm,T )) =
dim (E (λ1,T ) ⊕ · · · ⊕ E (λm,T )) =

dim (E (λ1,T )) + · · · + dim (E (λm,T )) ≤ dim(V )
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Diagonalizable Operators

Definition (Diagonalizable)
An operator T ∈ L(V ) is called diagonalizable if the operator has a
diagonal matrix with respect to some basis of V .

Theorem (Conditions Equivalent to Diagonalizability)
Suppose V is finite-dimensional and T ∈ L(V ). Let λ1, . . . , λm denote
the distinct eigenvalues of T . Then the following are equivalent:
(a) T is diagonalizable.
(b) V has a basis consisting of eigenvectors of T “Eigenbasis”

(c) ∃ 1-D subspaces U1, . . . ,Un of V , each invariant under T , such that
V = U1 ⊕ · · · ⊕ Un

(d) V = E (λ1,T ) ⊕ · · · ⊕ E (λm,T )
(e) dim(V ) = dim(E (λ1,T )) + · · · + dim(E (λm,T ))
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Conditions Equivalent to Diagonalizability

Proof (Conditions Equivalent to Diagonalizability)
(a)⇔(b) T ∈ L(V ) has a diagonal matrix diag(λ1, . . . , λn) if and only if

T (vk) = λvk for each k . √

(b)⇒(c) Suppose (b) holds; i.e. V has a basis v1, . . . , vn consisting of
eigenvectors of T . For each k , let Uk = span (vk). By con-
struction each Uk is a 1-D subspace of V that is invariant under
T . Because v1, . . . , vn is a basis of V , each vector in V can be
written uniquely as a linear combination of v1, . . . , vn. That is,
each vector in V can be written uniquely as a sum u1 + · · · + un,
where uk ∈ Uk . Thus V = U1 ⊕ · · · ⊕ Un. √
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Conditions Equivalent to Diagonalizability

Proof (Conditions Equivalent to Diagonalizability)
(c)⇒(b) Suppose (c) holds; thus there are 1-dimensional subspaces

U1, . . . ,Un of V , each invariant under T , such that V =
U1 ⊕· · ·⊕Un. ∀k , let vk 6= 0 ∈ Uk . Then each vk is an eigenvec-
tor of T . Because each vector in V can be written uniquely as a
sum u1 + · · ·+un, where uk = αkvk ∈ Uk , we see that v1, . . . , vn
is a basis of V . √

(b)⇒(d) Suppose (b) holds; thus V has a basis consisting of eigenvectors
of T . Hence every vector in V is a linear combination of
eigenvectors of T , which implies that

V = E (λ1,T ) + · · · + E (λm,T )
Now [Sum of eigenspaces is a direct sum] shows that (d) holds:

V = E (λ1,T ) ⊕ · · · ⊕ E (λm,T ). √
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Conditions Equivalent to Diagonalizability

Proof (Conditions Equivalent to Diagonalizability)
(d)⇒(e) [help-result]

√

(e)⇒(b) Suppose (e) holds, i.e. dim(V ) = dim(E (λ1,T )) + · · · +
dim(E (λm,T )). Select a basis for each E (λj ,T ); concatenate
the basis into a list v1, . . . , vn of eigenvectors of T (n = dim(V ),
by (e)). For linear independence, suppose a1v1 + · · · + anvn = 0;
let uj denote the sum of the group of vectors from E (λj ,T ); and
we get u1 + · · · + um = 0. Now, [Linearly Independent Eigen-
vectors] forces uj = 0, which in turn forces ai = 0, which makes
v1, . . . , vn linearly independent, and a basis for V by [Linearly
Independent List of the Right Length is a Basis (Notes#2)]. √

We now have (a) ⇔ (b) ⇔ (c)
(b) ⇒ (d) ⇒ (e) ⇒ (b)

which means (a) ⇔ (b) ⇔ (c) ⇔ (d) ⇔ (e) √
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Diagonalizability is not Guaranteed

Unfortunately not every operator is diagonalizable. This can happen
even on complex vector spaces, as was shown in one of our previous
examples:

Rewind
The T ∈ L(F2) defined by T (x , y) = (y , 0) has a single eigenvalue
λ = 0, and E (λ = 0,T ) = {(x , 0) : x ∈ F}.
Since dim(F2) = 2, and dim(E (0,T )) = 1; we’re out of luck

At some point (soon) we have to “do something” about
non-diagonalizable operators.
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Enough Eigenvalues Implies Diagonalizability

Theorem (Enough Eigenvalues Implies Diagonalizability)
If T ∈ L(V ) has n = dim(V ) distinct eigenvalues, then T is
diagonalizable.

Proof (Enough Eigenvalues Implies Diagonalizability)
Let T ∈ L(V ) have n = dim(V ) distinct eigenvalues λ1, . . . , λn. ∀k , let
vk ∈ V be an eigenvector corresponding to λk . By [Linearly Independent
Eigenvectors] v1, . . . , vn is linearly independent, and by [Linearly
Independent List of the Right Length is a Basis (Notes#2)] therefore a
basis. With respect to this basis consisting of eigenvectors, T has a
diagonal matrix.

Note: this is a one-way result ⇒, not an if-and-only-if ⇔.
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e.g. 5C-{8}
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5C-8: Suppose T ∈ L(F5) and dim(E (8,T )) = 4. Prove that (T − 2I )
or (T − 6I ) is invertible.

> Solution >

We remind ourselves that

E(λ,T ) = null(T − λI ) are the eigenspaces, and

the sum of eigenspaces is a direct sum

Therefore
dim(E(8,T ))
| {z }

4

+ dim(E(2,T ))
| {z }

∈Z+

+ dim(E(6,T ))
| {z }

∈Z+

≤ dim(F5) = 5

which means that at least one (possibly both) of dim(E(2,T )) and dim(E(6,T ))
must be zero.  ∃bλ ∈ {2, 6} so that E(bλ,T ) = {0}, making bλ not an eigenvalue, and
(T − bλI ) invertible.
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Suggested Problems

5.A—1, 2, 3, 4, 8, 9, 10, 12

5.B—1(a), 4‡, 5∗, 7, 10, 14, 15

5.C—1, 2, 8

‡ This problem has “something” to do with Orthogonal Projections. (Fa-
miliar on Rn, but here expressed on general vector spaces); also a matrix
for which P2 = P holds is called idempotent. This problem appears in
slightly different form in [Math 543]

∗ This problem relates to the eigenvalue structure, and the reason we (in
Math 254) look for diagonalizing similarity transformations
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Assigned Homework HW#5, Due Date in Canvas/Gradescope

5.A—4, 8, 10(a)

5.B—1(a), 7, 14, 15

5.C—1, 2

Note: Assignment problems are not official and subject to change
until the first lecture on the chapter has been delivered (or
virtually “scheduled.”)

Upload homework to www.Gradescope.com
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Eigenvectors Corresponding to Distinct Eigenvalues are Linearly Independent

Proof ((Alternative) Linearly Independent Eigenvectors)
Let ∈ L(V ). Suppose λ1, . . . , λm are distinct eigenvalues of T , and v1, . . . , vm are the
corresponding eigenvectors. Consider c1v1 + · · · + cmvm = 0, where cj ∈ F. Let k be
the largest index so that v1, . . . , vk is linearly independent, but v1, . . . , vk+1 is not and
let (*) c1v1 + · · · + ckvk = vk+1. Now:

λk+1vk+1 = T (vk+1) = T (c1v1 + · · · + ckvk ) = c1T (v1) + · · · + ckT (vk)
= c1λ1v1 + · · · + ckλkvk (∗∗)

Multiplying (*) by λk+1 and subtract from (**):
c1 (λ1 − λk+1)

| {z }

6=0

v1 + · · · + ck (λk − λk+1)
| {z }

6=0

vk = 0

Since v1, . . . , vk are linearly independent, c1 = · · · = ck = 0, which makes vk+1 = 0,
but eigenvectors cannot be the zero vector; hence there is no such value k, and the
vectors are linearly independent.

(It’s the same proof, dressed up in a Halloween costume!)
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Explicit References to Previous Theorems or Definitions (with count)

1

2 3-1 3-2 4

5

67-17-28

1

3

2
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Explicit References to Previous Theorems or Definitions

1

2 3-1 3-2 4

5

67-17-28
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