

Invariant Subspaces

Let $T \in \mathcal{L}(V)$. If we have

[Divide-and-Conquer "Theorem"]

5. Eigenvalues+vectors & Invariant Subspaces

Ê.

A

(7/54

— (5/54)

where each U_j is a proper subspace of V (*i.e.* dim $(U_j) < \dim(V)$); then it is sufficient to understand the action of T on each U_i .

 $V = U_1 \oplus \cdots \oplus U_m$

Notation (Restriction, $T|_{U_i}$)

 $T|_{U_i}$ is the **restriction** of the linear map $T \in \mathcal{L}(V)$ to the subspace U_j .

This only makes sense if $T|_{U_j} : U_j \mapsto U_j$, or if you want $T|_{U_j} \in \mathcal{L}(U_j)$. Such subspaces get their own name...

Definition (Invariant Subspace)

Let $T \in \mathcal{L}(V)$. A subspace U of V is called **invariant** under T if $\forall u \in U \Rightarrow T(u) \in U$.

Invariant Subspaces Eigenvectors and Upper-Triangular Matrices Eigenspaces and Diagonal Matrices

Peter Blomgren (blomgren@sdsu.edu)

Invariant Subspaces

Question

Must an operator $T \in \mathcal{L}(V)$ have any invariant subspaces other than $\{0\}$ and V?

— $\operatorname{null}(T)$ and $\operatorname{range}(T)$ do not necessarily provide useful insight.

Invariant Subspaces

We will see that the answer is yes, as long as $\dim(V) > 1$ (for $\mathbb{F} = \mathbb{C}$), or $\dim(V) > 2$ (for $\mathbb{F} = \mathbb{R}$).

Example

Let $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}))$ is defined by Dp = p', then for any fixed m, $\mathcal{P}_m(\mathbb{R})$ is an invariant subspace of $\mathcal{P}(\mathbb{R})$.

In this case:

 $\dim(\operatorname{null}(D)) = 1$, and $\dim(\operatorname{range}(D)) = m = (\dim(\mathcal{P}_m(\mathbb{R})) - 1)$.

Invariant Subspaces

Example (Invariant Subspaces)

- {0} • If $u \in \{0\}$, then u = 0. [LINEARITY] $T(u) = T(0) = 0 \in \{0\}$.
- V• If $u \in V$, then — since $T \in \mathcal{L}(V) - T(u) \in V$
- $\operatorname{null}(T)$ (could be {0}) • If $u \in \operatorname{null}(T)$, then $T(u) = 0 \in \operatorname{null}(T)$ [LINEARITY]

 Peter Blomgren (blomgren@sdsu.edu)
 5. Eigenvalues+vectors & Invariant Subspaces
 (6/54)

 Invariant Subspaces
 Invariant Subspaces
 Invariant Subspaces

 Eigenvalues = Vectors and Upper-Triangular Matrices
 Invariant Subspaces
 Invariant Subspaces

Eigenvalues and Eigenvectors :: Eigenvalues

We will look at invariant subspaces in careful detail; first we turn our attention to the case of invariant subspaces with $\dim = 1$.

Consider the 1-dimensional ("line"-type) subspaces: let $v \neq 0 \in V$, and define $U = \{\lambda v : \lambda \in \mathbb{F}\} \equiv \operatorname{span}(v)$.

If U is invariant under $T \in \mathcal{L}(V)$, then $T(v) \in U$ ($\forall v \in U$), and hence $\exists \lambda \in \mathbb{F}$ such that

$$T(v) = \lambda v$$

The converse holds: if $T(v) = \lambda v$ for some $v \in V$, and $\lambda \in \mathbb{F}$, then span(v) is an invariant subspace of V under the linear map T.

Invariant Subspaces Eigenvectors and Upper-Triangular Matrices Eigenspaces and Diagonal Matrices	Invariant Subspaces Eigenvectors and Upper-Triangular Matrices Eigenspaces and Diagonal Matrices
Eigenvalues and Eigenvectors :: Eigenvalues	Eigenvalues and Eigenvectors :: Eigenvalues
In the past, we have surely seen eigenvalues (and eigenvectors) defined for <i>matrices</i> , here we generalize the concept to operators on all finite-dimensional subspaces	Theorem (Equivalent Conditions to be an Eigenvalue) Suppose V is finite-dimensional, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbb{F}$. The following are equivalent: (a) λ is an eigenvalue of T (b) $T - \lambda I$ is not injective
Definition (Eigenvalue) Suppose $T \in \mathcal{L}(V)$. A scalar $\lambda \in \mathbb{F}$ is called an eigenvalue of T if there exists $v \neq 0 \in V$ such that $T(v) = \lambda v$.	(c) $T - \lambda I$ is not surjective (d) $T - \lambda I$ is not invertible Recall: $I \in \mathcal{L}(V) : I(v) = v, \forall v \in V.$ (a) \Leftrightarrow (b), by rearranging $T(v) = \lambda v$ (b) \Leftrightarrow (c) \Leftrightarrow (d) by [Injectivity \Leftrightarrow Surjectivity in Finite Dimen-
Pater Blamaron (blamaron adu) 5. Eigenvalues Lyesters & Invariant Subspaces — (9/54)	SIONS (NOTES#3.2)]
Invariant Subspaces	Invariant Subspaces
Eigenspaces and Diagonal Matrices	Eigenspaces and Diagonal Matrices
Eigenvalues and Eigenvectors :: Eigenvectors	Eigenvalues and Eigenvectors ::
Definition (Eigenvector) Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. A vector $v \in V$ is called an eigenvector of T corresponding to the eigenvalue λ if $v \neq 0$, and $T(v) = \lambda v$.	Example (Rotation over \mathbb{R} and \mathbb{C}) Suppose $T \in \mathcal{L}(\mathbb{F}^2)$, is defined by $T(x, y) = (-y, x)$. $\mathbb{F} = \mathbb{R}$ <i>T</i> is a counterclockwise rotation by $\pi/2$ about the origin in \mathbb{R}^2 . There is no real scaling of a vector such that $(-y, x) = \lambda(x, y)$. <i>T</i> has no eigenvalue(s) and no eigenvector(s).
Note: Eigenvalues can be 0, but Eigenvectors cannot be the zero-vector. \bigcirc Eigenvectors corresponding to $\lambda = 0$ come from null(T).	$\mathbb{F} = \mathbb{C} \text{ We are looking for } \lambda \in \mathbb{F} \text{ such that } (-y, x) = \lambda(x, y):$ $\begin{cases} \lambda x &= -y \\ \lambda y &= x \end{cases} \Rightarrow -y = \lambda x = \lambda(\lambda y) = \lambda^2 y$
Since $T(v) = \lambda v$ if and only if $(T - \lambda I)v = 0$, $v \neq 0 \in V$ is an eigenvector of T corresponding to the eigenvalue λ if and only if $v \in \text{null}(T - \lambda I)$.	EIGENVALUES: $\lambda^2 = -1 \Rightarrow \lambda = \pm i$. EIGENVECTORS: $\begin{cases} (-y, x) = +i(x, y) \Rightarrow (x, y) = (w, -wi) \\ (-y, x) = -i(x, y) \Rightarrow (x, y) = (w, +wi) \end{cases}$

Invariant Subspaces

Eigenvectors Corresponding to Distinct Eigenvalues are Linearly Independent

Theorem (Linearly Independent Eigenvectors)

Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T, and v_1, \ldots, v_m are the corresponding eigenvectors; then v_1, \ldots, v_m is linearly independent.

Proof (Linearly Independent Eigenvectors)

[BY CONTRADICTION] Suppose v_1, \ldots, v_m is linearly dependent. Let k be the smallest positive integer such that $v_k \in \operatorname{span}(v_1, \ldots, v_{k-1})$. We can find $a_1, \ldots, a_{k-1} \in \mathbb{F}$ such that (1) $v_k = a_1v_1 + \cdots + a_{k-1}v_{k-1}$ $T(v_k) = T(a_1v_1 + \cdots + a_{k-1}v_{k-1})$ (2) $\lambda_k v_k = a_1\lambda_1v_1 + \cdots + a_{k-1}\lambda_{k-1}v_{k-1}$ $\overline{\lambda_k(1) - (2)}$ $0 = a_1(\lambda_k - \lambda_1)v_1 + \cdots + a_{k-1}(\lambda_k - \lambda_{k-1})v_{k-1}$ Since v_1, \ldots, v_{k-1} is linearly independent, λ_k is magically equal to all the distinct $\lambda_1, \ldots, \lambda_{k-1}$. Contradiction!

Restriction and Quotient Operators

If $T \in \mathcal{L}(V)$, and U is a subspace of V invariant under T, then U determines two other operators:

Definition (Restriction Operator $T|_U$; and Quotient Operator T/U)

- Suppose $T \in \mathcal{L}(V)$, and U is a subspace of V invariant under T
 - The restriction operator $T|_U \in \mathcal{L}(U)$ is defined by

 $T|_U(u) = T(u), u \in U$

• The quotient operator $T/U \in \mathcal{L}(V/U)$ is defined by $(T/U)(v + U) = T(v) + U, v \in V$ Number of Eigenvalues $\leq \dim(V)$

Theorem (Number of Eigenvalues)

Suppose V is finite-dimensional. Then each operator on V has at most $\dim(V)$ distinct eigenvalues.

Proof (Number of Eigenvalues)

Let $m = \dim(V)$. We can find at most m linearly independent vectors in V; eigenvectors corresponding to distinct eigenvalues are linearly independent (by previous theorem); so we can find at most m eigenvectors; thus at most m distinct eigenvalues.

1/2

Ê

Restriction and Quotient Operators :: Example

Example

Êı

Ê

AN DIEG

(15/54)

Define $T \in \mathcal{L}(\mathbb{F}^2)$ by T(x, y) = (y, 0). Let $U = \{(x, 0) : x \in \mathbb{F}\}$

- U is invariant under T and $T|_U$ is the 0-operator on U:
 - $T(x,0) = (0,0) \in U$.

So U is invariant under T and $T|_U$ is the 0-operator on U.

- \nexists a subspace W of \mathbb{F}^2 that is invariant under T, and $U \oplus W = \mathbb{F}^2$.
 - Since dim(𝔽²) = 2, dim(U) = 1, we must have dim(W) = 1.
 If W is invariant under T, then all w ∈ W are eigenvectors.
 However, the only eigenvalue is λ = 0, and U contains the corresponding eigenvectors.

Thus W cannot be invariant under T.

Polynomials Applied to Operators Existence of Eigenvalues Upper-Triangular Matrices

Polynomials Applied to Operators

The main reason that a richer theory exists for operators (which map a vector space into itself) than for more general linear maps is that operators can be raised to powers — composed with themselves / applied multiple times:

Definition (T^m)

Product of Polynomials

Suppose $T \in \mathcal{L}(V)$ and *m* is a positive integer

• T^m is defined by $T^m = \underbrace{T \circ \cdots \circ T}_{m \text{ times}}$

Peter Blomgren (blomgren@sdsu.edu)

Eigenvectors and Upper-Triangular Matrices Eigenspaces and Diagonal Matrices

Definition (Product of Polynomials)

• T^0 is defined to be the identity operator on V

Invariant Subspaces

• If T is invertible, with inverse T^{-1} , then $T^{-m} = (T^{-1})^m$

Invariant Subspaces Eigenvectors and Upper-Triangular Matrices Eigenspaces and Diagonal Matrices Polynomials Applied to Operators Existence of Eigenvalues Upper-Triangular Matrices

The Operator p(T)

Definition (The Operator p(T))

Suppose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$ is a polynomial given by

$$p(z) = a_0 + a_1z + a_2z^2 + \cdots + a_mz^m, z \in \mathbb{F}$$

Then p(T) is the operator defined by

 $p(T) = a_0 I + a_1 T + a_2 T^2 + \dots + a_m T^m$

Example ("The Gateway to Differential Equations.")

Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}))$ is the differentiation operator defined by Dq = q', with p being the polynomial defined by $p(x) = x^2 + k$, then $p(D) = D^2 + k$, and

$$p(D)q = q'' + kq, \ \forall q \in \mathcal{P}(\mathbb{R})$$

p(D)q = 0 is the Helmholtz Equation (in 1D).

https://en.wikipedia.org/wiki/Helmholtz_equation

Peter Blomgren (blomgren@sdsu.edu)	5. Eigenvalues+vectors & Invariant Subspaces — (22/54)
Invariant Subspaces Eigenvectors and Upper-Triangular Matrices Eigenspaces and Diagonal Matrices	Polynomials Applied to Operators Existence of Eigenvalues Upper-Triangular Matrices

Existence of Eigenvalues

Ê

Ê

SAN DIEG

(23/54)

SAN DIEGO

5. Eigenvalues+vectors & Invariant Subspaces — (21/54)

Polynomials Applied to Operators

Existence of Eigenvalues

Upper-Triangular Matrices

Theorem (Existence of Eigenvalues)

Every operator on a finite-dimensional, nonzero, complex vector space has an eigenvalue.

Proof (Existence of Eigenvalues)

Suppose V is a complex vector space with dimension n > 0 and $T \in \mathcal{L}(V)$. Let $v \neq 0 \in V$, then

$$v, T(v), T^2(v), \ldots, T^n(v)$$

is not linearly independent, because V has dimension n and we have (n + 1) vectors. Thus there exist complex numbers a_0, a_1, \ldots, a_n , such that

$$0 = a_0 v + a_1 T(v) + a_2 T^2(v) + \dots + a_n T^n(v).$$

Not all a_1, \ldots, a_n can be zero, since that would force $a_0 = 0$ (and this would make the (n + 1) vectors linearly independent)...

Theorem (Multiplicative Properties)

Suppose $p, q \in \mathcal{P}(\mathbb{F})$ and $T \in \mathcal{L}(V)$, then

- (pq)(T) = p(T)q(T)
- p(T)q(T) = q(T)p(T)

The proof is purely "mechanical" (distributive property + bookkeeping)

If $p, q \in \mathcal{P}(\mathbb{F})$, then $pq \in \mathcal{P}(\mathbb{F})$ is the polynomial defined by

 $(pq)(z) = p(z)q(z), z \in \mathbb{F}$

Polynomials Applied to Operators Existence of Eigenvalues Upper-Triangular Matrices

Existence of Eigenvalues

Proof (Existence of Eigenvalues)

Now, let the *a*'s be the coefficients of a polynomial; which by the [FUNDAMENTAL THEOREM OF ALGEBRA] has a factorization

$$p(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n = c(z - \lambda_1) \cdots (z - \lambda_m)$$

where *c* is a nonzero complex number, $\lambda_j \in \mathbb{C}$, and the equation holds $\forall z \in \mathbb{C}$ (here *m* is not necessarily equal to *n*, because a_n may equal 0). We then have

$$0 = a_0 v + a_1 T(v) + a_2 T^2(v) + \dots + a_n T^n(v) = (a_0 I + a_1 T + a_2 T^2 + \dots + a_n T^n)(v) = c(T - \lambda_1 I) \dots (T - \lambda_m I) v$$

Thus $(T - \lambda_i I)$ is not injective for at least one $j \Leftrightarrow T$ has an eigenvalue.

		UNIVERSITY
Peter Blomgren (blomgren@sdsu.edu)	5. Eigenvalues+vectors & Invariant Subspaces	— (25/54)
Invariant Subspaces Eigenvectors and Upper-Triangular Matrices Eigenspaces and Diagonal Matrices	Polynomials Applied to Operators Existence of Eigenvalues Upper-Triangular Matrices	

Upper-Triangular Matrices :: Comments

Note that matrices of operators are square, rather than the more general rectangular case which we considered earlier for linear maps.

If T is an operator on \mathbb{F}^n and no basis is specified, assume that the basis in question is the standard basis. The *j*th column of $\mathcal{M}(T)$ is then T applied to the *j*th basis vector.

A central $\not{g}\phi \not{A}$ milestone of linear algebra is to show that given an operator $T \in \mathcal{L}(V)$, there exists a basis of V with respect to which T has a reasonably simple matrix.

For instance, we might try to choose a basis of V such that $\mathcal{M}(T)$ has many 0's.

Polynomials Applied to Operators Existence of Eigenvalues Upper-Triangular Matrices

Êı

Upper-Triangular Matrices

Definition (Matrix of an Operator, $\mathcal{M}(T)$)

Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. The matrix of T with respect to this basis is the $(n \times n)$ matrix

$$\mathcal{A}(T) = \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{bmatrix}$$

whose entries $a_{i,k}$ are defined by

$$T(v_k) = a_{1,k}v_1 + \dots + a_{n,k}v_n$$

If the basis is not "obvious from context," then we use the notation $\mathcal{M}(\mathcal{T}, (v_1, \ldots, v_n))$.

Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} \rangle$	5. Eigenvalues+vectors & Invariant Subspaces	— (26/54)
Invariant Subspaces Eigenvectors and Upper-Triangular Matrices	Polynomials Applied to Operators Existence of Eigenvalues	
Eigenspaces and Diagonal Matrices	Upper-Triangular Matrices	

Upper-Triangular Matrices

Ê

SAN DIEGO

(27/54)

If V is a finite-dimensional complex vector space, there is a basis of V with respect to which the matrix of T looks like

	V	w_1	•••	W_{n-1}
V	λ	*	*	*
w ₁	0	*	*	*
÷	÷	*	*	*
W_{n-1}	0	*	*	*

Let λ be an eigenvalue of T (existence is guaranteed); and let v be the corresponding eigenvector. Extend v to a basis of V:

 v, w_1, \ldots, w_{n-1} [LINEARLY INDEPENDENT LIST EXTENDS TO A BASIS (NOTES#2)]. Then the matrix of T with respect to this basis has the form given.

Polynomials Applied to Operators Existence of Eigenvalues Upper-Triangular Matrices

Upper-Triangular Matrices

Definition (Diagonal of a Matrix)

The diagonal of a square matrix consists of the entries along the line from the upper left corner to the bottom right corner.

— The *a_{i,i}*-entries.

Definition (Upper-Triangular Matrix)

A matrix is called upper triangular if all the entries below the diagonal equal 0.

 $-a_{i,i}=0 \ \forall i>j.$

"The strictly lower-triangular part is filled with zeros."

Êı

SAN DIEG

(31/54)

SAN DIEC

Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} \rangle$	5. Eigenvalues+vectors & Invariant Subspaces	— (29/54
Invariant Subspaces Eigenvectors and Upper-Triangular Matrices Eigenspaces and Diagonal Matrices	Polynomials Applied to Operators Existence of Eigenvalues Upper-Triangular Matrices	
Eigenvectors and Upper-Triangular Matrices Eigenspaces and Diagonal Matrices	Existence of Eigenvalues Upper-Triangular Matrices	

Over C, Every Operator has an Upper-Triangular Matrix

Theorem (Over $\mathbb C$, Every Operator has an Upper-Triangular Matrix)

Suppose V is a finite-dimensional complex vector space and $T \in \mathcal{L}(V)$. Then T has an upper-triangular matrix with respect to some basis of V.

Comment

The result does **not** hold on real vector spaces, because the first vector in a basis with respect to which an operator has an upper-triangular matrix is an eigenvector of the operator. Thus if an operator on a real vector space has no eigenvalues, then there is no basis with respect to which the operator has an upper-triangular matrix.

We skip the proof... but fear not, Axler provides 2 proofs in the book (pp.149-150).

Conditions for Upper-Triangular Matrix

Theorem (Conditions for Upper-Triangular Matrix)

Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V. Then the following are equivalent:

- (a) the matrix of T with respect to v_1, \ldots, v_n is upper triangular
- (b) $T(v_k) \in \operatorname{span}(v_1, \ldots, v_k)$, $\forall k$
- (c) $U_k = \operatorname{span}(v_1, \ldots, v_k)$ is invariant under $T \ \forall k$

Proof (Conditions for Upper-Triangular Matrix)

(a) \Leftrightarrow (b) follows from the definition, and (c) \Rightarrow (b). The only part that requires work is (b) \Rightarrow (c).

Suppose (b) holds. Fix $k \in \{1, ..., n\}$ From (b) we know $T(v_i) \in \operatorname{span}(v_1, ..., v_i) \subset \operatorname{span}(v_1, ..., v_k)$, $i \in \{1, ..., k\}$. Thus if $v = a_1v_1 + \cdots + a_kv_k$, then $T(v) \in \operatorname{span}(v_1, ..., v_k)$, which shows that $\operatorname{span}(v_1, ..., v_k)$ is invariant under T.

Peter Blomgren (blomgren@sdsu.edu) 5. Eigenvalues+vectors & Invariant Subspaces — (30/54)

Invariant Subspaces Eigenvectors and Upper-Triangular Matrices Eigenspaces and Diagonal Matrices

Polynomials Applied to Operators Existence of Eigenvalues Upper-Triangular Matrices Ê

r.

Determination of Invertibility from Upper-Triangular Matrix

The following two theorems indicate why we have gone through so much trouble to (isomorphically) link operators on abstract vector spaces to operators on $T \in \mathcal{L}(\mathbb{F}^n)$...

Theorem (Determination of Invertibility from Upper-Triangular Matrix)

Suppose $T \in \mathcal{L}(V)$ has an upper-triangular matrix with respect to some basis of V. Then T is invertible if and only if all the entries on the diagonal of that upper-triangular matrix are nonzero.

Theorem (Determination of Eigenvalues from Upper-Triangular Matrix)

Suppose $T \in \mathcal{L}(V)$ has an upper-triangular matrix with respect to some basis of V. Then the eigenvalues of T are precisely the entries on the diagonal of that upper-triangular matrix.

Unfortunately, identifying bases which reveal eigenvalues is non-trivial.

Invariant Subspaces Polynomials Applied to Operators Eigenvectors and Upper-Triangular Matrices Existence of Eigenvalues Eigenspaces and Diagonal Matrices Upper-Triangular Matrices	Invariant Subspaces Polynomials Applied to Operators Eigenvectors and Upper-Triangular Matrices Eigenspaces and Diagonal Matrices Upper-Triangular Matrices
	Live Math :: Covid-19 Version 5B-4
/// Live Math))	5B-4: Suppose $P \in \mathcal{L}(V)$ and $P^2 = P$. Prove that $V = \operatorname{null}(P) \oplus \operatorname{range}(P)$.
	$(i) \operatorname{null}(P) \cap \operatorname{range}(P) = \{0\}$
e.g. 5B-{ 4 , 5, 6, 10}	Let $u \in \operatorname{null}(P) \cap \operatorname{range}(P)$. Then $P(u) = 0$, and $\exists w \in W : u = P(w)$. Applying P to $u = P(w)$ gives
	$0 = \mathbf{P}(\mathbf{u}) = \mathbf{P}^2(\mathbf{w}) = P(w) = u,$
	hence the only vector in $\operatorname{null}(P) \cap \operatorname{range}(P)$ is $u = 0$.
See Disco Start Constante	Sey Data St Sey Data St
Peter Blomgren (blomgren@sdsu.edu) 5. Eigenvalues+vectors & Invariant Subspaces — (33/54)	Peter Blomgren (blomgren@sdsu.edu) 5. Eigenvalues+vectors & Invariant Subspaces — (34/54)
Eigenvectors and Upper-Triangular Matrices Eigenspaces and Diagonal Matrices Upper-Triangular Matrices	Eigenvectors and Upper-Triangular Matrices Eigenspaces and Diagonal Matrices
Live Math :: Covid-19 Version 5B-4	Eigenspaces and Diagonal Matrices
* (ii) $V = \operatorname{null}(P) + \operatorname{range}(P)$ *	Definition (Diagonal Matrix)
Next, let $v \in V$, then v = v + 0 = v + (P(v) - P(v)) = (v - P(v)) + P(v), where	A diagonal matrix is a square matrix that is 0 everywhere except possibly along the diagonal. Note: zeros ARE allowed on the diagonal.
$P(v-P(v)) = P(v) - P^{2}(v) = P(v) - P(v) = 0 \implies (v-P(v)) \in \text{null}(P),$ and, by definition $P(v) \in \text{range}(P)$	If an operator has a diagonal matrix with respect to some basis, then the entries along the diagonal are precisely the eigenvalues of the operator.
$F(V) \in \operatorname{range}(F)$.	Definition (Eigenspace, $E(\lambda, T)$)
$v = u + w, u \in \text{null}(P), \ w \in \text{range}(P)$ Since $v \in V$ was arbitrary $V = \text{null}(P) + \text{range}(P)$	Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. The Eigenspace of T corresponding to λ denoted $E(\lambda, T)$ is defined to be
$(i) + (ii) \Rightarrow V = \operatorname{null}(P) \oplus \operatorname{range}(P) \qquad \qquad$	$E(\lambda, T) = \operatorname{null}(T - \lambda I)$
[DIRECT SUM OF TWO SUBSPACES (NOTES#1)]	$E(\lambda, T)$ is the set of all eigenvectors of T corresponding to λ , along with the 0 vector.

Toward Better Understanding of an Operator...

The Operator Restricted to an Eigenspace

The Operator Restricted to an Eigenspace:

If λ is an eigenvalue of $T \in \mathcal{L}(V)$, then

 $T|_{E(\lambda,T)}(v) = \lambda v, \ \forall v \in E(\lambda,T)$

this indicates that eigenspaces are (non-trivial, and highly useful) **invariant subspaces**; and we get a very simple description (scalar multiplication) of the operator when restricted to such a subspace.

The is where our notation and language is starting to pay dividends!

Eigenvalues and eigenspaces give us excellent understanding of operator behavior, so this is worth showing... However, we need a Êı help-result... SAN DIEG 5. Eigenvalues+vectors & Invariant Subspaces — (38/54) Peter Blomgren (blomgren@sdsu.edu) 5. Eigenvalues+vectors & Invariant Subspaces - (37/54) Peter Blomgren (blomgren@sdsu.edu) Invariant Subspaces Invariant Subspaces **Eigenvectors and Upper-Triangular Matrices** Toward Better Understanding of an Operator... **Eigenvectors and Upper-Triangular Matrices** Toward Better Understanding of an Operator.. **Eigenspaces and Diagonal Matrices Eigenspaces and Diagonal Matrices** Filling in a Gap... Dimension of a Direct Sum of Finite Dimensional Subspaces Filling in a Gap... Dimension of a Direct Sum of Finite Dimensional Subspaces Theorem (Dimension of a Direct Sum of Finite Dimensional Subspaces) Proof (Dimension of a Direct Sum of Finite Dimensional Subspaces) Suppose U_1, \ldots, U_m are finite-dimensional subspaces of V such that () We need to show that the vectors in $\{w_{\ell}\}$ are linearly independent $U_1 + \cdots + U_m$ is a direct sum. Then $U_1 \oplus \cdots \oplus U_m$ is finite-dimensional (and thus a basis for W), so that the dimension of W equals the and number of vectors in $\{w_{\ell}\}$, and therefore $\dim (U_1 \oplus \cdots \oplus U_m) = \dim (U_1) + \cdots + \dim (U_m)$ $\dim(W) = \dim(U_1) + \cdots + \dim(U_m).$ **Assume:** $a_1 w_1 + \cdots + a_N w_N = 0$; we can group the sum in *m* groups (depending on what space U_i was the original source of the basis vector); Proof (Dimension of a Direct Sum of Finite Dimensional Subspaces) and thus write this sum as $\hat{u}_1 + \cdots + \hat{u}_m = 0$, where each $\hat{u}_i \in U_i$. Let W, U_1, \ldots, U_m be subspaces of V such that Since $W = U_1 \oplus \cdots \oplus U_m$, this forces $0 \equiv \hat{u}_i \in U_i \ \forall j$; but since each $W = U_1 \oplus \cdots \oplus U_m$ such vector is formed by a linear combination of the basis vectors $\{u_{i,k}\}$, all the coefficients in each of those linear combinations must be 0: Choose a (finite) basis $\{u_{i,k}\}$ for each U_i . Concatenate the bases into a translated back to $a_1w_1 + \cdots + a_Nw_N = 0$, $a_i \equiv 0$, which makes $\{w_\ell\}$ single list $\{w_{\ell}\}$. By construction the (finite) list $\{w_{\ell}\}$ spans linearly independent. $\sqrt{}$ $W = U_1 + \cdots + U_m$. Thus W is finite dimensional...

Ê

(39/54)

Eigenvectors and Upper-Triangular Matrices

Sum of Eigenspaces is a Direct Sum

is a direct sum:

Furthermore.

Eigenspaces and Diagonal Matrices

Theorem (Sum of Eigenspaces is a Direct Sum)

 $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of T. Then

Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Suppose also that

 $E(\lambda_1, T) + \cdots + E(\lambda_m, T)$

 $E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$

 $\dim (E(\lambda_1, T)) + \cdots + \dim (E(\lambda_m, T)) < \dim(V)$

Toward Better Understanding of an Operator...

Toward Better Understanding of an Operator...

Sum of Eigenspaces is a Direct Sum

With the help-result in hand, we can show the theorem:

Proof (Sum of Eigenspaces is a Direct Sum)

To show that $E(\lambda_1, T) + \cdots + E(\lambda_m, T)$ is a direct sum, let

 $u_1 + \cdots + u_m = 0$

where $u_j \in E(\lambda_j, T)$. Since the eigenvectors corresponding to distinct eigenvalues are linearly independent [LINEARLY INDEPENDENT EIGENVECTORS], we get $u_j \equiv 0$. Now, using [CONDITION FOR A DIRECT SUM (NOTES#1)] this implies that $E(\lambda_1, T) + \cdots + E(\lambda_m, T)$ is a direct sum. Using the [HELP-RESULT], we now get

> $\dim (E(\lambda_1, T) + \dots + E(\lambda_m, T)) =$ $\dim (E(\lambda_1, T) \oplus \dots \oplus E(\lambda_m, T)) =$ $\dim (E(\lambda_1, T)) + \dots + \dim (E(\lambda_m, T)) \leq \dim(V)$

Peter Blomgren (blomgren@sdsu.edu) 5. Eigenvalues+vectors & Invariant Subspaces — (41/54) Invariant Subspaces — (41/54) Eigenvectors and Upper-Triangular Matrices Toward Better Understanding of an Operator...

Conditions Equivalent to Diagonalizability

Proof (Conditions Equivalent to Diagonalizability)

- (a) \Leftrightarrow (b) $T \in \mathcal{L}(V)$ has a diagonal matrix diag $(\lambda_1, \ldots, \lambda_n)$ if and only if $T(v_k) = \lambda v_k$ for each k. $\sqrt{}$
- (b) \Rightarrow (c) Suppose (b) holds; *i.e.* V has a basis v_1, \ldots, v_n consisting of eigenvectors of T. For each k, let $U_k = \operatorname{span}(v_k)$. By construction each U_k is a 1-D subspace of V that is invariant under T. Because v_1, \ldots, v_n is a basis of V, each vector in V can be written uniquely as a linear combination of v_1, \ldots, v_n . That is, each vector in V can be written uniquely as a sum $u_1 + \cdots + u_n$, where $u_k \in U_k$. Thus $V = U_1 \oplus \cdots \oplus U_n$.

Invariant Subspaces Eigenvectors and Upper-Triangular Matrices Eigenspaces and Diagonal Matrices

Toward Better Understanding of an Operator...

Ê

Ê

Diagonalizable Operators

Definition (Diagonalizable)

An operator $T \in \mathcal{L}(V)$ is called **diagonalizable** if the operator has a diagonal matrix with respect to some basis of V.

Theorem (Conditions Equivalent to Diagonalizability)

Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ denote the distinct eigenvalues of T. Then the following are equivalent:

(a) *T* is diagonalizable.

Ê.

Ê

AN DIEG

(43/54)

SAN DIEGO ST UNIVERSIT

- (b) V has a basis consisting of eigenvectors of T "Eigenbasis"
- (c) \exists 1-D subspaces U_1, \ldots, U_n of V, each invariant under T, such that $V = U_1 \oplus \cdots \oplus U_n$
- (d) $V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$
- (e) $\dim(V) = \dim(E(\lambda_1, T)) + \cdots + \dim(E(\lambda_m, T))$

Peter Blomgren (blomgren@sdsu.edu) 5. Eigenvalues+vectors & Invariant Subspaces — (42/54) Invariant Subspaces Eigenvectors and Upper-Triangular Matrices Eigenspaces and Diagonal Matrices

Conditions Equivalent to Diagonalizability

Proof (Conditions Equivalent to Diagonalizability)

- (c) \Rightarrow (b) Suppose (c) holds; thus there are 1-dimensional subspaces U_1, \ldots, U_n of V, each invariant under T, such that $V = U_1 \oplus \cdots \oplus U_n$. $\forall k$, let $v_k \neq 0 \in U_k$. Then each v_k is an eigenvector of T. Because each vector in V can be written uniquely as a sum $u_1 + \cdots + u_n$, where $u_k = \alpha_k v_k \in U_k$, we see that v_1, \ldots, v_n is a basis of V. $\sqrt{$
- (b) \Rightarrow (d) Suppose (b) holds; thus V has a basis consisting of eigenvectors of T. Hence every vector in V is a linear combination of eigenvectors of T, which implies that

$$V = E(\lambda_1, T) + \cdots + E(\lambda_m, T)$$

Now [Sum of eigenspaces is a direct sum] shows that (d) holds:

$$V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T).$$

Toward Better Understanding of an Operator...

Conditions Equivalent to Diagonalizability

Proof (Conditions Equivalent to Diagonalizability)

(d) \Rightarrow (e) [HELP-RESULT] \checkmark

(e) \Rightarrow (b) Suppose (e) holds, *i.e.* dim(V) = dim($E(\lambda_1, T)$) + ··· + dim($E(\lambda_m, T)$). Select a basis for each $E(\lambda_j, T)$; concatenate the basis into a list v_1, \ldots, v_n of eigenvectors of T ($n = \dim(V)$, by (e)). For linear independence, suppose $a_1v_1 + \cdots + a_nv_n = 0$; let u_j denote the sum of the group of vectors from $E(\lambda_j, T)$; and we get $u_1 + \cdots + u_m = 0$. Now, [LINEARLY INDEPENDENT EIGENVECTORS] forces $u_j = 0$, which in turn forces $a_i = 0$, which makes v_1, \ldots, v_n linearly independent, and a basis for V by [LINEARLY INDEPENDENT LIST OF THE RIGHT LENGTH IS A BASIS (NOTES#2)]. $\sqrt{$

 $\begin{array}{ll} \text{We now have} & (a) \Leftrightarrow (b) \Leftrightarrow (c) \\ & (b) \Rightarrow (d) \Rightarrow (e) \Rightarrow (b) \end{array}$

which means (a) \Leftrightarrow (b) \Leftrightarrow (c) \Leftrightarrow (d) \Leftrightarrow (e) \checkmark

Enough Eigenvalues Implies Diagonalizability

Theorem (Enough Eigenvalues Implies Diagonalizability)

If $T \in \mathcal{L}(V)$ has $n = \dim(V)$ distinct eigenvalues, then T is diagonalizable.

Proof (Enough Eigenvalues Implies Diagonalizability)

Let $T \in \mathcal{L}(V)$ have $n = \dim(V)$ distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. $\forall k$, let $v_k \in V$ be an eigenvector corresponding to λ_k . By [LINEARLY INDEPENDENT EIGENVECTORS] v_1, \ldots, v_n is linearly independent, and by [LINEARLY INDEPENDENT LIST OF THE RIGHT LENGTH IS A BASIS (NOTES#2)] therefore a basis. With respect to this basis consisting of eigenvectors, T has a diagonal matrix.

Note: this is a one-way result \Rightarrow , not an if-and-only-if \Leftrightarrow .

Toward Better Understanding of an Operator...

Diagonalizability is not Guaranteed

Unfortunately not every operator is diagonalizable. This can happen even on complex vector spaces, as was shown in one of our previous examples:

Rewind

Ê

SAN DIEGO!

(47/54)

The $\mathcal{T}\in\mathcal{L}(\mathbb{F}^2)$ defined by $\mathcal{T}(x,y)=(y,0)$ has a single eigenvalue
$\lambda=$ 0, and $E(\lambda=$ 0, $T)=\{(x,0):x\in\mathbb{F}\}.$
Since $\dim(\mathbb{F}^2)=2$, and $\dim(E(0,\mathcal{T}))=1$; we're out of luck

At some point (soon) we have to "do something" about non-diagonalizable operators.

Invariant Subspaces Eigenvectors and Upper-Triangular Matrices Eigenspaces and Diagonal Matrices

Peter Blomgren (blomgren@sdsu.edu)

Toward Better Understanding of an Operator...

5. Eigenvalues+vectors & Invariant Subspaces

- (46/54)

 $\langle \langle \langle Live Math \rangle \rangle \rangle$

e.g. 5C-{**8**}

