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Student Learning Targets, and Objectives SLOs: Inner Products, Norms...

Student Learning Targets, and Objectives 1 of 2

Target Inner Product Spaces, Cauchy–[Bunyakovsky]–Schwarz
Inequality

Objective Be able to state the Definitions and Properties of Inner
Products, Norms, and Inner Product Spaces

Objective Be able to use the Cauchy–[Bunyakovsky]–Schwarz inequality
to show a variety of inequalities

Target Gram–Schmidt Procedure
Objective Be able to apply the Gram–Schmidt Procedure to vectors from

any inner product space in order to produce an orthonormal
basis for the span of the vectors.

Peter Blomgren 〈blomgren@sdsu.edu〉 6. Inner Product Spaces — (3/88)

Student Learning Targets, and Objectives SLOs: Inner Products, Norms...

Student Learning Targets, and Objectives 2 of 2

Target Linear Functionals on Inner Product Spaces
Objective Be able to apply Riesz Representation Theorem to “describe”

a general function in L(V ,F) as an inner product on V .

Target Calculating (Minimum) Distance to a Subspace
Objective Be able to use projections in order to determine the minimum

distance to a subspace.

Time-Target: 3×75-minute lectures.
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Introduction :: Inner Products

So far, we have not talked about the length/size/norm of vectors
(not even in Rn); the familiar norm (the “2-norm” or “Euclidean
norm”) defined by

‖x‖ =
√
x2

1 + · · · + x2
n , x ∈ Rn

is not linear (as a function of the components of x) on Rn and
thus does not fit in with the previous discussion of Linear Vector
Spaces...

At this point we are ready to add the notion of length/size/norm of
vectors, for vectors from all kinds of Vector Spaces, to our toolbox.

We start in Rn, but quickly move to more general settings.
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The Dot Product [Math 254]

Definition (Dot Product)
For x , y ∈ Rn, the dot product of x and y , denoted x · y is defined by

x · y = x1y1 + · · · + xnyn

Notation (Dot Product)
Note · : Rn × Rn 7→ R (two vectors in, one scalar out)

Properties (Dot Product)

x · x ≥ 0 ∀x ∈ Rn

x · x = 0 ⇔ x = 0
∀y ∈ Rn (fixed); my : Rn 7→ R defined by my (x) = x · y is linear.
x · y = y · x , ∀x , y ∈ Rn
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From the Dot Product to the Inner Product

A map (like the dot product) which is linear once (any) one of the
arguments is held fixed is sometimes referred to as being bi-linear.

In order to define a useful generalization of the dot product (which
we will name an “inner product”), we first have to cover the
complex case.
For z = a + bi , where a, b ∈ R (z ∈ C):

|z | def=
√
a2 + b2

z∗ = a − bi

zz∗ = z∗z = a2 + b2 = |z |2

With this in mind it is not a big leap to generalize the dot product
to complex vectors as

〈u, v〉 = u1v
∗
1 + · · · + unv

∗
n , where u, v ∈ Cn

Peter Blomgren 〈blomgren@sdsu.edu〉 6. Inner Product Spaces — (7/88)

Inner Products and Norms
Orthonormal Bases

Orthogonal Complements and Minimization Problems

Inner Products
Norms
Orthogonality

Inner Product

Definition (Inner Product)
An inner product on V is a function that takes each ordered pair (u, v) of elements of
V to a number 〈u, v〉 ∈ F and has the following properties:
Positivity:

〈v , v〉 ≥ 0 ∀v ∈ V

Definiteness:
〈v , v〉 = 0 ⇔ v = 0

Additivity in the first argument:
〈u + v , w〉 = 〈u, w〉 + 〈v , w〉 ∀u, v ,w ∈ V

Homogeneity (linear scaling) in the first argument‡:
〈λu, v〉 = λ〈u, v〉 ∀u, v ∈ V , λ ∈ F

Conjugate symmetry‡:
〈u, v〉 = 〈v , u〉∗ ∀u, v ∈ V

Other properties follow from these...

‡ Note that with these definitions 〈u, λv〉 = λ∗〈u, v〉; many physicists and some
engineers prefer a definition with homogeneity in the second argument, so that
〈u, λv〉 = λ〈u, v〉, and 〈λu, v〉 = λ∗〈u, v〉. This Serves as Your Official Warning!!!
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Inner Products :: Examples

Example (Inner Products)

We have already introduced the Euclidean inner product on Fn:
〈w , z〉 = w1z∗

1 + · · · + wnz
∗
n

If c1, . . . , cn are positive (and therefore real) numbers, then
〈w , z〉 = c1w1z∗

1 + · · · + cnwnz
∗
n defines a weighted inner product

on Fn.
Let f , g ∈ C [−1, 1] (continuous on the interval [−1, 1]) be
complex-valued functions, then we can define an inner product by

〈f , g〉 =
∫ 1

−1
f (x)g(x)∗ dx
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Inner Products :: Examples

Example (Inner Products)
There are all kinds of interesting and useful inner products for real-valued
polynomials P(R), e.g.

〈f , g〉 =
Z 1

−1
f (x)g(x) dx [Legendre]

〈f , g〉 =
Z ∞

0
f (x)g(x) xαe−xdx [Laguerre]

〈f , g〉 =
Z ∞

−∞
f (x)g(x) e

−x2
2 dx [Hermite]

〈f , g〉 =
Z 1

−1
f (x)g(x) dx√

1 − x2
[Chebyshev]

Among other things these polynomial inner products, and extensions eventually lead
to Spherical Harmonics, Bessel Functions, Hankel Functions...
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Inner Product Spaces

Definition (Inner Product Space)
An inner product space is a vector space V along with an inner
product on V .

Note that a particular inner product “specializes” the vector space.
In everything we did up to and including Eigenvalues and
Eigenspaces was (maybe painfully?) general for all vector spaces.

If you are CS-object-oriented-inclined, you can think of vector
spaces as base-classes with (virtual?) linear operators on them;
and inner product spaces are the first level of derived classes.
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Inner Product Spaces :: Notation, and Properties

With a slight abuse (or “overload”?) of notation we now let

Notation (V — Inner Product Space)
From now on, V denotes an inner product space over F.

Theorem (Basic Properties of an Inner Product)

(a) For u ∈ V fixed, the function 〈v , u〉 : V 7→ F is a linear map.
(b) 〈0, u〉 = 0 ∀u ∈ V

(c) 〈u, 0〉 = 0 ∀u ∈ V

(d) 〈u, v + w〉 = 〈u, v〉 + 〈u, w〉 ∀u, v ,w ∈ V

(e) 〈u, λv〉 = λ∗〈u, v〉 ∀u, v ∈ V , λ ∈ F

The proof is straight-forward from definitions, and properties of complex numbers.
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Norms (Inner Product ⇒ Norm)

The “inspiration” for inner products came from the dot-product in
Rn, which is tightly connected with the geometric-length / size /
norm of a vector v ∈ Rn.

Each inner product determines a norm:

Definition (Norm, ‖v‖)
For v ∈ V , the norm of v , denoted ‖v‖ is defined by

‖v‖ =
√

〈v , v〉

A Vector space with a norm is referred to as a normed space.
Normed vector spaces are a superset of inner product spaces.
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Basic Properties of the Norm (Norm 6⇒ Inner Product)

Theorem (Basic Properties of the Norm)
Suppose v ∈ V :
(a) ‖v‖ = 0 ⇔ v = 0
(b) ‖λv‖ = |λ| ‖v‖, ∀λ ∈ F

Clearly, all functions induced by the inner product, ‖v‖ =
√

〈v , v〉,
will satisfy the above. (But the converse is not true).

“All inner products induce norms; but not all norms can be ’reverse
engineered’ to an inner product.”

Again, the proof is by direct observation / computation.
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Orthogonality

Definition (Orthogonal)
Two vectors u, v ∈ V are orthogonal if 〈u, v〉 = 0.

Sometimes we say that “u is orthogonal to v”.

We use the notation u ⊥ v to indicate orthogonality.

It is worth noting that this is very general, and now we can talk about e.g.
orthogonal functions, and orthogonal polynomials.
In particular the Legendre, Laguarre, Hermite, and Chebyshev
polyonomials are the ones that are orthogonal with respect to the inner
products given on slide 10.
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Orthogonality

Theorem (Orthogonality and 0)

(a) 0 ⊥ v , ∀v ∈ V

(b) 0 ∈ V is the only vector that is orthogonal to itself.

Theorem (Pythagorean Theorem)
Suppose u, v ∈ V : u ⊥ v , then

‖u + v‖2 = ‖u‖2 + ‖v‖2

Proof (Pythagorean Theorem)

‖u + v‖2 = 〈u + v , u + v〉
= 〈u, u〉 + 〈u, v〉 + 〈v , u〉 + 〈v , v〉
= ‖u‖2 + ‖v‖2
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Orthogonal Decomposition

Let u, (v 6= 0) ∈ V , we can write u as a scalar multiple of v plus a vector
⊥ v : let c ∈ F —

u = cv + (u − cv)
〈u, v〉 = c〈v , v〉 + 〈u − cv , v〉︸ ︷︷ ︸

0
〈u, v〉
〈v , v〉 = c

Thus,
u = 〈u, v〉

〈v , v〉v︸ ︷︷ ︸
u‖

+
(
u − 〈u, v〉

〈v , v〉v
)

︸ ︷︷ ︸
u⊥

Here, we have re-introduced some notation (u‖, u⊥) from [Math 254].
We have already used this type of decomposition with a slightly different flavor... in
[LiveMath#5B-4].
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Orthogonal Decomposition

We summarize the previous argument:

Theorem (Orthogonal Decomposition)

Suppose u, v ∈ V , with v 6= 0. Let c = 〈u, v〉
〈v , v〉 , and w = u − c v ;

then
〈w , v〉 = 0, and u = cv + w

We will make use of this to show the next (major!) theorem.
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The Cauchy-[Bunyakovsky]-Schwarz Inequality

!

Theorem (The Cauchy-[Bunyakovsky]-Schwarz Inequality)
Suppose u, v ∈ V , then

|〈u, v〉| ≤ ‖v‖ ‖u‖.

The statement is an equality if and only if u = kv , k ∈ F.

!

Pythagoras ∼ 570 – 495 BC.
Augustin-Louis Cauchy, 21 August 1789 – 23 May 1857. (French)

⇒ proof for sums (1821).
Viktor Yakovlevich Bunyakovsky, 16 December 1804 – 12 December 1889. (Russian, Cauchy’s graduate student)

⇒ proof for integrals (1859).
Karl Hermann Amandus Schwarz, 25 January 1843 – 30 November 1921. (German)

⇒ Modern proof (1888).
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The Cauchy-[Bunyakovsky]-Schwarz Inequality

Proof (The Cauchy-[Bunyakovsky]-Schwarz Inequality)
If v = 0, then we have “0 = 0” and we’re done.
Assume v 6= 0, and use the orthogonal decomposition

u = 〈u, v〉
〈v , v〉v + w , w ⊥ v .

By the [Pythagorean Theorem]

‖u‖2 =
∥∥∥∥

〈u, v〉
〈v , v〉v

∥∥∥∥
2

+ ‖w‖2 = |〈u, v〉|2
〈v , v〉 + ‖w‖2 ≥ |〈u, v〉|2

〈v , v〉
Multiply through by 〈v , v〉 = ‖v‖2 and we get ‖u‖2 ‖v‖2 ≥ |〈u, v〉|2;
taking the square-root gives us the result |〈u, v〉| ≤ ‖u‖ ‖v‖.

The proof reveals that the inequality is an equality if and only if w = 0; which means
that u = kv , k ∈ F
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The Cauchy-[Bunyakovsky]-Schwarz Inequality :: Examples

Example (The Cauchy-[Bunyakovsky]-Schwarz Inequality)
If x , y ∈ Rn, then

|x1y1 + · · · + xnyn|2 ≤
(
x2

1 + · · · + x2
n

) (
y2

1 + · · · + y2
n

)

Let f , g ∈ C [−1, 1], then
∣∣∣∣
∫ 1

−1
f (x)g(x) dx

∣∣∣∣
2

≤
(∫ 1

−1
(f (x))2 dx

)(∫ 1

−1
(g(x))2 dx

)

Let f , g ∈ P(R), then
�

�

�

�

Z 1

−1
f (x)g(x) dx√

1 − x2

�

�

�

�

2
≤
�

Z 1

−1
(f (x))2 dx√

1 − x2

��

Z 1

−1
(g(x))2 dx√

1 − x2

�
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Triangle Inequality

Theorem (Triangle Inequality)
Suppose u, v ∈ V , then

‖u + v‖ ≤ ‖u‖ + ‖v‖

This is an equality if and only if one of u, v is a non-negative
multiple of the other.

Geometric Interpretation and Implication:
The length of each side of a triangle is less than the sum of
the lengths of the other two sides.
The shortest path between two points is a line segment.
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Triangle Inequality :: Visualization

Figure: Illustration of the vectors involved in the triangle inequality.

Copyright: This work has been released into the public domain by its author, Drlog at the Wikipedia project
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Triangle Inequality

Proof (Triangle Inequality)

‖u + v‖2 = 〈u + v , u + v〉
= ‖u‖2 + ‖v‖2 + 〈u, v〉 + 〈v , u〉
= ‖u‖2 + ‖v‖2 + 〈u, v〉 + 〈u, v〉∗

= ‖u‖2 + ‖v‖2 + 2Re(〈u, v〉)
1 ≤ ‖u‖2 + ‖v‖2 + 2|〈u, v〉|
2 ≤ ‖u‖2 + ‖v‖2 + 2 ‖u‖ ‖v‖

= (‖u‖ + ‖v‖)2

‖u + v‖ ≤ ‖u‖ + ‖v‖
2 follows from the CBS-inequality; in order to have an equality both
1 and 2 must be equalities ⇔ one of u, v is a non-negative multiple of the
other ⇔ 〈u, v〉 = ‖u‖ ‖v‖. (Minor details swept under the rug)
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Parallelogram Equality

In every parallelogram, the sum of the squares of the lengths of the
diagonals equals the sum of the squares of the lengths of the four side:

Theorem (Parallelogram Equality)
Suppose u, v ∈ V , then

‖u + v‖2 + ‖u − v‖2 = 2
(

‖u‖2 + ‖v‖2
)

Proof (Parallelogram Equality)

‖u + v‖2 + ‖u − v‖2 = 〈u + v , u + v〉 + 〈u − v , u − v〉
= + ‖u‖2 + ‖v‖2 + 〈u, v〉 + 〈v , u〉

+ ‖u‖2 + ‖v‖2 − 〈u, v〉 − 〈v , u〉

= 2
(

‖u‖2 + ‖v‖2
)
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Parallelogram Equality :: Visualization

Figure: Illustration of the vectors involved in the parallelogram law.

Copyright: Creative Commons CC0 1.0 Universal Public Domain Dedication
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〈〈〈 Live Math 〉〉〉

e.g. 6A-{6, 8, 11, 12, 15, 19, 20, 22, 23}
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Live Math :: Covid-19 Version 6A-6

6A-6: Suppose u, v ∈ V . Prove that

〈u, v〉 = 0 ⇔ ‖u‖ ≤ ‖u + α v‖, ∀α ∈ F

It is an if and only if , so we have 2 parts.

First suppose 〈u, v〉 = 0.
Let α ∈ F. Since u and v are orthogonal, we can use [Pythagorean
Theorem]:

‖u + α v‖ =
√

‖u + αv‖2 =
√

‖u‖2 + ‖α v‖2 ≥
√

‖u‖2 = ‖u‖.
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Live Math :: Covid-19 Version 6A-6

Next, suppose ‖u‖ ≤ ‖u + α v‖ ∀α ∈ F

‖u‖2 ≤ ‖u + α v‖2 = 〈u + α v , u + α v〉
= 〈u, u〉 + 〈u, α v〉 + 〈α v , u〉 + αα∗〈v , v〉
= ‖u‖2 + 2 Re(α∗〈u, v〉) + |α|2‖v‖2

Since ‖u‖2 is non-negative, we must have

−2 Re(α∗〈u, v〉) ≤ |α|2‖v‖2

This is true ∀α, let’s write α in the form −s 〈u, v〉; then ∀s > 0:

2s |〈u, v〉|2 ≤ s2 |〈u, v〉|2 ‖v‖2

2 |〈u, v〉|2 ≤ s |〈u, v〉|2 ‖v‖2

The inequality holds whenever, ‖v‖ = 0 (which makes 〈u, v〉 = 0), or
consider s < 2/‖v‖2 and conclude 〈u, v〉 = 0. �
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Live Math :: Covid-19 Version 6A-8

6A-8: Suppose u, v ∈ V , and ‖u‖ = ‖v‖ = 1 and 〈u, v〉 = 1. Prove that
u = v .

We have |〈u, v〉| = ‖u‖ ‖v‖; this means by
[Cauchy-[Bunyakovsky]-Schwarz] that u = αv , and

1 = 〈u, v〉 = 〈αv , v〉 = α〈v , v〉 = α.
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Orthonormality :: Building Blocks

Definition (Orthonormal)

A list of vectors is called orthonormal if each vector in the list has
norm 1 and is orthogonal to all the other vectors in the list
u1, . . . , um ∈ U is orthonormal if (the Kronecker delta is back)

〈uj , uk〉 = δjk =
{

1 if j = k
0 if j 6= k

We care because:

Theorem (The Norm of an Orthonormal Linear Combination)
If u1, . . . , um ∈ U is an orthonormal list of vectors in U, then
∀a1, . . . , am ∈ F: ‖a1u1 + · · · + amum‖2 = |a1|2 + · · · + |am|2.

Proof (The Norm of an Orthonormal Linear Combination)

(m − 1) applications of the Pythagorean Theorem.
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Orthonormality :: Building Blocks

Theorem (An Orthonormal List is Linearly Independent)
Every orthonormal list of vectors is linearly independent.

Proof (An Orthonormal List is Linearly Independent)

0 = ‖a1u1 + · · · + amum‖2 = |a1|2 + · · · + |am|2

forces aℓ ≡ 0, thus u1, . . . , um is linearly independent.

Definition (Orthonormal Basis)
An orthonormal basis of V is an orthonormal list of vectors in V
that is also a basis of V .
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Orthonormality :: Building Blocks

Theorem (An Orthonormal List of the Right Length is an Orthonormal Basis)

Every orthonormal list of vectors in V with length dim(V ) is an
orthonormal basis of V .

Proof (An Orthonormal List of the Right Length is an Orthonormal Basis)

By [An Orthonormal List is Linearly Independent] this list is linearly
independent; and by [Linearly Independent List of length dim(V ) is a
Basis (Notes#2)] it is therefore a basis.

Example (An Orthonormal Basis of F4)
(

1
2 ,

1
2 ,

1
2 ,

1
2

)
,

(
1
2 ,

1
2 ,−

1
2 ,−

1
2

)
,

(
1
2 ,−

1
2 ,−

1
2 ,

1
2

)
,

(
−1

2 ,
1
2 ,−

1
2 ,

1
2

)
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Orthonormality :: Uses Impact for Practical Computations

In general, given a basis v1, . . . , vn of V , and a vector v ∈ V , there are
unique scalars a1, . . . , an ∈ F, such that

v = a1v1 + · · · + anvn

However, computing those coefficients typically requires serious work.

In the case of an orthonormal basis, this work is minimized to a single inner
product for each scalar.

Theorem (Writing a Vector as a Linear Combination of Orthonormal Basis)

Suppose v1, . . . , vn is an orthonormal basis of V , and v ∈ V . Then
v = 〈v , v1〉v1 + · · · + 〈v , vn〉vn

and
‖v‖2 = |〈v , v1〉|2 + · · · + |〈v , vn〉|2
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Orthonormality

Proof (Writing a Vector as a Linear Combination of Orthonormal Basis)

Since v1, . . . , vn is an orthonormal basis of V , ∃a1, . . . , an:
v = a1v1 + · · · + anvn

〈v , vk〉 = 〈a1v1 + · · · + anvn, vk〉 = ak

Clearly, orthonormal bases can greatly simplify some calculations.
The next task is constructing them.

Figure: Jørgen Pedersen Gram
(1850–1916)

Copyright: This picture is in the pub-
lic domain in its country of origin and
other countries and areas where the
copyright term is the author’s life plus
70 years or less.

Figure: Erhard Schmidt (1876–1959)

Copyright: Creative Commons
Attribution-Share Alike 2.0 Germany;
(Oberwolfach Photo Collection);
https://opc.mfo.de/detail
?photo id=3682
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Gram–Schmidt Procedure

Theorem (Gram–Schmidt Procedure)
Suppose v1, . . . , vm is a linearly independent list of vectors in V .
Let u1 = v1/ ‖v1‖. For k = 2, . . . ,m, define uk by

uk = vk − 〈vk , u1〉u1 − · · · − 〈vk , uk−1〉uk−1
‖vk − 〈vk , u1〉u1 − · · · − 〈vk , uk−1〉uk−1‖

The u1, . . . , um is an orthonormal list of vectors in V such that

span(v1, . . . , vk) = span(u1, . . . , uk), k = 1, . . . ,m.

Note: This is exactly the same procedure you may (should) have
seen for vectors in Rn.
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Gram–Schmidt Procedure

Comment (Detecting Linearly Dependent Vectors)
If we remove the assumption that v1, . . . , vm is linearly
independent, the Gram–Schmidt procedure can be used to detect∗

linearly dependent vectors. If at any stage, the numerator (and
therefore also the denominator) in the expression

uk = vk − 〈vk , u1〉u1 − · · · − 〈vk , uk−1〉uk−1
‖vk − 〈vk , u1〉u1 − · · · − 〈vk , uk−1〉uk−1‖

becomes 0; then the vector vk ∈ span(v1, . . . , vk−1)

∗ — at least in theory; in real life there may be some “issues”, see [Math 543].

Peter Blomgren 〈blomgren@sdsu.edu〉 6. Inner Product Spaces — (37/88)

Inner Products and Norms
Orthonormal Bases

Orthogonal Complements and Minimization Problems

Orthonormality
Gram–Schmidt Orthogonalization Procedure
Linear Functionals on Inner Product Spaces

Gram–Schmidt Procedure

Proof (Gram–Schmidt Procedure)
[Proof-by-(Strong)-Induction]

◦ ℓ = 1: span(v1) = span(u1), since v1 is a positive multiple of u1.
◦ Assume the theorem is true up to (ℓ − 1), where 1 < ℓ ≤ m.

Since v1, . . . , vm is linearly independent vℓ 6∈ span(v1, . . . , vℓ−1) =
span(u1, . . . , uℓ−1); this means that the denominators in the theorem
are non-zero, and the generated vectors have norm 1, ‖uℓ‖ = 1

◦ Let 1 ≤ k < ℓ, then

〈uℓ, uk〉 = 〈vℓ, uk〉 − 〈vℓ, u1〉〈u1, uk〉 − · · · − 〈vℓ, uℓ−1〉〈uℓ−1, uk〉
‖vℓ − 〈vℓ, u1〉u1 − · · · − 〈vℓ, uℓ−1〉uℓ−1‖

= 〈vℓ, uk〉 − 〈vℓ, uk〉
‖vℓ − 〈vℓ, u1〉u1 − · · · − 〈vℓ, uℓ−1〉uℓ−1‖ = 0
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Gram–Schmidt Procedure

Proof (Gram–Schmidt Procedure)
[Proof-by-(Strong)-Induction]

◦ Therefore, u1, . . . , uℓ is an orthonormal list.
From the expression for uℓ, we have that vℓ ∈ span(u1, . . . , uℓ); and
since span(v1, . . . , vℓ−1) = span(u1, . . . , uℓ−1)

span(v1, . . . , vℓ) ⊂ span(u1, . . . , uℓ)
Both lists are linearly independent; thus

dim(span(v1, . . . , vℓ)) = dim(span(u1, . . . , uℓ)) = ℓ

and hence
span(v1, . . . , vℓ) = span(u1, . . . , uℓ).

√
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Gram–Schmidt Procedure :: The Legendre Polynomials “How hard can it be?!”

We outline the construction of an orthonormal basis of Pm(R), with inner
product 〈f , g〉 =

∫ 1
−1 f (x)g(x) dx :

We start with the standard basis {1, x , x2, x3, . . . }, start the process:

◦ ‖1‖2 =
∫ 1

−1 1 dx = 2.  u0 =
√

1
2

◦ x − 〈x , u0〉u0 = x −
[∫ 1

−1 x
1√
2 dx

]
1√
2 = x ,

‖x‖2 =
∫ 1

−1 x
2 dx = 2

3 .  u1 =
√

3
2x

◦ x2 −〈x2, u0〉u0 −〈x2, u1〉u1 = x2 − 1
2
∫ 1

−1 x
2 dx−0 = x2 − 1

2 · 2
3 = x2 − 1

3 .
∥∥x2 − 1

3
∥∥2 =

∫ 1
−1
(
x4 − 2

3x
2 + 1

9
)
dx = 8

45 .  u2 =
√

45
8
(
x2 − 1

3
)
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Gram–Schmidt Procedure :: The Legendre Polynomials

◦ x3 − 〈x3, u0〉u0 − 〈x3, u1〉u1 − 〈x3, u2〉u2 = x3 − 〈x3, u1〉u1

= x3 − 〈x3, u1〉u1 = x3 −
√

6
5

√
3
2x

∥∥x3 − 3
5x
∥∥2 = 8

175 .  u3 =
√

175
8
(
x3 − 3

5x
)

◦ Yeah, it gets ugly fast! Usually, the Legendre Polynomials are listed in
(one of) their orthogonal (but not orthonormal) form(s), e.g.:

1, x , 1
2
(
3x2 − 1

)
,

1
2
(
5x3 − 3x

)
,

1
8
(
35x4 − 30x2 + 3

)
, . . .

◦ Using some software with symbolic calculation capabilities is useful in
deriving these...
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The Legendre Polynomials :: Comments

The Legendre polynomials are solutions to Legendre’s differential
equation:

d

dx

[(
1 − x2) dPn(x)

dx

]
+ n(n + 1)Pn(x) = 0 .

The orthogonality and completeness of these solutions is best seen from
the viewpoint of Sturm–Liouville theory. [Math 531]

There are many other examples of orthogonal functions/polynomials; of
great interest are the trigonometric polynomials {cos(nθ), sin(nθ)}, or
{e−inθ}; they form the basis for Fourier series expansions, which are the
foundation for much of modern signal processing.

Let’s return to our “safe?” linear algebra universe...
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Existence of Orthonormal Basis

Theorem (Existence of Orthonormal Basis)
Every finite-dimensional inner product space has an orthonormal basis.

Proof (Existence of Orthonormal Basis)
Suppose V is finite-dimensional. Choose a basis of V . Apply the
[Gram–Schmidt Procedure], producing an orthonormal list with length
dim(V ). By [An Orthonormal List of the Right Length is an
Orthonormal Basis], this orthonormal list is an orthonormal basis of V .
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Extending to an Orthonormal Basis

Theorem (Orthonormal List Extends to Orthonormal Basis)
Suppose V is finite-dimensional. Then every orthonormal list of vectors
in V can be extended to an orthonormal basis of V .

Proof (Orthonormal List Extends to Orthonormal Basis)
Suppose u1, . . . , um is an orthonormal list of vectors in V . Then
u1, . . . , um is linearly independent [An Orthonormal List is Linearly Independent].
Hence this list can be extended to a basis u1, . . . , um, v1, . . . , vn of V
[Linearly Independent List Extends to a Basis (Notes#2)]. Now apply the
Gram–Schmidt Procedure to u1, . . . , um, v1, . . . , vn, producing an
orthonormal list u1, . . . , um,w1, . . . ,wn; here the formula given by the
Gram–Schmidt Procedure leaves the first m vectors unchanged because
they are already orthonormal. The list above is an orthonormal basis of
V by [An Orthonormal List of the Right Length is an Orthonormal Basis].
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Upper-triangular Matrix with respect to Orthonormal Basis

We have previously shown that if V is a finite-dimensional complex
vector space, then for each operator on V there is a basis with
respect to which the matrix of the operator is upper triangular.
[Over C, Every Operator has an Upper-Triangular Matrix (Notes#5)]

Theorem (Upper-triangular Matrix with respect to Orthonormal Basis)
Suppose T ∈ L(V ). If T has an upper-triangular matrix with
respect to some basis of V , then T has an upper-triangular matrix
with respect to some orthonormal basis of V .

Note: For real vector spaces, not all operator have an upper-triangular matrix with
respect to some basis of V .
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Upper-triangular Matrix with respect to Orthonormal Basis

Proof (Upper-triangular Matrix with respect to Orthonormal Basis)
Suppose T has an upper-triangular matrix with respect to some basis
v1, . . . , vn of V . Thus span(v1, . . . , vk) is invariant under T for each
k ∈ {1, . . . , n} [Conditions for Upper-Triangular Matrix (Notes#5)].
Apply the Gram–Schmidt Procedure to v1, . . . , vn, producing an
orthonormal basis u1, . . . , un of V . Because

span(u1, . . . , uk) = span(v1, . . . , vk), k ∈ {1, . . . , n}

[Gram–Schmidt Procedure], we conclude that span(u1, . . . , uk) is
invariant under T for each k ∈ {1, . . . , n}. Thus, by [Conditions for
Upper-Triangular Matrix (Notes#5)], T has an upper-triangular matrix
with respect to the orthonormal basis u1, . . . , un.

Peter Blomgren 〈blomgren@sdsu.edu〉 6. Inner Product Spaces — (46/88)

Inner Products and Norms
Orthonormal Bases

Orthogonal Complements and Minimization Problems

Orthonormality
Gram–Schmidt Orthogonalization Procedure
Linear Functionals on Inner Product Spaces

Schur’s Theorem  Schur’s Matrix Decomposition

Theorem (Schur’s Theorem)
Suppose V is a finite-dimensional complex vector space and T ∈ L(V ).
Then T has an upper-triangular matrix with respect to some orthonormal
basis of V .

Proof (Schur’s Theorem)
[Over C, Every Operator has an Upper-Triangular Matrix (Notes#5)],
[Upper-triangular Matrix with respect to Orthonormal Basis].
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Schur’s Theorem  Schur’s Matrix Decomposition

Application (Schur Decomposition)
In computational linear algebra, the Schur Decomposition of a matrix
A ∈ Cn×n can be expressed as

A = QUQ−1

where U is upper triangular, and Q unitary (Q−1 = Q∗).
(Every square matrix has a Schur decomposition)

Note: Not all mathematical results are useful in practical applications
(they may require infinite-precision computing); however, the Schur
Decomposition is stably computable in a finite precision environ-
ment.
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Schur’s Theorem  Schur’s Matrix Decomposition

Application (Schur Decomposition :: Computation)
The Schur decomposition of a given matrix is numerically computed by
the QR algorithm [Math 543] or its variants, i.e. the eigenvalues do not
have to be pre-computed. (The eigenvalues show up as the diagonal
entries of U).
The QR algorithm can be used to compute the roots of any given
characteristic polynomial by finding the Schur decomposition of its
companion matrix. — This is (one) numerically stable way to compute
(good approximations of) eigenvalues of matrices.

Figure: Issai Schur (1875–1941)

Copyright: Creative Commons Attribution-Share Alike 2.0 Germany —
This work is free and may be used by anyone for any purpose.
https://opc.mfo.de/detail?photo id=12209
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Linear Functionals on Inner Product Spaces

Definition (Linear Functional)
A linear functional on V is a linear map from V 7→ F. In other words, a
linear functional is an element of L(V ,F).

Example (Linear Functional  Alternative Inner Product Form(?))

ϕ ∈ L(F3,F) defined by ϕ(z1, z2, z3) = 2z1 + 5z2 + z3.
Alternative form: ϕ(z) = 〈z , u〉, where u = (2, 5, 1) ∈ F3.
ϕ ∈ L(P2(R),R) defined by

ϕ(p) =
∫ 1

−1
p(t) cos(πt)︸ ︷︷ ︸

6∈P2(R)

dt

It is not clear there there is an alternative form (in terms of the
“Legendre” inner product on P2(R)), so that ϕ(p) = 〈p, u〉 for
some u ∈ P2(R).
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Riesz Representation Theorem

Theorem (Riesz Representation Theorem)
Suppose V is finite-dimensional and ϕ ∈ L(V ,F). Then there is a
unique vector u ∈ V such that

ϕ(v) = 〈v , u〉

∀v ∈ V .

Copyright: Creative Commons Attribution-Share Alike 2.5 Generic license
[https://commons.wikimedia.org/wiki/File:Fireworks4 amk.jpg]
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Riesz Representation Theorem :: Proof — Existence

Proof (Riesz Representation Theorem)
Existence:
◦ Let u1, . . . , un be an orthonormal basis of V ; then

ϕ(v) 1= ϕ(〈v , u1〉u1 + · · · + 〈v , un〉un)
= 〈v , u1〉ϕ(u1) + · · · + 〈v , un〉ϕ(un)
= 〈v , ϕ(u1)∗u1〉 + · · · + 〈v , ϕ(un)∗un〉
= 〈v , u〉

where u = ϕ(u1)∗u1 + · · · + ϕ(un)∗un ∈ V .
1= [Writing a Vector as a Linear Combination of Orthonormal Basis].
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Riesz Representation Theorem :: Proof — Uniqueness

Proof (Riesz Representation Theorem)
Uniqueness:
◦ Suppose u1, u2 ∈ V such that

ϕ(v) = 〈v , u1〉 = 〈v , u2〉

∀v ∈ V ; then

0 = ϕ(v) − ϕ(v) = 〈v , u1〉 − 〈v , u2〉 = 〈v , u1 − u2〉

In particular v = u1 − u2 ∈ V , so that

〈u1 − u2, u1 − u2〉 = 0

which forces u1 − u2 = 0 ⇔ u1 = u2. √
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Riesz Representation Theorem :: Example

Consider, again, ϕ ∈ L(P2(R),R) defined by

ϕ(p) =
∫ 1

−1
p(t) cos(πt) dt

[RRT] says we can find u ∈ P2(R) so that∫ 1

−1
p(t) cos(πt) dt =

∫ 1

−1
p(t)u(t) dt

∀p ∈ P2(R).

We use the expression u = ϕ(u1)∗u1 + . . . ϕ(un)∗un, and the orthonormal
basis

BP2(R) =
(√

1
2 ,
√

3
2x ,

√
45
8

(
x2 − 1

3

))
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Riesz Representation Theorem :: Example “Nobody promised simple!”

We get

u(x) =
[∫ 1

−1

√
1
2 cos(πt) dt

]√
1
2 +

[∫ 1

−1

√
3
2 t cos(πt) dt

]√
3
2x

+
[∫ 1

−1

√
45
8

(
t2 − 1

3

)
cos(πt) dt

]√
45
8

(
x2 − 1

3

)

= 1
2

[∫ 1

−1
cos(πt) dt

]
+ 3

2x
[∫ 1

−1
t cos(πt) dt

]

+45
8

(
x2 − 1

3

)[∫ 1

−1

(
t2 − 1

3

)
cos(πt) dt

]

= 0 + 0 + 45
8

(
x2 − 1

3

) −4
π2 = −45

2π2

(
x2 − 1

3

)
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〈〈〈 Live Math 〉〉〉

e.g. 6B-{2, 4, 5, 6, 15}
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Live Math :: Covid-19 Version 6B-5

6B-5: On P2(R), consider the inner product:

〈p, q〉 =
∫ 1

0
p(x)q(x) dx .

Apply the Gram–Schmidt procedure to {1, x , x2} to produce an
orthonormal basis of P2(R).

p0(x) = 1:

〈1, 1〉 =
∫ 1

0
12, dx = x |10 = 1 − 0 = 1.

Hence ‖1‖ = 1, and u0(x) = 1/‖1‖ = 1.
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Live Math :: Covid-19 Version 6B-5

p1(x) = x : {u0(x) = 1}

t1(x) = p1(x) − 〈p1, u0〉u0(x),

〈p1, u0〉 =
∫ 1

0
x dx = x2

2

∣∣∣∣
1

0
= 1

2 − 0 = 1
2

t1(x) = x − 1
21 = x − 1

2

‖t1‖2 =
∫ 1

0

(
x − 1

2

)2
dx = 1

3

(
x − 1

2

)3
∣∣∣∣∣

1

0

= 1
3

(
1
2

)3
−1

3

(−1
2

)3
= 1

3
1
4

u1(x) = 1
‖t1‖ t1(x) = 2

√
3
(
x − 1

2

)
=

√
3(2x − 1)
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Live Math :: Covid-19 Version 6B-5

p2(x) = x2: {u0(x) = 1, u1(x) =
√

3(2x − 1)}
t2(x) = p2(x) − 〈p2, u0〉u0(x) − 〈p2, u1〉u1(x),

〈p2, u0〉 =
Z 1

0
x2 dx =

1
3
x3
�

�

�

�

1

0
=

1
3

〈p2, u1〉 =
√

3
Z 1

0
x2(2x − 1) dx =

√
3
"

� 2
4
x4 −

1
3
x3
�

�

�

�

�

1

0

#

=
√

3
� 3

3 · 2
−

2
2 · 3

�

=
√

3
6

t2(x) = x2 −
1
3

1 −
√

3
6

√
3(2x − 1) = x2 −

1
3

−
1
2

(2x − 1) = x2 − x +
1
6

‖t2‖2 =
Z 1

0

�

x2 − x +
1
6

�2
dx =

Z 1

0

 

x4 − 2x3 +
4x2

3
−

x

3
+

1
36

!

dx

=
 

x5

5
−

x4

2
+

4 x3

9
−

x2

6
+

x

36

!

�

�

�

�

�

1

0
=

1
5

−
1
2

+
4
9

−
1
6

+
1
36

=
1

180
=

1
22325

u2(x) =
t2(x)

‖t2(x)‖
= 6

√
5
�

x2 − x +
1
6

�

=
√

5(6x2 − 6x + 1)

Wasn’t that fun?!? —
�

u0(x) = 1, u1(x) =
√

3(2x − 1), u2(x) =
√

5(6x2 − 6x + 1)
	

.
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6B-6: Find an orthonormal basis of P2(R) (with inner product as in 6B-5)
such that the differentiation operator P2(R) has an upper-triangular
matrix with respect to this basis.

First consider M(D, {1, x , x2})
Since, D(1) = 0, D(x) = 1, and D(x2) = 2x :

M(D, {1, x , x2}) =




0 1 0
0 0 2
0 0 0




Upper triangularity comes from the fact that
span (1) ⊂ span (1, x) ⊂ span

(
1, x , x2)

and each one of those spaces are invariant under D.
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Now we are ready to consider M(D, {1,
√

3(2x − 1),
√

5(6x2 − 6x + 1)})
Clearly,

span (1) ⊂ span
�

1,
√

3(2x − 1)
�

⊂ span
�

1,
√

3(2x − 1),
√

5(6x2 − 6x + 1)
�

which means the orthonormal basis we found in 6B-5 satisfies our needs.

For extra giggles we find the matrix

D(1) = 0, D(
√

3(2x − 1)) = 2
√

3 · 1

D(
√

5(6x2 − 6x + 1)) =
√

5(12x − 6) = 6
√

5√
3

·
√

3(2x − 1)

M(D, {1,
√

3(2x − 1),
√

5(6x2 − 6x + 1)}) =

2

4

0 2
√

3 0
0 0 2

√
3
√

5
0 0 0

3

5
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Orthogonal Complements

Definition (Orthogonal Complement, U⊥)
If U is a subset of V , then the orthogonal complement of U, denoted U⊥,
is the set of all vectors in V that are orthogonal to every vector in U:

U⊥ = {v ∈ V : 〈v , u〉 = 0 ∀u ∈ U}

Theorem (Properties of Orthogonal Complement)

(1) If U is a subset (not a typo) of V , then U⊥ is a subspace of V .
(2) {0}⊥ = V

(3) V⊥ = {0}
(4) If U is a subset of V , then U⊥ ∩ U ⊂ {0}
(5) If U and W are subsets of V and U ⊂ W , then W⊥ ⊂ U⊥
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Direct Sum of a Subspace and its Orthogonal Complement

Theorem (Direct Sum of a Subspace and its Orthogonal Complement)
Suppose U is a finite-dimensional subspace of V . Then

V = U ⊕ U⊥

Proof (Direct Sum of a Subspace and its Orthogonal Complement)

V = U + U⊥:
Let v ∈ V ; and u1, . . . , um be an orthonormal basis of U; add a “clever 0” to v :

v = 〈v , u1〉u1 + · · · + 〈v , um〉um
| {z }

u

+ v − 〈v , u1〉u1 + · · · − 〈v , um〉um
| {z }

w

hence u ∈ U, and 〈w , uk 〉 = 0, k = 1, . . . ,m ⇔ w ⊥ span(u1, . . . , um), that is
w ∈ U⊥. We have written v = u + w , where u ∈ U and w ∈ U⊥. √

V = U ⊕ U⊥:
V = U + U⊥ from above, and U ∩ U⊥ = {0} [Property (4)] ⇒ V = U ⊕ U⊥. √
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Dimension

Theorem (Dimension of the Orthogonal Complement)
Suppose V is finite-dimensional and U is a subspace of V . Then

dim(U⊥) = dim(V ) − dim(U)

This follows directly from the previous theorem and:

Rewind ([A Sum is a Direct Sum ⇔ Dimensions Add Up (Notes#3.2)])
Suppose V is finite dimensional and U1, . . . ,Um are subspaces of
V . Then U1 + · · · + Um is a direct sum if and only if

dim(U1 + · · · + Um) = dim(U1) + · · · + dim(Um).
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Complement-of-Complement

Theorem (The Orthogonal Complement of the Orthogonal Complement)
Suppose U is a finite-dimensional subspace of V . Then

(U⊥)⊥ = U

Definition (Orthogonal Projection, PU(v))
Suppose U is a finite-dimensional subspace of V . The orthogonal
projection of V onto U is the operator PU ∈ L(V ) defined:
For v ∈ V , write v = u + w where u ∈ U, w ∈ U⊥; then

PU(v) = u.

Since each v ∈ V can be uniquely written in the form v = u + w
with u ∈ U, w ∈ U⊥, the orthogonal projection is well defined.
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Properties of the Orthogonal Projection

Theorem (Properties of the Orthogonal Projection)
Suppose U is a finite-dimensional subspace of V and v ∈ V . Then
(α) PU ∈ L(V )
(β) PU(u) = u, ∀u ∈ U

(γ) PU(w) = 0, ∀w ∈ U⊥

(δ) range(PU) = U

(ǫ) null(PU) = U⊥

(ζ) (I − PU)(v) = v − PU(v) ∈ U⊥; (I − PU) is the complementary projection
(η) (PU)2 = PU [Live Math 5B-4]

(θ) ‖PU(v)‖ ≤ ‖v‖
(ι) For every orthonormal basis u1, . . . , um of U:

PU(v) = 〈v , u1〉u1 + · · · + 〈v , um〉um

The proofs are excellent training in application of the definitions and interactions of
the various pieces involved.
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Minimizing the Distance to a Subspace

In many applications we end up looking for the “best candidate”
approximate solution to a problem; and it can usually be expressed in the
linear algebra language as “Given v ∈ V , find a point u ∈ U such that
‖u − v‖ is as small as possible:”

Theorem (Minimizing the Distance to a Subspace)
Suppose U is a finite-dimensional subspace of V , v ∈ V , and u ∈ U, then

‖v − PU(v)‖ ≤ ‖v − u‖

Equality holds if and only if u = PU(v).

That is, the “best candidate” approximate solution is given by the
orthogonal projection onto the subspace.
This whole section “smells” like the foundation for numerical solutions of partial differential equations using the
Finite Element Method (FEM)... and also has the obvious(?) application of model-fitting using linear-least-squares.
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Minimizing the Distance to a Subspace

Proof (Minimizing the Distance to a Subspace)

‖v − PU(v)‖2 1
≤ ‖ v − PU(v)︸ ︷︷ ︸

∈U⊥

‖2 + ‖PU(v) − u︸ ︷︷ ︸
∈U

‖2

2= ‖v − PU(v) + PU(v) − u‖2

= ‖v − u‖2

1
≤ holds since 0 ≤ ‖PU(v) − u‖; and
2= [Pythagorean Theorem].
We get an equality if and only if PU(v) − u = 0 ⇔ u = PU(v). √
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Example: sin(nx)

We consider the best Legendre-polynomial approximations of sin(nx) on
the interval [−π, π], and compare with the Taylor polynomials.

Nobody in their right mind would do this by hand!

With a little bit of Matlab-magic we can get it done.
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Example: sin(nx) — Gram-Schmidt

1 clear x n
2 syms n x
3
4 %(Left and Right endpoints [a,b])
5 a = -pi;
6 b = pi;
7
8 %(Symbolic , and Evaluated Innerproducts)
9 sip = @(u,v) int(u*v);

10 ip = @(u,v) subs (sip(u,v),b)-subs (sip(u,v),a);
11
12 %( Starting Basis = powers of x)
13 p = [x .^(0:5) ]. ’;
14 u = 0*p;
15
16 %( Symbolic Gram - Schmidt )
17 for d=1: length (p)
18 t = p(d);
19 for prev = 1:(d -1)
20 t = t - ip(t,u(prev)) * u(prev );
21 end
22 u(d) = t / sqrt (ip(t,t));
23 end
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Example: sin(nx) — Gram-Schmidt Results
At this point we have our orthonormal basis:

8

<

:

√
2

2 √
π

,

√
6 x

2 π3/2 , −
√

10
�

6 π2 − 18 x2
�

24 π5/2 , −
√

14 x
�

6 π2 − 10 x2
�

8 π7/2

√
2
�

1680 x4 − 1440 π2 x2 + 144 π4
�

256 π9/2 ,

√
22 x

�

1260 x4 − 1400 π2 x2 + 300 π4
�

320 π11/2

9

=

;

We set n = 1 in order to reproduce the results in the book
25 %( Function to Approximate )
26 v = @(x) sin(x);
27
28 %( Build Approximation)
29 f = 0*x;
30 for d=1: length (p)
31 f = f + ip(v,u(d))*u(d);
32 end
33
34 %(Get the coefficients for the approximating polynomial )
35 poly_coeffs = coeffs ( simplify ( expand ( expand (f))),’all ’).’
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Example: sin(nx) — Best Polynomial Fit

p5(x) =
693

�

π4−105 π2+945
�

8 π10 x5 −
315

�

π4−125 π2+1155
�

4 π8 x3 +
105

�

π4−153 π2+1485
�

8 π6 x

= 0.005643117976347 x5 − 0.155271410633430 x3 + 0.987862135574673 x

which, indeed, matches the result in the book; and it is a “pretty good”
approximation:

-2 0 2
-1

-0.5

0

0.5

1

p
5

(x)

exact

-2 0 2

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

error
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Example: sin(nx) — What about Taylor???

The fifth order Taylor polynomial is

t5(x) = 1
120x

5 − 1
6x

3 + x

The approximation is not nearly as good:

-2 0 2
-1

-0.5

0

0.5

1

t
5

(x)

exact

-2 0 2

-0.5

0

0.5

error
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Example: Let’s Have Fun — sin(2x), 5th Order Approximations

-2 0 2

-1

-0.5

0

0.5

1 p
5

(x)

exact

-2 0 2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

error

-2 0 2

-40

-20

0

20

40

t
5

(x)

exact

-2 0 2

-40

-20

0

20

40

error
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Example: Let’s Have Fun — sin(3x), 5th Order Approximations

-2 0 2

-1

-0.5

0

0.5

1
p

5
(x)

exact

-2 0 2

-1

-0.5

0

0.5

1

error

-2 0 2
-500

0

500

t
5

(x)

exact

-2 0 2

-400

-200

0

200

400

error
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Example: Let’s Have Fun — sin(3x), 7th Order Approximations

-2 0 2

-1

-0.5

0

0.5

1
p

7
(x)

exact

-2 0 2

-1

-0.5

0

0.5

1 error

-2 0 2

-500

0

500

t
7

(x)

exact

-2 0 2

-500

0

500

error
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Example: Let’s Have Fun — sin(3x), 9th Order Approximations

-2 0 2

-1

-0.5

0

0.5

1

p
9

(x)

exact

-2 0 2

-0.4

-0.2

0

0.2

0.4 error

-2 0 2

-500

0

500

t
9

(x)

exact

-2 0 2

-600

-400

-200

0

200

400

600

error
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〈〈〈 Live Math 〉〉〉

e.g. 6C-{2, 3}
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6C-2: Suppose U is a finite-dimensional subspace of V .
Prove that U⊥ = {0} if and only if U = V .

From [Direct Sum of a Subspace and its Orthogonal Complement], we
know that V = U ⊕ U⊥; which shows that U⊥ = {0} ⇔ U = V .

Comment
The statement does not hold on infinite dimensional inner product spaces. Both

[Direct Sum of a Subspace and its Orthogonal Complement], and

[The Orthogonal Complement of the Orthogonal Complement]

break without the finite-dimensional property.
As usual in mathematics, every word/property is there for a reason.
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6C-3: Suppose U is a subspace of V with basis u1, . . . , um and

u1, . . . , um,w1, . . . ,wn

is a basis of V . Prove that if the Gram–Schmidt Procedure is
applied to the basis of V above (from left-to-right), producing a
list

f1, . . . , fm, g1, . . . , gn,

then f1, . . . , fm is an orthonormal basis of U and g1, . . . , gn is an
orthonormal basis of U⊥
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> Solution >
We know that The Gram–Schmidt Procedure gives f1, . . . , fm so that
span (f1, . . . , fm) = span (u1, . . . , um) = U. Thus by [An Orthonormal
List is Linearly Independent] f1, . . . , fm is an orthonormal basis of U.

Since 〈gk , fj〉 = 0 (⇔ gk ⊥ fj) ∀k , j ;
gk ⊥ span (f1, . . . , fm) = span (u1, . . . , um) = U.

By definition, gk ∈ U⊥, ∀k . From [Dimension of the Orthogonal
Complement], we have

dim(U⊥) = dim(V ) − dim(U) = (m + n) − m = n

Thus g1, . . . , gn is an orthonormal basis of U⊥.
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Suggested Problems

6.A—1, 2, 4, 5, 6, 8, 11, 12, 15, 19, 20, 22, 23

6.B—1, 2, 3, 4, 6, 9, 15

6.C—5, 11
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Assigned Homework HW#6, Due Date in Canvas/Gradescope

6.A—1, 2, 4, 5

6.B—1, 3, 9

6.C—5, 11

Note: Assignment problems are not official and subject to change
until the first lecture on the chapter has been delivered (or
virtually “scheduled.”)

Upload homework to www.Gradescope.com
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Other Versions of Riesz’ Theorem Hilbert Space Representation

Let H be a Hilbert space, and let H∗ denote its dual space, consisting of
all continuous linear functionals from H into the field R or C. If x is an
element of H, then the function ϕx , for all y in H defined by:
ϕx(y) = 〈y , x〉 , where 〈·, ·〉 denotes the inner product of the Hilbert
space, is an element of H∗. The Riesz representation theorem states that
every element of H∗ can be written uniquely in this form:

Theorem (Riesz–Fréchet Representation Theorem)
Let H be a Hilbert space and ϕ ∈ H∗. Then there exists f ∈ H
such that for any x ∈ H ϕ(x) = 〈f , x〉. Moreover ‖f ‖H = ‖ϕ‖H∗

Statement source: https://en.wikipedia.org/wiki/Riesz representation theorem
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Other Versions of Riesz’ Theorem Hausdorff Space Representation

Theorem (Riesz–Markov–Kakutani Representation Theorem)
Let X be a locally compact Hausdorff space. For any positive linear
functional ψ on Cc(X ), there exists a unique regular Borel measure
µ on X such that

∀f ∈ Cc(X ) : ψ(f ) =
∫

X
f (x) dµ(x).

Statement source: https://en.wikipedia.org/wiki/Riesz–Markov–Kakutani representation theorem
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Other Versions of Riesz’ Theorem Hausdorff Space Representation

Theorem (Riesz–Markov Representation Theorem)
Let X be a locally compact Hausdorff space. For any continuous
linear functional ψ on C0(X ), there exists a unique regular
countably additive complex Borel measure µ on X such that

∀f ∈ C0(X ) : ψ(f ) =
∫

X
f (x) dµ(x).

The norm of ψ as a linear functional is the total variation of µ,
that is

‖ψ‖ = |µ|(X ).

Finally, ψ is positive if and only if the measure µ is non-negative.

Statement source: https://en.wikipedia.org/wiki/Riesz–Markov–Kakutani representation theorem
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Explicit References to Previous Theorems or Definitions (with count)

1

2 3-1 3-2 4

5

67-17-28

2
1

4
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Explicit References to Previous Theorems or Definitions

1

2 3-1 3-2 4

5

67-17-28
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