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Student Learning Targets, and Objectives SLOs: Inner Products, Norms...

Student Learning Targets, and Objectives

Target Inner Product Spaces, Cauchy—[Bunyakovsky]-Schwarz
Inequality
Objective Be able to state the Definitions and Properties of Inner
Products, Norms, and Inner Product Spaces
Objective Be able to use the Cauchy—[Bunyakovsky]-Schwarz inequality
to show a variety of inequalities

Target Gram—-Schmidt Procedure
Objective Be able to apply the Gram—Schmidt Procedure to vectors from
any inner product space in order to produce an orthonormal
basis for the span of the vectors.
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Student Learning Targets, and Objectives SLOs: Inner Products, Norms...

Student Learning Targets, and Objectives

Target Linear Functionals on Inner Product Spaces

Objective Be able to apply Riesz Representation Theorem to “describe”
a general function in £(V,F) as an inner product on V.

Target Calculating (Minimum) Distance to a Subspace

Objective Be able to use projections in order to determine the minimum
distance to a subspace.

Time-Target: 3X75-minute lectures.
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Introduction :: Inner Products

Inner Products and Norms Inner Products
Norms
Orthogonality

The Dot Product [Marn 254

So far, we have not talked about the length/size/norm of vectors
(not even in R"); the familiar norm (the “2-norm” or “Euclidean
norm”) defined by

Il = y/x¢ + -+ x5, x €R”

is not linear (as a function of the components of x) on R" and
thus does not fit in with the previous discussion of Linear Vector
Spaces...

At this point we are ready to add the notion of length/size/norm of
vectors, for vectors from all kinds of Vector Spaces, to our toolbox.

We start in R”, but quickly move to more general settings.
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Inner Products and Norms Inner Products
Norms
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From the Dot Product to the Inner Product

Definition (Dot Product)

For x,y € R", the dot product of x and y, denoted x - y is defined by
X.y:X1y1+...+Xnyn

Notation (Dot Product) J

Note - : R” x R" — R (two vectors in, one scalar out)

Properties (Dot Product)

@ x-x>0VxeR"
@x-x=0&x=0

o Vy € R" (fixed); my, : R" — R defined by m,(x) = x - y is linear.

@ x-y=y-x, Vx,y eR"

...........
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Inner Products and Norms Inner Products
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Inner Product

A map (like the dot product) which is linear once (any) one of the
arguments is held fixed is sometimes referred to as being bi-linear.

In order to define a useful generalization of the dot product (which
we will name an “inner product”), we first have to cover the
complex case.
For z = a+ bi, where a,b € R (z € C):

o |z| £ Va2 + b2

@ z"=a—bi

@ zz" = 7"z = 3% + b* = |z|?
With this in mind it is not a big leap to generalize the dot product
to complex vectors as

(u, v) = nvi + -+ upvy, where u,v € C"

U
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Definition (Inner Product)

An inner product on V is a function that takes each ordered pair (u, v) of elements of
V to a number (u, v) € F and has the following properties:

Positivity:
(v,v) >0VvevV
Definiteness:
(v, v)=0 ©v=0
Additivity in the first argument:
(u+v, w) = (u, w) + (v, w) Yu,v,w € V
Homogeneity (linear scaling) in the first argument?:
(Au, v) = Xu, v) Vu,v € V,AETF
Conjugate symmetry*:
(u, v) = (v, u)* Yu,v € V

Other properties follow from these...

4

¥ Note that with these definitions (u, Av) = A*(u, v); many physicists and some
engineers prefer a definition with homogeneity in the second argument, so that
(u, Av) = X(u, v), and {(Au, v) = X*(u, v). THis SERVES AS YOUR OFFICIAL WARNING!!!
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Inner Products and Norms Inner Products
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Inner Products :: Examples

Example (Inner Products)

@ We have already introduced the Euclidean inner product on F":
(w, z) = wizf + -+ W,z

o If c1,...,c, are positive (and therefore real) numbers, then
(w, z) = cawy zf + -+ - + c,w, 2, defines a weighted inner product
on [F".

o Let f,g € C[—1,1] (continuous on the interval [—1,1]) be
complex-valued functions, then we can define an inner product by

(. &) = / F(x)g(x)" dx

!
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Example (Inner Products)

@ There are all kinds of interesting and useful inner products for real-valued
polynomials P(R), e.g.

1
(f,g) = / f(x)g(x) dx [LEGENDRE
-1
(o)
(f,g) = / f(x)g(x)x*e ™ dx [LacUERRE]
0
oo 2
(f,g) = / f(x)g(x)e 2 dx  [HermITE]
— 00
L dx
f, = / f(x X) —F/—— CHEBYSHEV
(f, &) e =5 | ] )
Among other things these polynomial inner products, and extensions eventually lead
to Spherical Harmonics, Bessel Functions, Hankel Functions...
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Orthogonality

Inner Product Spaces

Definition (Inner Product Space)

An inner product space is a vector space V along with an inner
product on V.

Note that a particular inner product “specializes” the vector space.
In everything we did up to and including Eigenvalues and
Eigenspaces was (maybe painfully?) general for all vector spaces.

If you are CS-object-oriented-inclined, you can think of vector
spaces as base-classes with (virtual?) linear operators on them;
and inner product spaces are the first level of derived classes.

SAN DIEGO STAT

UNIVERSITY '
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Inner Product Spaces :: Notation, and Properties

With a slight abuse (or “overload”?) of notation we now let

Notation (V — Inner Product Space) J

From now on, V denotes an inner product space over F.

Theorem (Basic Properties of an Inner Product)

The proof is straight-forward from definitions, and properties of complex numbers.

N
U
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(Inner Product = Norm)

The “inspiration” for inner products came from the dot-product in
R", which is tightly connected with the geometric-length / size /
norm of a vector v € R".

Each inner product determines a norm:

Definition (Norm, ||v||)

For v € V, the norm of v, denoted ||v|| is defined by

(v, v)

Ivil =

A Vector space with a norm is referred to as a normed space.
Normed vector spaces are a superset of inner product spaces.
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Orthogonality

Definition (Orthogonal)

Two vectors u,v € V are orthogonal if (u, v) = 0.

Sometimes we say that “u is orthogonal to v".

We use the notation u L v to indicate orthogonality.

It is worth noting that this is very general, and now we can talk about e.g.
orthogonal functions, and orthogonal polynomials.

In particular the LEGENDRE, LAGUARRE, HERMITE, AND CHEBYSHEV
polyonomials are the ones that are orthogonal with respect to the inner
products given on slide 10.
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Basic Properties of the Norm

Theorem (Basic Properties of the Norm)

(Norm % Inner Product)

Suppose v € V:
(a) |lv|=0<v=0

(b) [IAv(l = |Alf|v

,VAeF

Clearly, all functions induced by the inner product, ||v|| =
will satisfy the above. (But the converse is not true).

(v, v),

“All inner products induce norms; but not all norms can be 'reverse
engineered’ to an inner product.”

Again, the proof is by direct observation / computation.
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Orthogonality

Theorem (Orthogonality and 0)
(a) 0 Lv,VveV

(b) 0 € V is the only vector that is orthogonal to itself.

Theorem (Pythagorean Theorem)
Suppose u,v € V : u L v, then

lu + vl = fJul® + IvI?

v
Proof (Pythagorean Theorem)
lutv]® = (utv,u+v)
— (u, u) + (V) + (v, 0+ (v, )
2 2
= Jull” +1lvl

V.
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Orthogonal Decomposition

Let u,(v # 0) € V, we can write u as a scalar multiple of v plus a vector

lviletcelF —

u = cv+(u—cv)
(u,v) = c(v,v)+(u—cv,v)
————

0

Thus, u=<u’—v>v+<u—%">

ull ut

Here, we have re-introduced some notation (ull, u) from [Maru 254].

We have already used this type of decomposition with a slightly different flavor... in
[LIVEMATH#5B-4].
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Orthogonal Decomposition

We summarize the previous argument:

Theorem (Orthogonal Decomposition)

u, v
,and w=u—cv;

Suppose u,v € V, with v #0. Let c = <

(v, v)

then
(w,v)=0, and u=cv+w

We will make use of this to show the next (major!) theorem.
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The Cauchy-[Bunyakovsky]-Schwarz Inequality

Theorem (The Cauchy-[Bunyakovsky]-Schwarz Inequality)

Suppose u,v € V, then
[, I < v []ul]-

The statement is an equality if and only if u = kv, k € F.

Inner Products and Norms Inner Products
Norms
Orthogonality

The Cauchy-[Bunyakovsky]-Schwarz Inequality

Proof (The Cauchy-[Bunyakovsky]-Schwarz Inequality)

If v =0, then we have “0 = 0" and we're done.

Assume v # 0, and use the orthogonal decomposition

u:<u’v>v—|—w, w L v.

(v, v)

By the [PYTHAGOREAN THEOREM]

{u, v) P = [{u, V) [{u, v)I?

2
lul* = vil +llw

Pythagoras ~ 570 — 495 BC.
Augustin-Louis Cauchy, 21 August 1789 — 23 May 1857. (French)
= proof for sums (1821).

Viktor Yakovlevich Bunyakovsky, 16 December 1804 — 12 December 1889. (Russian, Cauchy’s graduate student) taking the square-root gives us the result ‘(U, V>| < ” UH ” V” .

=> proof for integrals (1859).
Karl Hermann Amandus Schwarz, 25 January 1843 — 30 November 1921. (German)
= Modern proof (1888).
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2 2
(v, v) (v, v) +liwl® = (v, v)

Multiply through by (v, v) = ||v||* and we get |[ul|* ||v]]* > |(u, v)|?;

The proof reveals that the inequality is an equality if and only if w = 0; which means
that u = kv, k€ F

N
U

— (19/88) Peter Blomgren (blomgren@sdsu.edu) 6. Inner Product Spaces — (20/88)




Inner Products
Norms
Orthogonality

Inner Products and Norms

Inner Products
Norms
Orthogonality

Inner Products and Norms

Examples

The Cauchy-[Bunyakovsky|-Schwarz Inequality ::

Example (The Cauchy-[Bunyakovsky]-Schwarz Inequality)

o If x,y € R", then

v+ oyl < (O 4 0q) (08 o+ )

o Let f,g € C[—1,1], then

RS T ([ ) ([ woorex)

o Let f,g € P(R), then

n 11 F(x)e(x) ﬂd_xix

< ([ 02 25 ([ etor —-2)
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Inner Products and Norms

Visualization

Triangle Inequality ::

[Ix+yll

[x+yll<x[1+]lyll

\\\3\\

(11 [yl

[x+yll=11x[1+I1yll

Figure: lllustration of the vectors involved in the triangle inequality.

Copyright: This work has been released into the public domain by its author, Drlog at the Wikipedia project
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Triangle Inequality
Theorem (Triangle Inequality)
Suppose u,v € V, then
lu+ vl < flull + vl

This is an equality if and only if one of u, v is a non-negative
multiple of the other.

Geometric Interpretation and Implication:

@ The length of each side of a triangle is less than the sum of
the lengths of the other two sides.

@ The shortest path between two points is a line segment.

— (22/88)
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Triangle Inequality

Proof (Triangle Inequality)

||u—|—v||2 = (u+v,u+v)
2 2
= lull® +lIvl® + (u, v) + (v, u)
2 2 "
ull® + [[vII® + (u, v) + (u, v)
2 2
full” + [[v]]” + 2Re((u, v))
2 2
[l + lIv]l® + 2[(u, v)|
2 2
[ull™ + lIvll® + 2 Jull {|v]|
(el + v

futvi <ol +llv]

IA

©)
©)

IA

®follows from the CBS-inequality; in order to have an equality both
@®and@must be equalities < one of u, v is a non-negative multiple of the
other & <U, V> = ||U|| HVH (Minor details swept under the rug)
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Parallelogram Equality Parallelogram Equality :: Visualization

In every parallelogram, the sum of the squares of the lengths of the
diagonals equals the sum of the squares of the lengths of the four side:
Theorem (Parallelogram Equality)

Suppose u,v € V, then

2 2 2 2
=+ VI + o = v =2 (Jlull® + 1v7)

Proof (Parallelogram Equality)

lut+viP+llu=v]? = (Wtv,u+v)+{u—v, u—v) X

2 2

= Hlull" +[IvI” + (u, v) + (v, u)
2 2

Hlull™ + IvI® = (u, v) = (v, v)

2 2
= 2(Jlull® +IvI?)

Figure: lllustration of the vectors involved in the parallelogram law.

Copyright: Creative Commons CCO 1.0 Universal Public Domain Dedication
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Live Math :: Covid-19 Version

6A-6: Suppose u,v € V. Prove that

(u)=0 & [ul<u+av], YaeF

({( Live Math )))

e.g. 6A—{6, 8 11, 12 15, 19, 20, 22. 23} It is an if and only if , so we have 2 parts.

First suppose (u, v) = 0.

Let o € F. Since u and v are orthogonal, we can use [PYTHAGOREAN
THEOREM]:

lu+avl=Vlu+av|?=/ul?+lav]? = /u]? = ||u].
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Live Math :: Covid-19 Version

Inner Products
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Inner Products and Norms

Live Math :: Covid-19 Version

Next, suppose ||u|| < |lu+av| Va e F

lul> < Jlutav]P=({u+av, ut+av)
= (u, u) +(u, av)+ (av, u) + ac*(v, v)
[ull? +2Re(a*(u, v)) + |a?[Iv]]?

Since ||u||? is non-negative, we must have
—2Re(a”(u, v)) < af*[|v]?
This is true Va, let's write « in the form —s (u, v); then Vs > 0:

25|(u, v)[? < s [{u, V)2 [Iv|?
2[(u, I < s

|
[{u, V) [Iv]®

The inequality holds whenever, ||v|| = 0 (which makes (u, v) = 0), or
consider s < 2/||v||? and conclude (u, v) =0. O
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Gram-Schmidt Orthogonalization Procedure
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Orthonormal Bases

Orthonormality :: Building Blocks

Definition (Orthonormal)

@ A list of vectors is called orthonormal if each vector in the list has
norm 1 and is orthogonal to all the other vectors in the list

@ uy,...,Uun € U is orthonormal if (the Kronecker delta is back)
1 ifj=k
(uj, i) = fk_{ 0 ifj#k

We care because:

Theorem (The Norm of an Orthonormal Linear Combination)

If uy, ..., uyn € U is an orthonormal list of vectors in U, then
2 2 2
Vai,...,am €F: |lartn + - + amuml||” = |21+ -+ + |am|”-

Proof (The Norm of an Orthonormal Linear Combination)
J,\ Dircosr
UV

(m — 1) applications of the Pythagorean Theorem.

— (31/88)
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6A-8: Suppose u,v € V, and ||u|| = ||v|| =1 and (u, v) = 1. Prove that
u=v.

We have [(u, v)| = ||u|| ||v]|; this means by
[CaucHY-[BuNvyaKkovsKY]-Scuwarz] that u = av, and

1= {(u, v)={av, v) =alv, v) =a.
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Orthonormality

Gram-Schmidt Orthogonalization Procedure

Linear Functionals on Inner Product Spaces

Orthonormal Bases

Orthonormality :: Building Blocks

Theorem (An Orthonormal List is Linearly Independent)

Every orthonormal list of vectors is linearly independent.

Proof (An Orthonormal List is Linearly Independent)

0=|larn + - + amtim||* = |21 + - - - + |am|

forces ay =0, thus vy, ..., uny, is linearly independent.

Definition (Orthonormal Basis)

An orthonormal basis of V is an orthonormal list of vectors in V
that is also a basis of V.

san
U
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Orthonormality :: Building Blocks

Orthonormality
Gram—-Schmidt Orthogonalization Procedure
Linear Functionals on Inner Product Spaces

Orthonormal Bases

Orthonormality :: Uses Impact for Practical Computations

Theorem (An Orthonormal List of the Right Length is an Orthonormal Basis)

Every orthonormal list of vectors in V with length dim(V') is an
orthonormal basis of V.

Proof (An Orthonormal List of the Right Length is an Orthonormal Basis)

By [AN OrrHONORMAL LiST 18 LINEARLY INDEPENDENT] this list is linearly
independent; and by [LiNgARLY INDEPENDENT LiST OF LENGTH dim(V) 1S A
Basis (NoTes#2)] it is therefore a basis.

Example (An Orthonormal Basis of F*)

1111 11 1 1 1 1 11 11 11
2°2’2'2)7 \2’27 27 2)7\2" 27 2'2)" 2’27 272

SAN DIFGO STATE
UNIVERSITY
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Orthonormality
Gram-Schmidt Orthogonalization Procedure
Linear Functionals on Inner Product Spaces

Orthonormal Bases

Orthonormality

Proof (Writing a Vector as a Linear Combination of Orthonormal Basis)
Since vq, ..., v, is an orthonormal basis of V, Jai,...,an:
v = aivi+---+apvy

(v, vk) = (a1vi+ -+ anvp, vk) = ax

Clearly, orthonormal bases can greatly simplify some calculations.
The next task is constructing them.

Figure: Jgrgen Pedersen Gram

Figure: Erhard Schmidt (1876-1959)
(1850-1916)

Copyright: This picture is in the pub-
lic domain in its country of origin and
other countries and areas where the
copyright term is the author’s life plus
70 years or less.

Copyright: Creative ~ Commons
Attribution-Share Alike 2.0 Germany;
(Oberwolfach Photo Collection);
https://opc.mfo.de/detail

, 7photo_id=3682

SAN DIEGO STATE
UNIVERSITY
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In general, given a basis vq,...,v, of V, and a vector v € V, there are
unique scalars ay,...,a, € F, such that

v=avi+- -+ apv,

However, computing those coefficients typically requires serious work.

In the case of an orthonormal basis, this work is minimized to a single inner
product for each scalar.

Theorem (Writing a Vector as a Linear Combination of Orthonormal Basis)

Suppose vi, ..., v, is an orthonormal basis of V, and v € V. Then
v= (v, vi)vg + -+ (v, vy)v,
and

2
IVII® = [{v, vi)? + - + [{v, va)|®

SAN DIFGO STATE
UNIVERSITY
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Orthonormality
Gram-Schmidt Orthogonalization Procedure
Linear Functionals on Inner Product Spaces

Orthonormal Bases

Gram-Schmidt Procedure

Theorem (Gram—Schmidt Procedure)

Suppose v, ..., vy is a linearly independent list of vectors in V.
Let vy = w1/ ||va]|. For k =2,..., m, define uy by

Ve — Vi, tn)ur — o — Vi, Uk_1) U1
Uy =
Vi = (i, ur)uy — -+ — (Vi, Uk—1)tk—1]|
The us, ..., un is an orthonormal list of vectors in V' such that
span(vy, ..., vx) =span(uy,...,ux), k=1,...,m.

Note: This is exactly the same procedure you may (should) have
seen for vectors in R".

SAN DIEGO STATE
UNIVERSITY
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Gram—Schmidt Procedure Gram-Schmidt Procedure

Proof (Gram-Schmidt Procedure)

Comment (Detecting Linearly Dependent Vectors)
[PROOF-BY-(STRONG)-INDUCTION]
If we remove the assumption that vq, ..., v,, is linearl : : - :
) P . G y . o ¢ =1: span(vy) = span(uy), since vy is a positive multiple of u;.
independent, the Gram—Schmidt procedure can be used to detect
linearly dependent vectors. If at any stage, the numerator (and o Assume the theorem is true up to (6 —1), where 1 < £ < m.
therefore also the denominator) in the expression SIWES V.o Vi [ Umseily indponcens vy @ opam{e .. il —
span(uy, ..., up—1); this means that the denominators in the theorem
Vi — (Vie, b))t — -+ — (Vi, Ug1) Uk1 are non-zero, and the generated vectors have norm 1, ||u|| =1
) ) - -
Uk = o Let 1 < k < /¢, then
lvic = (Vi uryur — -+ — (Vi tg—1)tp—1]| = ’
Ve, Uk) — Vg, U1)Ut, Ug) — - — Vg, Ug—1)(Up—1, Uk
becomes 0; then the vector vy € span(vy, ..., vk_1) (ug, ug) = {ve, ) = {ve, un){en, ug) {ve, A ) U)
llve — (ve, ur)ur — -~ = (ve, tg_1)up_1|
_ (Ve, uk) = (ve, uk) 0
* — at least in theory; in real life there may be some “issues”, see [MATH 543]. HVZ — <V£, U1>U1 — .= (VE’ UE—l)”Z—lH
_ )
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Orthonormality Orthonormality
Orthonormal Bases Gram-Schmidt Orthogonalization Procedure Orthonormal Bases Gram-Schmidt Orthogonalization Procedure
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Gram—Schmidt Procedure Gram—Schmidt Procedure :: The Legendre Polynomials “How hard can it be?!”
Proof (Gram-Schmidt Procedure) We outline the construction of an orthonormal basis of Pp,(R), with inner
[PROOF-BY-(STRONG)-INDUCTION] product (f, g) f— (x) dx:
o Therefore, uy, ..., up is an orthonormal list. We start with the standard basis {1, x,x?,x3, ...}, start the process:
From the expression for uy, we have that v, € span(uy,...,u); and ) 1
since span(vy, ..., vp—1) = span(uy, ..., Up_1) o [1]*= [ ,1dx=2. ~ \f
span(vi, ..., vy) C span(uy, ..., up) : > fl L]
. . . OX—XU0U0:X—|:7X— Xj|—:xv
Both lists are linearly independent; thus ’ 17v2 V2
2 _ %2
. . X dx = s = f
dim(span(vi, ..., v)) = dim(span(uy, ..., u)) = ¢ Ix f X
2 2 2 _ 2 1t 2_1.2_ .2 1
and hence o x*—(x*, wp)ug—(x*, u)uy =x*—35 [T x?dx—0=x*—3-5 =x"—3
span(vy, ..., vp) =span(uy, ..., Up). v/ . L e . 1
/ % =37 = Sy (¢ = 5% + §) dx = g5 W“2—\/ -3)
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Orthonormal Bases Gram—Schmidt Orthogonalization Procedure Orthonormal Bases Gram—Schmidt Orthogonalization Procedure
Linear Functionals on Inner Product Spaces Linear Functionals on Inner Product Spaces
Gram—-Schmidt Procedure :: The Legendre Polynomials The Legendre Polynomials :: Comments
3 _ _ 3 — 3 _ 3 . . , . .
o x> — (x>, up)up — (x>, ur)ur — (x>, w)upr = x> — (x>, u1)u The Legendre polynomials are solutions to Legendre's differential
3 3 3 6 /3 equation:
= x> — (x>, u)up = x> = B /5x d dP
2 n(X)
Z (1= T2 4 p(n+ 1)Py(x) = 0.
3_ 3,2 8 175 (3 _ 3 dx dx
I =34 = 75 ~ g = /35 (¢ = 3x) _ .
The orthogonality and completeness of these solutions is best seen from

the viewpoint of Sturm—Liouville theory. [Matn 531]
o Yeah, it gets ugly fast! Usually, the Legendre Polynomials are listed in

(one of) their orthogonal (but not orthonormal) form(s), e.g: There are many other examples of orthogonal functions/polynomials; of

1 1 great interest are the trigonometric polynomials {cos(n@),sin(nf)}, or
(3x* —1), > (5x* — 3x), s (35x* —30x* +3) , ... {e~in%}: they form the basis for Fourier series expansions, which are the
foundation for much of modern signal processing.

1

1, x, =
) ) 2
o Using some software with symbolic calculation capabilities is useful in
deriving these... Let’s return to our “safe?” linear algebra universe...

SAN DIFGO STATE SAN DIFGO STATE
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Orthonormality Orthonormality
Orthonormal Bases Gram-Schmidt Orthogonalization Procedure Orthonormal Bases Gram-Schmidt Orthogonalization Procedure
Linear Functionals on Inner Product Spaces Linear Functionals on Inner Product Spaces

Existence of Orthonormal Basis Extending to an Orthonormal Basis

Theorem (Orthonormal List Extends to O ormal Basis)

Theorem (Existence of Orthonormal Basis) Suppose V is finite-dimensional. Then every orthonormal list of vectors
in V can be extended to an orthonormal basis of V.

Every finite-dimensional inner product space has an orthonormal basis.

Proof (Orthonormal List Extends to Orthonormal Basis)

. ’ Suppose uq, ..., Uy is an orthonormal list of vectors in V. Then

Proof (EXIStence of Orthonormal BaSIS) uy ,pp ., U i’S Iin’early independent [AN ORTHONORMAL LIST 1S LINEARLY INDEPENDENT].

Suppose V' is finite-dimensional. Choose a basis of V. Apply the Hence this list can be extended to a basis uy, ..., Umn, vi,..., Vv, of V

[GRAM*SCHMIDT PROCEDURE}’ prOdUCing an orthonormal list with Iength [LINEARLY INDEPENDENT LIST EXTENDS TO A Basis (NOTES#2)]. Now apply the

dim(V). By [AN ORTHONORMAL LIST OF THE RIGHT LENGTH IS AN Gram-Schmidt Procedure to uy, ..., Um, Vi, ..., Va, producing an

ORTHONORMAL Basis], this orthonormal list is an orthonormal basis of V. orthonormal list w1, . .., Um, WA, . . ., w,; here the formula given by the
Gram—Schmidt Procedure leaves the first m vectors unchanged because
they are already orthonormal. The list above is an orthonormal basis of
4 by [AN ORTHONORMAL LIST OF THE RIGHT LENGTH IS AN ORTHONORMAL BasIs].

SAN DIEGO STATE SAN DIEGO STATE
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Upper-triangular Matrix with respect to Orthonormal Basis

Orthonormality
Orthonormal Bases Gram—Schmidt Orthogonalization Procedure
Linear Functionals on Inner Product Spaces

Upper-triangular Matrix with respect to Orthonormal Basis

We have previously shown that if V is a finite-dimensional complex
vector space, then for each operator on V there is a basis with
respect to which the matrix of the operator is upper triangular.

[OVER C, EVERY OPERATOR HAS AN UPPER-TRIANGULAR MATRIX (NOTES#5)]

Theorem (Upper-triangular Matrix with respect to Orthonormal Basis)

Suppose T € L(V). If T has an upper-triangular matrix with
respect to some basis of V, then T has an upper-triangular matrix
with respect to some orthonormal basis of V.

Note: For real vector spaces, not all operator have an upper-triangular matrix with
respect to some basis of V.
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Proof (Upper-triangular Matrix with respect to Orthonormal Basis)

Suppose T has an upper-triangular matrix with respect to some basis
Vi,...,Vp of V. Thus span(vy,..., vk) is invariant under T for each
k € {1,..., n} [ConDITIONS FOR UPPER-TRIANGULAR MATRIX (NOTES#5)].

Apply the Gram—Schmidt Procedure to vy, ..., v,, producing an
orthonormal basis vy, ..., u, of V. Because

span(uy, ..., ux) =span(vy,...,v), k€ {1,...,n}

[Gram-ScuMIDT PrOCEDURE], we conclude that span(uy, ..., ug) is
invariant under T for each k € {1,...,n}. Thus, by [ConpITIONS FOR
UPPER-TRIANGULAR MATRIX (NOTES#5)], T has an upper-triangular matrix
with respect to the orthonormal basis uq, ..., u,.
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Linear Functionals on Inner Product Spaces

Schur's Theorem ~» Schur's Matrix Decomposition

Theorem (Schur’s Theorem)

Suppose V is a finite-dimensional complex vector space and T € L(V).
Then T has an upper-triangular matrix with respect to some orthonormal
basis of V.

Proof (Schur's Theorem)

[OVER C, EVERY OPERATOR HAS AN UPPER-TRIANGULAR MATRIX (NOTES#5)],
[UPPER-TRIANGULAR MATRIX WITH RESPECT TO ORTHONORMAL BASIS].
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Schur’'s Theorem ~» Schur's Matrix Decomposition

In computational linear algebra, the Schur Decomposition of a matrix
A € C"™" can be expressed as

A=QUQR!

where U is upper triangular, and Q unitary (Q~! = Q*).

(Every square matrix has a Schur decomposition)

Note: Not all mathematical results are useful in practical applications
(they may require infinite-precision computing); however, the Schur
Decomposition is stably computable in a finite precision environ-
ment.

san
U
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Orthonormal Bases

Schur’'s Theorem ~» Schur's Matrix Decomposition

The Schur decomposition of a given matrix is numerically computed by
the QR algorithm [Marn543] or its variants, i.e. the eigenvalues do not
have to be pre-computed. (The eigenvalues show up as the diagonal
entries of U).

The QR algorithm can be used to compute the roots of any given
characteristic polynomial by finding the Schur decomposition of its
companion matrix. — This is (one) numerically stable way to compute
(good approximations of) eigenvalues of matrices.

Figure: Issai Schur (1875-1941)

Copyright: Creative Commons Attribution-Share Alike 2.0 Germany —
This work is free and may be used by anyone for any purpose.
https://opc.mfo.de/detail?photo_id=12209
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Orthonormal Bases

Riesz Representation Theorem
\ i E

\y Si)

Theorem (Riesz Represent

.
.

Suppose V is finite-dimensional and ¢ € L(V,F). Then there is a

unique vector u € V such that

Copyright: Creativ_é Comimons Attribution-Share Alike 2.5 Generic license
[https://commons.wikimedia.org/wiki/File:Fireworks4_ amk. jpg]
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Orthonormal Bases

Linear Functionals on Inner Product Spaces

Definition (Linear Functional)

A linear functional on V is a linear map from V +— FF. In other words, a
linear functional is an element of L(V/,F).

Example (Linear Functional ~~ Alternative Inner Product Form(?))
@ o € L(F3 ) defined by ¢(z1,2,23) = 221 + 525 + z.
Alternative form: o(z) = (z, u), where u = (2,5,1) € FS.
0 ¢ € L(P2(R),R) defined by

o(p) = / p(t) cos(nt) dt

#Pa(R)
It is not clear there there is an alternative form (in terms of the
“Legendre” inner product on P>(R)), so that ¢(p) = (p, u) for
some u € P»>(R).
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Orthonormal Bases

Riesz Representation Theorem :: Proof — Existence

Proof (Riesz Representation Theorem)

Existence:

., U, be an orthonormal basis of V/; then
o) @ (v, mhin +---+ (v, )
(v, un)@(ur) + -+ + (v, un)p(un)
(v, p(un)"ur) + -+ + (v, ©(un)" un)

= <V7 u>

o Let un,..

where u = o(u1)*ur + -+ p(up)*u, € V.

[WRITING A VECTOR AS A LINEAR COMBINATION OF ORTHONORMAL BAsIS].
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Orthonormal Bases

Riesz Representation Theorem ::

Proof (Riesz Representation Theorem)
Uniqueness:
o Suppose uy, uy € V such that

Vv € V; then

0=p(v) —p(v) =

In particular v =u; — uy € V, so that

<U1 — U,

which forces u; — up, =0 & u; = wo.

(v, u1) —

Proof — Uniqueness

(v, ug) = (v, g — )

—U2>:0

v
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Riesz Representation Theorem ::
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Example
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11 1 ! \F 3
/1 \/gcos(m“) dt 5 + /1 EtCOS(TI'l') dt 5%
b4 1 4 1
/_1 §5 <t2 — 3> cos(mt) dt §5 <x2 - 3)
1
=X [/ t cos(mt) dt]
-1

mt) dt| + 3
+% <X2 - ;) [/11 <t2 - ;) cos(7t) dt}
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Riesz Representation Theorem ::

“Nobody promised simple!”

Example

Consider, again, ¢ € L(P2(R),R) defined by
1

p(t) cos(t) dt
-1

[RRT] says we can find u € P,(R) so that

1 1
| ploycostzryde= [ 5
-1 ~1
We use the expression u = @(u1)*uy + ... o(u

I (3)

o(p) =

Vp € P2(R)

n)*Un, and the orthonormal
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Orthonormal Bases

({( Live Math )))

e.g. 6B-{2, 4,5, 6, 15}
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Orthonormal Bases

Live Math :: Covid-19 Version

Orthonormality
Gram—Schmidt Orthogonalization Procedure
Linear Functionals on Inner Product Spaces

Orthonormal Bases

6B-5: On P,(R), consider the inner product:

(p, q) =/0 p(x)q(x) dx.

Apply the Gram—Schmidt procedure to {1, x, x?} to produce an
orthonormal basis of P»(R).

po(x) = 1:

1
1
(1, 1>:/0 1, dx=x|;=1-0=1.

Hence ||1]] =1, and up(x) = 1/||1]| = 1.
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Orthonormal Bases

Live Math :: Covid-19 Version

pa(x) = x°: {uo(x) = L, us(x) = V3(2x — 1)}

ta(x) = p2(x) — (p2, uo)uo(x) — {p2, ur)u1(x),

11

1 1
2 3
P2, Ug) = x“dx = —x
¢ o) /0 3 o 3

(p2, uy) = \/5/01 x(2x — 1) dx = V3 [ (§X4 _ §X3)

1 V3 11 1
tg(x):xz—71——\/5(2X—1):X2—7—7(2x—1):x2—x+7
3 6 3 2 6

1 1\2 1 4x2 X 1
e = [ (Fexr ) e [t N )
0 6 0 3 3 36
5

X x4 453 x2 X ! 1 1 4 1 1 1 1
= —_ - =+ - — + =t -+ ==-—=
5 2 9 6 36/, 5 2 9 6 36 180 22325
to(x 1
up(x) = 2() =6V5 (XQ—X+7) :\/§(6x2—6x+1)
20l 6

Wasn't that fun?!? — | {up(x) = 1, u1(x) = v/3(2x — 1), uz(x) = V5(6x% — 6x + 1) }.

SAN DIEGO STATE
UNIVERSIT
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Live Math :: Covid-19 Version

{uo(x) = 1}

t1(x) = p1(x) — (p1, uo)uo(x),

1 21
X 1 1
<P17U0>=/de: —Z_0==
0 20, 2 2
1 1
—x—"1=x—"=
ti(x) = x > X 5

1
||tu2—/1 SRS U AN I A A A AR
B 2 3 2 0_3 2 3\ T 33
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Orthonormal Bases

Live Math :: Covid-19 Version

6B-6: Find an orthonormal basis of P>(R) (with inner product as in 6B-5)
such that the differentiation operator P,(IR) has an upper-triangular
matrix with respect to this basis.

First consider M(D, {1, x, x?})
Since, D(1) =0, D(x) =1, and D(x?) =

X

0
M(D,{1,x,x*}) = |0

0

O O =
oON O

Upper triangularity comes from the fact that
span (1) C span (1,x) C span (1,x,x2)
and each one of those spaces are invariant under D.

SAN DIEGO STATE
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Orthogonal Complements

Lo Minimization Probl
Orthogonal Complements and Minimization Problems TR (Prefeme

Live Math :: Covid-19 Version

Now we are ready to consider M(D, {1,v/3(2x — 1), v/5(6x? — 6x + 1)})
Clearly,

span (1) C span (1, V3(2x — 1)) C span (1, V3(2x — 1), V5(6x% — 6x + 1))

which means the orthonormal basis we found in 6B-5 satisfies our needs.

For extra giggles we find the matrix

D(1)=0, D(V3(2x—-1))=2V3-1

D(V/5(6x% — 6x + 1)) = V/5(12x — 6) = % V3(2x — 1)

7
0 2V3 0
M(D,{1,V3(2x — 1), V5(6x*> —6x +1)}) = |0 0 2v3V5
0 0 0

— (61/88)
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Direct Sum of a Subspace and its Orthogonal Complement

Theorem (Direct Sum of a Subspace and its Orthogonal Complement)

Suppose U is a finite-dimensional subspace of V. Then
V=Us U+

Proof (Direct Sum of a Subspace and its Orthogonal Complement)

V=U+U4:
Let v € V; and uy, ..., un be an orthonormal basis of U; add a “clever 0" to v:
v={_v,u)ur + - +{v, unm)um+v — (v, ut)ur + -+ — (v, Un)um
u w
hence u € U, and (w, ux) =0, k =1,...,m < w L span(uy,...,umn), that is

w € UL. We have written v = u + w, where u € U and w € UL. /
V=UqU':
V = U + U™ from above, and U N Ut = {0} [Properry (4)] = V = U UL, / )

— (63/88)
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Orthogonal Complements

Definition (Orthogonal Complement, U+)

If U is a subset of V, then the orthogonal complement of U, denoted U+,
is the set of all vectors in V that are orthogonal to every vector in U:

Ut={veV:(v,u)=0VYue U}

Theorem (Properties of Orthogonal Complement)

(1) If U is a subset (not a typo) of V, then U+ is a subspace of V.
(2) {0}t =V

(3) v+ ={0}
(4)
(5)

4) If U is a subset of V, then U N U C {0}
5) If U and W are subsets of VV and U ¢ W, then W+ c U+
V.
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Dimension

Theorem (Dimension of the Orthogonal Complement)

Suppose V is finite-dimensional and U is a subspace of V. Then
dim(Ut) = dim(V) — dim(U)

This follows directly from the previous theorem and:

Rewind ([A SuM 1S A DIRECT SUM < DIMENSIONS ADD Up (NOTES#3.2)])

Suppose V is finite dimensional and Ui, ..., Uy, are subspaces of
V. Then U; + --- + Uy, is a direct sum if and only if

dim(Uy + -+ - + Up) = dim(Uy) + - - - + dim(Up,).
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Properties of the Orthogonal Projection

Complement-of-Complement

Theorem (The Orthogonal Complement of the Orthogonal Complement)

Suppose U is a finite-dimensional subspace of V. Then
(UHt=u

Definition (Orthogonal Projection, Py(v))

Suppose U is a finite-dimensional subspace of V. The orthogonal
projection of V onto U is the operator Py € L£( V) defined:

For v e V, write v=u+ w where u € U, w € UL: then
Py(v) = u.

Since each v € V can be uniquely written in the form v = u + w
with v € U, w € UL, the orthogonal projection is well defined.
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Orthogonal Complements

Orthogonal Complements and Minimization Problems Rlinizatioglaiehbisns

Minimizing the Distance to a Subspace

In many applications we end up looking for the "best candidate”
approximate solution to a problem; and it can usually be expressed in the
linear algebra language as “Given v € V, find a point u € U such that
|lu— v|| is as small as possible:”

Theorem (Minimizing the Distance to a Subspace)

Suppose U is a finite-dimensional subspace of V, v € V, and u € U, then
v = Pu(v)I| < [lv — ul|

Equality holds if and only if u= Py(v).

That is, the “best candidate” approximate solution is given by the
orthogonal projection onto the subspace.

This whole section “smells” like the foundation for numerical solutions of partial differential equations using the
Finite Element Method (FEM)... and also has the obvious(?) application of model-fitting using linear-least-squares.

U
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Theorem (Properties of the Orthogonal Projection)

Suppose U is a finite-dimensional subspace of V and v € V. Then
(o) Py € L(V)
(B) Py(u)=u, YuelU
(7) Py(w) =0, Vw € Ut
(8) range(Py)=U
(e) null(Py) = U+
() (I = Py)(v) =v— Py(v) € UL; (I — Py) is the complementary projection
(n) (Pu)*=Py
©) 1Pl < v
(¢t) For every orthonormal basis u1, ..., um of U:
Py(v) = (v, m)ur + - + (v, um)um

[L]vl-: MATH 5B-4]

The proofs are excellent training in application of the definitions and interactions of
the various pieces involved.
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Minimizing the Distance to a Subspace

Proof (Minimizing the Distance to a Subspace)

1
2
lv—=PuWII* < llv=Pu(v)I?+IIPu(v) = ul?

ceUL cuU

2 |lv— Py(v) + Py(v) - ul]?

= v —ul?

1
< holds since 0 < ||Py(v) — ul|; and
2 [PYTHAGOREAN THEOREM].

We get an equality if and only if Py(v) —u=0 < u= Py(v). v/
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Example: sin(nx)

Orthogonal Complements and Minimization Problems

Example: sin(nx) — Gram-Schmidt

Orthogonal Complements
Minimization Problems

Peter Blomgren (blomgren@sdsu.edu)

We consider the best Legendre-polynomial approximations of sin(nx) on
the interval [—m, 7], and compare with the Taylor polynomials.

Nobody in their right mind would do this by hand!

With a little bit of Matlab-magic we can get it done.

SAN DIFGO STATE
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Example: sin(nx) — Gram-Schmidt Results

At this point we have our orthonormal basis:

V2 V6 x V10 (6772 - 18X2) V14 x (67\'2 — 10x2)
{2\/?’ B T 8 n7/2

273/2° 24 75/2

V2 (1680 x4 — 1440 72 X2 1 144 71'4)
256 79/2

i

V2 x (1260 x* — 1400 72 x2 + 300 7r4)
320 711/2

We set n =1 in order to reproduce the results in the book

%(Function to Approximate)
v = @(x) sin(x);

%(Build Approximation)
f = Oxx;
for d=1:length(p)
f =f + ip(v,u(d))*u(d);
end

%(Get the coefficients for the approximating polynomial)
poly_coeffs = coeffs(simplify(expand(expand(£f))),’all’).”’

SAN DIEGO STATE
UNIVERSITY

1 | clear x n

2 | syms n x

3

4 %(Left and Right endpoints [a,b])

5 |a = -pi;

6 |[b = pij

7

8 | % (Symbolic, and Evaluated Innerproducts)
9 | sip = @(u,v) int(uxv);

10 | ip = @(u,v) subs(sip(u,v),b)-subs(sip(u,v),a);
11

12 | %(Starting Basis = powers of x)

13 |p = [x.7(0:5)].7%;

14 |u = O*p;

15

16 | %(Symbolic Gram-Schmidt)

17 | for d=1:length(p)

18 t = p(d);

19 for prev = 1:(d-1)

20 t =t - ip(t,u(prev)) * u(prev);
21 end

22 u(d) =t / sqrt(ip(t,t));

23 | end

Peter Blomgren (blomgren@sdsu.edu)
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Orthogonal Complements
Minimization Problems

Example: sin(nx) — Best Polynomial Fit

693 (7r4 —105 7rz+945) 5

315 (w“ —125 7r2+1155)

5 105 (7r4—153 7r2+1485)
X7 +

x° —

ps(x) = g 710

478 8 w0 X

= 0.005643117976347 x> — 0.155271410633430 x> + 0.987862135574673 x

which, indeed, matches the result in the book; and it is a “pretty good”

approximation:
1

05

—)
—exact

-1

0.015

0.01 -

0.005

-0.005

-0.01

-0.015

-2 0 2
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Minimization Problems Minimization Problems

Orthogonal Complements and Minimization Problems

Example: Let's Have Fun — sin(2x), 5th Order Approximations

Orthogonal Complements and Minimization Problems

Example: sin(nx) — What about Taylor???

The fifth order Taylor polynomial is

1 1
ts(x) = mXE‘ - 6X3 + x

The approximation is not nearly as good:

1 0.5
0.5
0 0
0.5
p 0.5 ‘ ‘ ‘
2 0 2 i i
2 0 2 _

s DirGosTAT
ViR
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Orthogonal Complements Orthogonal Complements
Orthogonal Complements and Minimization Problems Minnizaboniichiens

Minimization Problems

Orthogonal Complements and Minimization Problems
Example: Let's Have Fun — sin(3x), 5th Order Approximations Example: Let's Have Fun — sin(3x), 7th Order Approximations

-200
-500 \ -500

-400
1 2 0 2 2
G DncsT
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-2 0 2 -2 0 2
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Orthogonal Complements and Minimization Problems Rlinimizationjicblems

Example: Let's Have Fun — sin(3x), 9th Order Approximations

Orthogonal Complements

Orthogonal Complements and Minimization Problems Rinimizationfiiobiens
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Orthogonal Complements

Orthogonal Complements and Minimization Problems Rlinizationlaichisns

Live Math :: Covid-19 Version

({( Live Math )))

e.g. 6C-{2, 3}
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Orthogonal Complements

Orthogonal Complements and Minimization Problems Slimmizatoniachicms

Live Math :: Covid-19 Version

6C-2: Suppose U is a finite-dimensional subspace of V.
Prove that U+ = {0} if and only if U = V.

From [DireEcT SUM OF A SUBSPACE AND ITS ORTHOGONAL COMPLEMENT], We

know that V = U @ U'; which shows that U+ = {0} & U = V.

The statement does not hold on infinite dimensional inner product spaces. Both
@ [DIRECT SUM OF A SUBSPACE AND ITS ORTHOGONAL COMPLEMENT], and
@ [THE ORTHOGONAL COMPLEMENT OF THE ORTHOGONAL COMPLEMENT]

break without the finite-dimensional property.

As usual in mathematics, every word/property is there for a reason.

6C-3: Suppose U is a subspace of V with basis vy, ..., u, and
uy,...,Unp,Wi,...,Wp

is a basis of V. Prove that if the Gram—Schmidt Procedure is
applied to the basis of V above (from left-to-right), producing a
list

fla"'vfmaglv"'agm

then fi, ..., f, is an orthonormal basis of U and gy,...,g, is an
orthonormal basis of U+

SAN DIEGO STATE
UNIVERSITY
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Suggested Problems
Assigned Homework
Supplements

Problems, Homework, and Supplements

Live Math :: Covid-19 Version

% Solution %
We know that The Gram—Schmidt Procedure gives fi,..., f, so that

span (fi,...,fn) =span(uy,...,Uyn) = U. Thus by [AN ORTHONORMAL

LisT 18 LINEARLY INDEPENDENT] f1,. .., fp, is an orthonormal basis of U.

Since (gk, f;) =0 (& gk L f;) Vk,J;

gk L span (fy,... Jum) = U.

By definition, gx € U+, Vk. From [DIMENSION OF THE ORTHOGONAL
CoMPLEMENT], we have

,fm) = span (uq, ...

dim(Ut) = dim(V) — dim(U) = (m+n) —m=n

Thus g1, ..., g, is an orthonormal basis of UL,
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Suggested Problems

Assigned Homework

Supplements

HW#6, Due Date in Canvas/Gradescope

Problems, Homework, and Supplements

Assigned Homework

6.A—1,2,45
6.B—1, 3,9
6.C—5, 11

Note: Assignment problems are not official and subject to change
until the first lecture on the chapter has been delivered (or
virtually “scheduled.”)

Upload homework to www.Gradescope.com

— (83/88)
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Suggested Problems

6.A—1, 2, 4,5, 6, 8,11, 12, 15, 19, 20, 22, 23
6.B—1, 2, 3,4,6,9, 15

6.C—5, 11
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Suggested Problems
Assigned Homework
Supplements

Problems, Homework, and Supplements

Other Versions of Riesz' Theorem Hilbert Space Representation

Let H be a Hilbert space, and let H* denote its dual space, consisting of
all continuous linear functionals from H into the field R or C. If x is an
element of H, then the function gy, for all y in H defined by:

ox(y) = (y, x), where (-, -) denotes the inner product of the Hilbert
space, is an element of H*. The Riesz representation theorem states that
every element of H* can be written uniquely in this form:

Theorem (Riesz—Fréchet Representation Theorem)

Let H be a Hilbert space and p € H*. Then there exists f € H
such that for any x € H ¢(x) = (f,x). Moreover ||f||g = ||¢]||H«

Statement source: https://en.wikipedia.org/wiki/Riesz_representation_theorem
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Suggested Problems
Problems, Homework, and Supplements Assigned Homework

Supplements

Suggested Problems
Problems, Homework, and Supplements Assigned Homework

Supplements

Other Versions of Riesz' Theorem Hausdorff Space Representation Other Versions of Riesz' Theorem Hausdorff Space Representation

Theorem (Riesz—Markov Representation Theorem)

Theorem (Riesz—Markov—Kakutani Representation Theorem) Let X be a locally compact Hausdorff space. For any continuous

Let X be a locally compact Hausdorff space. For any positive linear linear functional v on Cy(X), there exists a unique regular
functional 1) on C.(X), there exists a unique regular Borel measure countably additive complex Borel measure j» on X such that

w on X such that

VFe GX):  W(f) = / F(x) dpu(x).
Vf e C(X): P(f) :/ f(x) du(x). A
X ) The norm of 1 as a linear functional is the total variation of y,
that is
91 = [l (X).

Finally, 1) is positive if and only if the measure y is non-negative.

Statement source: https://en.wikipedia.org/wiki/Riesz—Markov—Kakutani_representation_theorem

Statement source: https://en.wikipedia.org/wiki/Riesz—Markov—Kakutani_representation_theorem
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Suggested Problems
Problems, Homework, and Supplements Assigned Homework

Supplements

Suggested Problems
Problems, Homework, and Supplements Assigned Homework
Supplements

Explicit References to Previous Theorems or Definitions (with count) Explicit References to Previous Theorems or Definitions

@ @ @ o

@ @ @ o

san
U
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