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What We Know So Far — Operators, T € L(V)

e Some operators are diagonalizable, i.e. 3 B(V) so that
M(T,B(V)) is diagonal

dim(V) m
=V =@ U = PEN.T), m<dim(V)
k=1 k=1

@ It is always possible to find an orthonormal basis

B(V) = by,...,b, so that M(T,B(V)) is upper triangular
= Wy = span(by, ..., by) are nested subspaces: Wj_; C W,
dim(Wy) = k

@ We now, in the next 8 lectures, seek to build better
understanding in the huge void between “some are
diagonalizable” and “all are upper triangularizable.”
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Student Learning Targets, and Objectives SLOs: Operators on Inner Product Spaces

Student Learning Targets, and Objectives

Target Adjoint [Operator] — T*

Objective Be able to state the definition of the adjoint [operator]; and
manipulate inner product expressions to obtain the adjoint T*
given an operator T

Objective Know the definition of, and useful properties of Self-Adjoint,
and Normal, Operators

Target Real and Complex Spectral Theorems

Objective Know under what circumstances operators over the Real and
Complex fields have orthonormal eigenbases; with respect to
which the matrix of the operator is diagonal.

Time-Target: 2X75-minute lectures.

SAN DI
Univ
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Self-Adjoint and Normal Operators
The Spectral Theorem

Introduction

We now look at operators T € L(V) on inner product spaces,
V = {vector space, with (v, w) : V x V — F}.

fr

Inner Products = Norms, Orthogonality, Gram-Schmidt, RRT

fr

Linear Maps

= Eigen-Values/Vectors; Invariant Subspaces
Operators

fr

Finite Dimensional Vector Spaces
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Adjoints

Definition (Adjoint, T*)
Suppose T € L(V,W). The adjoint of T is the function
T : W+ V, such that Vv € V, and Yw € W:

(Tv, w) = (v, T"w).

T*w is uniquely defined due to [RIESZ REPRESENTATION
THEOREM (NOTES#6)]

Note that in the case when V # W, the inner product (Tv, w) is
on the space W, and (v, T*w) is on the space V.

We will shortly show that T* € L(W, V), i.e. it is a linear map.

There is another “adjoint” in linear algebra... we will not speak about it, shhhhhh!!! anm
TR
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Example#1: Find the Adjoint

Let T € £L(R3,R?) be defined by
T(Xl,XQ, X3) = (X2 + 3X3, 2X1).

Solution: T*: R? — R3, fix a point (y1, y2) € R?; then
V(x1,x2,x3) € R3:

((a,x2,x3), T (y1,)2)) = (T(xa,x2,x3), (v1,¥2))
((x2 + 3x3,2x1), (y1,¥2))
xoy1 +3x3y1 + 2x1)2

= ((x1,x2,x3), (2y2, y1,3y1))

T*(y1,2) = (2y2,%1,3%)

UNr
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
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Example#2: Find the Adjoint

Fixue V,and x € W. Let T € L(V, W) be defined by

Tv = (v, u)x
Solution: Fix w € W. Then Vv € V, we have
(v, T*w) = (Tv, w)
= (v, u)x, w)
= (v, u)(x, w)
= <V7 <X7 W>*u>
= <V7 <W7 X>u>
T*w = (w, x)u

In both examples, T* turned out to be a linear map.
This is true in general: e
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The Adjoint is a Linear Map

Theorem (The Adjoint is a Linear Map)

Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Properties of the Adjoint

Properties (Properties of the Adjoint)
If T € L(V,W), then T* € L(W, V).
/ o (S+T) =84+T*VYS, TeL(V,W),
* O\ K Tk .
Proof (The Adjoint is a Linear Map) o ATy =N"T"VA€F, and VT € L(V, W);
Suppose T € L(V, W). Fix wy,ws € W, if v € V, then o (T =TVT e L(V,W);
e /* =, where [ is the identity operator on V/;
(v, T*(wm1 + w2)) = (Tv, w1 + ws) = (Tv, w1) + (Tv, wp)
= (v, T*wa1) +{v, T*wa) = (v, T*wi + T*wp) o (ST)* =T*S*VT ¢ [,(V, W), VS € E(W, U)
y
T*(wi+w) = T'wi+ T *ws [ApDITIVITY (NOTES#3.1)]
Next, fix w € W, and A€ F, if v € V., then The proofs are standard pI|‘J‘g—|ntc_)—th”e—defln|t|ons—and—move—th|ngs—
(v, T*Ow)) = (Tv, Aw) — AN(Tv, w) around; and are left as an “exercise.
= MN{v, T*w) = (v, AT*w)
These properties probably look vaguely familiar?
T*(Aw) AT*w [HomoGENEITY (NOTES#3.1)]
(Think about matrices..... and transposes?)
Thus, T* is a linear map. NDW W)m
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i | e R gl e
Null Space and Range of the Adjoint Null Space and Range of the Adjoint, Visualized
Theorem (Null Space and Range of T*)
Suppose T € L(V, W), then:
(a) null(T*) = (range(T))*
(b) range(T*) = (null(T))*
(¢) null(7T) = (range(T*))*
(d) range(T) = (null(T*))*
Proof (Null Space and Range of T*)
(a) Let w € W, then:
Ortho—Complement
wenull(T*) <= T*(w)=0 Range(T)
<~ (v, T*(w))=0,VveV
— (T(v),w)=0,VveV
<= w € (range(T))* ‘
(b), (c). (d) similar... 2
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Conjugate Transpose, Hermitian Transpose

Definition (Conjugate Transpose)

The conjugate transpose of an (m x n) matrix is the (n x m)
matrix obtained by interchanging the rows and columns and then
taking the complex conjugate of each entry; i.e. ajj — a;f‘,-.

Notation (Conjugate Transpose)
For Ac F™*" we let A* € F"*™ be the conjugate transpose of A.

Sometimes you see the notation A" to indicate the Hermitian
(Conjugate) transpose.

When ' = R, the conjugate transpose is just the transpose.
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Self-Adjoint and Normal Operators
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The Matrix of T*

Theorem (The Matrix of T*)

Let T € L(V, W), and let vy, ..., v, be an orthonormal basis of V, and
.., Wny be an orthonormal basis of W. Then

M(T™, (w, .. V) =M(T,(ve,...

Wi, .
an))*

In the above, it is absolutely essential for the bases of V and W
to be orthonormal.

s W), (v, .- Vi), (v, ...

The adjoint of a linear map itself does not depend on the choice
of basis; but the matrices of a linear map and its adjoint depend
strongly on the choice of bases. This is one of the compelling reasons
why we develop our linear algebra toolbox in a more abstract rather
than matrix-centered way.

o]
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Self-Adjoint and Normal Operators Is'\dljfxlss int O Self-Adjoint and Normal Operators SAdIJ;)Z'(;S int O
The Spectral Theorem Nir;n-lljz)lgtehtp;;ators The Spectral Theorem N(:)r;naljgg';ratpo?;ators
The Matrix of T* Self-Adjoint Operators
Proof (The Matrix of T%) We now consider operators T € £(V/), on inner product spaces
The entries of M(T, (vi,...,Vn), (Wi, .., Wm)) are the (i.e. vector spaces with an inner product).
coefficients of
T(vie) = (T (vi)s wiywa + -+ (T (vi), Win)wim Definition (Self-Adjoint (Hermitian))
ie. M(T)j=(T(vi), wj). An operator T € L(V) is called self-adjoint if T = T*, i.e.
Likewise, the entries of M(T*, (wa, ..., Wm), (v1,...,V,)) are the T € L(V) is self-adjoint if and only if
coefficients of (T(v), w) = (v, T(w))
* * *
TH(wi) = (T (wi), vi)va + -+ (T (W), Va) i Yv,w € V.
M(T)j = (T*(wi), vj) = (Wi, T(v;)) = ((T(v}), wi))* = (M(T);i)*
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Sources of Hermitian / Self-Adjoint Operators

Comment

Physicists are sometimes(?) a bit careless with mathematical
language, but in particular the field of quantum mechanics is full of
Hermitian / Self-Adjoint operators — usually on
infinite-dimensional Hilbert spaces.

Comment

Roughly speaking, the study of “linear algebra” on
infinite-dimensional spaces is branded “Functional Analysis.”

Functional Analysis is the meeting point of linear algebra and anal-
ysis, with a good measure™™’ of topology sprinkled in.
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Self-Adjoint Operators
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Self-Adjoint and Normal Operators
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Eigenvalues of Self-Adjoint Operators are Real

Theorem (Eigenvalues of Self-Adjoint Operators are Real)

Every eigenvalue of a self-adjoint operator is real.

Proof (Eigenvalues of Self-Adjoint Operators are Real)

Suppose T € L(V) is self-adjoint. Let A be an eigenvalue of T,
and let v be an eigenvector: T(v) = Av. Then

A = (v, v) = (T(v), v) = (v, T(v)) = (v, Av) = X||v|?

Since A = \*, A e R.

Note that if we are restricting ourselves to F = R then the
theorem is true by definition (restriction), so it is of interest (use)

., only in the case F = C. %m;,.
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. Adjoints . Adjoints
B e s e Sikdcion Oparatrs B e s oo Skt Oy
Over C, T(v) L v Vv € V Only for the 0-Operator Over C, T(v) L v Vv € V Only for the 0-Operator
Proof (Over C, T(v) L v ¥v € V Only for the 0-Operator)
Theorem (Over C, T(v) L v Vv € V Only for the 0-Operator) We need to show (T (u), w) =0, Vu,w € V. We rewrite this inner
Suppose V is a complex inner products space, and T € L(V). Then if product in an appropriately complicated way:
(T(v),v)=0VveV, then T=0. (T ) Y (T ) >
u+w), u+w)— u—w), u—w
(T(u), w) = : :
4
+_<T(u + iw), u+ iw) — (T (u — iw), u— iw)
. . . /
Note that the theorem is not true for real inner products spaces: consider 4
the rotation by 7/2 in R?.
each term on the right-hand-side is of the form (T (v), v), so if
(T(v), v) =0Vv € V, then it follows that (T (u), w) =0,
Yu,w € V, and thus T =0 (let w = T(v)).
N For peace of mind, let's just verify the equality! N
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Post-Proof: Verifying the Equality

(T(u), u) +(T(u), w) + (T (w), u) +(T(w), w)
(T(u), u) = (T (u), w) = (T(w), u) +(T(w), w)
= 2(T(u), w) +2(T(w), u)

+1 (T(u4+w),ut+w) =
-1 (T(u—w),u—w) =

+i (T(u+iw), u+iw)y = (T(u), uy+(T(u), iw) + (T(iw), u) + {T(iw), iw)
T(u), u) = i(T(u), w) + i(T(w), u) +(T(w), w)
)
)

T(u), u) + (T (u), —iw) + (T(—iw), u) + (T(—iw), —iw]

—i AT(u—iw), u—iw) =

(
(
(
(

T(u), uy + i(T(u), w) — i{T(w), u) + (T (w), w)

Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Over C, (T(v), v) € R ¥Yv € V Only for Self-Adjoint Operators

“Self-adjoint operators behave like real numbers...":

Theorem (Over C, (T(v), v) € R Yv € V Only for Self-Adjoint Operators)

Suppose V is a complex inner product space and T € L(V). Then T is
self-adjoint if and only if

(T(v),v) eR

Vv e V. )
= 2T(u), w) = 2(T(w), u)
= HT(u), w)
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. Adjoints . Adjoints
Self-Adjoint and Normal Operat 5 Self-Adjoint and Normal Operat >
A Nl OB ot A perrs e A ol OB et A Opertors
Over C, (T(v), v) € R ¥v € V Only for Self-Adjoint Operators If T=T"and (T(v), v)=0,VveV, then T =0.
On a real inner product space V/, a nonzero operator T might satisfy
Proof (Over C, (T(v), v) € R Yv € V Only for Self-Adjoint Operators L L
( (T(v), v) € < y ] P ) (T(v), v) =0, Vv € V. However, this cannot happen for a self-adjoint
Let v € V, then operator:
(T(v), v) =(T(v), v)* = (T(v), v) = (v, T(v))
— * — —
= (T(v), v) = (T*(v), v) Theorem (If T = T* and (T(v), v) =0, Vv € V, then T =0)
— (T =THW), V) Suppose T is a self-adjoint operator on V such that
- ’ (T(v),v)=0,YveV, then T =0.
< If (T(v), v) € R Vv € V, then the left-hand-side is 0;
— * — _ *
so ((T—=T*)(v),v)=0=T=T [OVER C, T(v) L v Vv € V ONLY FOR THE 0-OPERATOR] covered the case for
[Over C, T(v) L v ¥v €V ONLY FOR THE 0-OPERATOR] complex inner product spaces without the self-adjointness property; so we
— If T = T*, then the right-hand-side is 0. only have to cover the real product spaces with the self-adjointness
Thus (T(v), v) = (T(v), v)* = (T(v), v) € R. property:
v
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v)=0,VYveV, then T=0
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If T=T%and (T(v),

Proof (If T = T* and (T (v),
If u,w € V, then

v) =0,Yv eV, then T =0)

(T(u+w), u+w)—(T(u—w), u—w)

4

(T(u)a W> -

the equality holds due to self-adjointness and the fact that we are in a
real inner product space, see top of [sLibE 21], and use:

(T(w), u) 2 (w, T(u)) = (T(u), w)

again, each term on the right-hand-side is of the form (T(v), v
(T(v),v)=0VveV=(T(u),w)=0Vu,weV=T=

v); hence
0.
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Normal Operators

Definition (Normal Operator)

@ An operator on an inner product space is called normal if it commutes with its
adjoint.
@ T € L(V) is normal if
TT*=T*T

Every self-adjoint operator is normal (T*T = T2 = TT*), but the converse does not
hold:

Let T € £(F?) be the operator with matrix (wrt standard basis)
2 -3
mn =13 73
Since 3 # (—3)* the operator is not self adjoint, but
2 —3][ 2 3] [2 3]1[2 -3] _[13 o0
3 2[1-3 2] " [-3 2|]|3 2l [0 13

shows that T*T and TT* have the same matrix = T*T = TT* = T is normal.

Peter Blomgren (blomgren@sdsu.edu) 7.1. Operators on Inner Product Spaces — (25/52) Peter Blomgren (blomgren@sdsu.edu) 7.1. Operators on Inner Product Spaces — (26/52)
_Adioi Adjuint_s ) - Adioi Adjoint_s )
St Adin 74 Norns Qb Sl i Opertrs Sl Adin 7d Norms Qg Sl i Oprtr
Properties of Normal Operators Properties of Normal Operators :: Eigenvectors of T and T*
Theorem (T is Normal if-and-only-if || T(v)|| = || T*(v)| Vv € V)
* .
An operator T € £(V) is normal if and only if Theorem (For T Normal, T and T* Have the Same Eigenvectors)
Suppose T € L(V) is normal; v € V is an eigenvector of T with
NIT(W)|=T"(v)|, Vv eV eigenvalue \. Then v is also an eigenvector of T* with eigenvalue \*.
Proof (T is Normal if-and-only-if || T(v)|| = || T*(v)|| Vv € V)
* .
Let T € £(V), then Proof (For T Normal, T and T* Have the Same Eigenvectors)
Since T € L(V) is normal, so is T — A/; using the previous theorem we
Tisnormal < T*T—-TT*=0 have
& (T"T=TT")(v), v) =0 VveVv 0=[[(T =AW = [[(T =A)*W)I = [[(T" = A" N)(v)]|
& (TTW). ) = (TT*(v),v)  WveV e Ty — Aty
* *
& ((T(v), T(v)) ={(T*(v), T*(v)) VveV
& [TWIP =T VveVv ,
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Properties of Normal Operators :: Orthogonal Eigenvectors

Don't forget: Every self-adjoint operator is normal.

Theorem (Orthogonal Eigenvectors for Normal Operators)

distinct eigenvalues are orthogonal.

[ This is a fairly big deal. Consider the impact on invariant subspaces, etc... |
[ Orthogonality is the “ultimate” linear independece! Also the path to computational efficiency. |

Suppose T € L(V) is normal. Then eigenvectors of T corresponding to

Proof (Orthogonal Eigenvectors for Normal Operators)

Let (A1, v1), (A2, v2) be distinct eigen-value/vector pairs of T, then:
()\1 - >\2)<V17 Vz) = </\1V1, V2> - <V17 /\3V2>
= (T(v), v2) — (v, T*(v2))

0 [Using the definition of T*]

This shows (vi, v») =0, i.e. vi L vy,

Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

({( Live Math )))

e.g. TA-{2, 3,5, 7, 12, 14}
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Self-Adjoint and Normal Operators lejf(JiAn(;_S int O 5 Self-Adjoint and Normal Operators Part Un — The C-Spectral Theorem
The Spectral Theorem Ne -Adjoint Lperators The Spectral Theorem Part Deux — The R-Spectral Theorem
ormal Operators
Live Math :: Covid-19 Version TA-14 The Spectral Theorem
Rewind (+ Comments)

7A-14: Suppose T is a normal operator on V. Suppose also that

v,w € V satisfy the equations @ A diagonal matrix is a square matrix that is 0 everywhere except

ibly along the diagonal.
Ivil=llwl =2, T(v)=3v, T(w)=4w. possibly along the diagona
Show that || T(v + w)|| = 10. @ An ope.rator on V has‘a diagonal matrix wrt a basis if and only if
the basis consists of eigenvectors of the operator [ConprTiONS
. . . EQUIVALENT TO DIAGONALIZABILITY (NOTES#5
The given information shows that (3, v) and (4, w) are two ( )
eigen-value/vector pairs. [ORTHOGONAL EIGENVECTORS FOR NORMAL The most easily understood operators on V are those for which
OperaTORS] says that v L w (hinting at the use of the [Pyruacorean there is an orthonormal basis of V wrt which the operator has a
THEOREM])... @ diagonal matrix. These are the operators T € £(V/) such that
Putting it all together gives: there is an orthonormal basis of V' consisting of eigenvectors
of T.
IT(v+w)ll = [3v+4w| = /9v]?+ 16]w]?
= /9-4+16-4=+100 @ Next, we look at the Spectral Theorem, which characterizes these
= 10 operators as the normal operators when F = C, and as the
self-adjoint operators when F = R.
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Complex Spectral Theorem

Theorem (Complex Spectral Theorem)

Suppose F = C, and T € L(V). Then the following are
equivalent:

e T isnormal (TT*=T*T)
e V has an orthonormal basis consisting of eigenvectors of T.

e T has a diagonal matrix wrt some orthonormal basis of V.

Copyright: Creative Commans /lﬁ't_lribut n-Share Alike 2.5 Generic license
[https ://commons. wikime(‘iiafo}g/wiki/fil"e’: Fireworks4_amk. jpg]

Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

Complex Spectral Theorem

We again consider T € £(IF?) with matrix (wrt standard basis)

-

An orthonormal basis of C? consisting of eigenvectors of M(T) is
given by B(F?) = {\/ii(i, 1), \%(—i, 1)} and

M(T: B(F2)) [2+3i 0]

0 2-3i
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Self-Adjoint and Normal Operators Part Un — The C-Spectral Theorem Self-Adjoint and Normal Operators Part Un — The C-Spectral Theorem
The Spectral Theorem Part Deux — The R-Spectral Theorem The Spectral Theorem Part Deux — The R-Spectral Theorem
Complex Spectral Theorem The Real Spectral Theorem

Proof (Complex Spectral Theorem)
(c)=-(a): Suppose T has a diagonal matrix wrt some orthonormal basis, B(V) of V, i.e.

M(T;B(V)) is diagonal. M(T*;B(V)) = M(T;B(V))* is also diagonal. Rewind (Complete the Square)

Any two diagonal matrices commute, thus TT* = T*T. )
(a)=(c): Suppose TT* = T*T. [ScHUR'S THEOREM (NOTES#6)] guarantees 3 an Let b,c € R : b < 4c, then

orthogonal basis vi,..., v, of V so that 5 b 2 b?

a1 1 a1.n X +bX+C: X+§ + C—Z > 0.
M(T; (viy..oyva)) = . ) L. ) . .
0 ) In particular (x* + bx + ¢)~" is well-defined, or “(x* + bx + ¢) is an
n,n, . . ”
invertible real number. )
Now, || T(v1)||? = || T*(wv1)|]? since TT* = T*T, but
ITO)I? = fa1af
T(v)I? = a1 +lar2f + - +|ar,nl? . -
(vl 2117 + 212 21,0 Now, we replace x with a self-adjoint operator...
=>All must be zero

Next, || T(v2)||? = || T*(v2)||? shows in the same way that |ap3| = -+ =

laz,n] = 0; and in the same way, all non-diagonal elements are zero; and

therefore M(T; (v1,...,va)) is diagonal.

Also, T(v;) = aj ;vj, so the basis vector are eigenvectors < (b). o
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Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

Self-Adjoint and Normal Operators
The Spectral Theorem

Invertible Quadratic (Operator) Expressions

Theorem (Invertible Quadratic (Operator) Expressions)
Suppose T € L(V) is self-adjoint, and b,c € R : b?> < 4c, then
T>+bT +cl

is invertible. )

Proof (Invertible Quadratic (Operator) Expressions)
Let v € V'\ {0}, then
((T? + bT +cl)(v), v) (T?%(v), v) + b(T(v), v) + c(v, V)
(T(v), T(v)) + b(T(v), v) + clv|?
[T =[BTV + cllv]?

= (e - MY (- By e
> 0

\Y

[CBS (#6)]

Thus (T2 + bT +cl)(v) #0 = (T? + bT + cl) is injective = invertible.

Every operator on a finite-dimensional, nonzero, complex vector

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

Self-Adjoint and Normal Operators
The Spectral Theorem

Self-Adjoint Operators Have Eigenvalues

Rewind ([ExisTENCE oF EIGENVALUES (NOTES#5)])

space has an eigenvalue.

Theorem (Self-Adjoint Operators Have Eigenvalues)

Suppose V' # {0}, and T € L(V) is a self-adjoint operator. Then
T has an eigenvalue.

This theorem tells us something new for Real inner product spaces.

[FOR L(V): INJECTIVITY < SURJECTIVITY IN FINITE DIMENSIONS (NOTES#3.2)] ) n‘ . ns
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Self-Adjoint Operators Have Eigenvalues Proof (Self-Adjoint Operators Have Eigenvalues)

Proof (Self-Adjoint Operators Have Eigenvalues)

Let V be a real inner product space; n = dim(V), and v € V \ {0}, then Proof (Self-Adjoint Operators Have Eigenvalues)

the list of (n+ 1) vectors

( + ) Now, [INVERTIBLE QUADRATIC (OPERATOR) EXPRESSIONS] guarantees that
2 n
v, T(v), T°(v),.... T"(v) (T2+akT+Ck/),k:1,...,M
cannot be linearly independent. Jao, ..., an (not all zero): . . , .
y P = Jao, v ( ) are invertible operators, and (m > 0 since p(x) = 0 has at least one solution)
0=aov+arT(v)+axT?(v)+---+a,T"(v), m
: o= (J(T=xN)) (v

let p(x) = >_7_o akx* € Pa(R) — which makes the above statement e—l( V)

p(T)v = 0. Now, p(x) [FACTORIZATION OF A POLYNOMIAL OVER -

R (NoTes#4)] can be factored: Thus (T — A¢/l) is not injective for at least one £ € {1,...,m > 1},

which means that T has an eigenvalue.
o

3

M
p(x)=c l_I(x2 + bix + ck)
k=1

where ¢ #0; b, ¢;, \i € R; b,-2<4c,-; M4+ m>1;Vx € R.

(x — A\e)

~
Il

1
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

Self-Adjoint Operators and Invariant Subspaces

Theorem (Self-Adjoint Operators and Invariant Subspaces)

Suppose T € L(V) is self-adjoint and U is a subspace of V that is
invariant under T. Then

(a) U+t is invariant under T,
(b) T|u € L(U) is self-adjoint
(c) Tlyr € L(U™) is self-adjoint

Proof (Self-Adjoint Operators and Invariant Subspaces)
(a) Let v € Ut,u € U, then

(T(v), u) = (v, T(u)
(b) If u,v € U, then (T|y(u), v) = (T(u), v) = (u, T(v)) = (u, T|y(v))
(c) If u,v € UL, then (T|,L(u), v) = (T(u), v) = (u, T(v)) = (u, T|yL(v))

TWEY o o T(v) e Ut
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Self-Adjoint and Normal Operators
The Spectral Theorem
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Real Spectral Theorem
T, " i
. [
TheoremReaI Spectral heorem)
Suppose F =R, and T € L(V). Then the following are
equivalent:
(a) T is self-adjoint

(b) V has an orthonormal basis consisting of eigenvectors of T.

(c) T has a diagonal matrix with respect to some orthonormal
basis of V.

Copyright: Creativé Commons Attribution-Share Alike 2.5 Generic license
[https://commons .wikimedia.org/wiki/File:Fireworks4 amk.jpg]
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Self-Adjoint and Normal Operators
The Spectral Theorem
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Real Spectral Theorem

Proof (Real Spectral Theorem)

(c = a) Suppose (c) : T has a diagonal matrix with respect to some orthonormal basis
of V. A real diagonal matrix equals its transpose. Therefore T = T*, and
thus T is self-adjoint. = (a).

(a = b) If dim(V) =1, then (a = b); when dim(V) > 1, and (INDUCTIVE HYPOTH-
EsIS) that (a = b) for all real product spaces W : dim(W) < dim(V) — Let
(a) T € L(V) be self-adjoint, and let u be an eigenvector of T with |lu]| = 1.
[SELF-ADJOINT OPERATORS HAVE EIGENVALUES]

Then U = span(u) is a 1-D subspace of V, invariant under T; T|UJ_
is self-adjoint [SELF-ADJOINT OPERATORS AND INVARIANT SUBSPACES|;
dim(U+t) = dim(V) — 1 < dim(V); therefore 3 an orthonormal basis of
U+ consisting of eigenvectors of T|y L. Adding u to this basis given an or-
thonormal basis of V consisting of eigenvectors of T. = (b)

(b = ¢) M(T) with respect to an orthonormal eigen-basis of V is a diagonal matrix.
(That’s the point of finding an eigen-basis!)
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Real and Complex Spectral Theorems

Rewind (Complex Spectral Theorem)

Suppose F = C, and T € L(V). Then the following are equivalent:
@ Tisnormal (TT*=T*T)
@ V has an orthonormal basis consisting of eigenvectors of T.

@ T has a diagonal matrix wrt some orthonormal basis of V.

Rewind (Real Spectral Theorem)

Suppose F =R, and T € L(V). Then the following are equivalent:
@ T is self-adjoint (T = T*)
@ V has an orthonormal basis consisting of eigenvectors of T.

@ T has a diagonal matrix wrt some orthonormal basis of V.
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Real and Complex Spectral Theorems “Preview”

Comment (Complex Spectral Theorem)

If F = C, then the Complex Spectral Theorem gives a complete Preview (Normal Operators and Invariant Subspaces)

description of the normal operators on V. . ) )
Suppose V is an inner product space, T € £(V) is normal, and U

A complete description of the self-adjoint operators on V then is a subspace of V/ invariant under T. Then

easily follows — they are the normal operators on V whose

eigenvalues all are real. U™ is invariant under T;

(a)

(b) U is invariant under T%;
Comment (Real Spectral Theorem) ©) (T|v)* = (T9)|u;

(d)

d) T|y € L(U), and T|yr € L(U*) are normal operators.

If F =R, then the Real Spectral Theorem gives a complete
description of the self-adjoint operators on V.

A a complete description of the normal operators on V are
forthcoming.

[NORMAL OPERATORS AND INVARIANT SUBSPACES (NOTES#7.1-PREVIEW)]
_ASAN DI
i
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7B-T7: Suppose V is a complex inner product space and T € L(V) is a
normal operator such that T° = T2. Prove that T is self-adjoint,

and T2 =T. Note: There's nothing magical about 8, and 9...
<<< Live Math >>> By [CST], there exists an orthonormal basis uy, ..., u, of V such that
T(uk) = Mkuk (where A\g, k =1,..., n are the eigenvalues).
e.g. 7B—{3, 7.0 15} Applying T repeatedly on both sides of the eigen-relation gives

T8(uk) = N8uy, and T°(ux) = AJuk; which by the given property
T° = T8, means A% = \}. The only possibilities are A\, € {0, 1} € R.

Since the eigenvalues are real, T is self-adjoint. Also,

T2(uk) = /\,2(uk = )\kuk = T(Uk)

since A, €{0,1}

Hence, T2 =T.
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Suggested Problems
Assigned Homework
Supplements

Problems, Homework, and Supplements

Suggested Problems

7.A—1,2,3,456,7 12, 14

7.B—2,3,6,709 15

Suggested Problems
Assigned Homework
Supplements

Problems, Homework, and Supplements

Assigned Homework HW+#7.1, Due Date in Canvas/Gradescope

7.A—1, 4,6, 14

7.B—2, 6

Note: Assignment problems are not official and subject to change
until the first lecture on the chapter has been delivered (or
virtually “scheduled.”)

Upload homework to www.Gradescope.com
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Problems, Homework, and Supplements Assigned Homework Problems, Homework, and Supplements Assigned Homework
Supplements Supplements
Explicit References to Previous Theorems or Definitions (with count) Explicit References to Previous Theorems or Definitions
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