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What We Know So Far — Operators, T ∈ L(V )

Some operators are diagonalizable, i.e. ∃ B(V ) so that
M(T ,B(V )) is diagonal

⇒ V =
dim(V )⊕

k=1
Uk =

m⊕

k=1
E (λk ,T ), m ≤ dim(V )

It is always possible to find an orthonormal basis
B(V ) = b1, . . . , bn so that M(T ,B(V )) is upper triangular

⇒ Wk = span(b1, . . . , bk) are nested subspaces: Wk−1 ⊂ Wk ,
dim(Wk) = k

We now, in the next 8 lectures, seek to build better
understanding in the huge void between “some are
diagonalizable” and “all are upper triangularizable.”
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Student Learning Targets, and Objectives SLOs: Operators on Inner Product Spaces

Student Learning Targets, and Objectives

Target Adjoint [Operator] — T ∗

Objective Be able to state the definition of the adjoint [operator]; and
manipulate inner product expressions to obtain the adjoint T ∗

given an operator T
Objective Know the definition of, and useful properties of Self-Adjoint,

and Normal, Operators

Target Real and Complex Spectral Theorems
Objective Know under what circumstances operators over the Real and

Complex fields have orthonormal eigenbases; with respect to
which the matrix of the operator is diagonal.

Time-Target: 2×75-minute lectures.
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Self-Adjoint and Normal Operators
The Spectral Theorem

Introduction

We now look at operators T ∈ L(V ) on inner product spaces,
V = {vector space, with 〈v , w〉 : V × V 7→ F}.

⇑

Inner Products ⇒ Norms, Orthogonality, Gram-Schmidt, RRT

⇑
Linear Maps
Operators ⇒ Eigen-Values/Vectors; Invariant Subspaces

⇑

Finite Dimensional Vector Spaces
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Self-Adjoint and Normal Operators
The Spectral Theorem

Adjoints
Self-Adjoint Operators
Normal Operators

Adjoints

Definition (Adjoint, T ∗)
Suppose T ∈ L(V ,W ). The adjoint of T is the function
T ∗ : W 7→ V , such that ∀v ∈ V , and ∀w ∈ W :

〈Tv , w〉 = 〈v , T ∗w〉.

T ∗w is uniquely defined due to [Riesz Representation
Theorem (Notes#6)]

Note that in the case when V 6= W , the inner product 〈Tv , w〉 is
on the space W , and 〈v , T ∗w〉 is on the space V .
We will shortly show that T ∗ ∈ L(W ,V ), i.e. it is a linear map.

There is another “adjoint” in linear algebra... we will not speak about it, shhhhhh!!!
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Self-Adjoint and Normal Operators
The Spectral Theorem

Adjoints
Self-Adjoint Operators
Normal Operators

Example#1: Find the Adjoint

Example (Find T ∗ — )
Let T ∈ L(R3,R2) be defined by

T (x1, x2, x3) = (x2 + 3x3, 2x1).

Solution: T ∗ : R2 7→ R3, fix a point (y1, y2) ∈ R2; then
∀(x1, x2, x3) ∈ R3:

〈(x1, x2, x3), T ∗(y1, y2)〉 = 〈T (x1, x2, x3), (y1, y2)〉
= 〈(x2 + 3x3, 2x1), (y1, y2)〉
= x2y1 + 3x3y1 + 2x1y2
= 〈(x1, x2, x3), (2y2, y1, 3y1)〉

T ∗(y1, y2) = (2y2, y1, 3y1)
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Self-Adjoint and Normal Operators
The Spectral Theorem

Adjoints
Self-Adjoint Operators
Normal Operators

Example#2: Find the Adjoint

Example (Find T ∗ — )
Fix u ∈ V , and x ∈ W . Let T ∈ L(V ,W ) be defined by

Tv = 〈v , u〉x
Solution: Fix w ∈ W . Then ∀v ∈ V , we have

〈v , T ∗w〉 = 〈Tv , w〉
= 〈〈v , u〉x , w〉
= 〈v , u〉〈x , w〉
= 〈v , 〈x , w〉∗u〉
= 〈v , 〈w , x〉u〉

T ∗w = 〈w , x〉u

In both examples, T ∗ turned out to be a linear map.
This is true in general:
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Self-Adjoint and Normal Operators
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The Adjoint is a Linear Map

Theorem (The Adjoint is a Linear Map)
If T ∈ L(V ,W ), then T ∗ ∈ L(W ,V ).

Proof (The Adjoint is a Linear Map)
Suppose T ∈ L(V ,W ). Fix w1,w2 ∈ W , if v ∈ V , then

〈v , T∗(w1 + w2)〉 = 〈Tv , w1 + w2〉 = 〈Tv , w1〉 + 〈Tv , w2〉
= 〈v , T∗w1〉 + 〈v , T∗w2〉 = 〈v , T∗w1 + T∗w2〉

T∗(w1 + w2) = T∗w1 + T∗w2 [Additivity (Notes#3.1)]

Next, fix w ∈ W , and λ ∈ F, if v ∈ V , then
〈v , T∗(λw)〉 = 〈Tv , λw〉 = λ∗〈Tv , w〉

= λ∗〈v , T∗w〉 = 〈v , λT∗w〉

T∗(λw) = λT∗w [Homogeneity (Notes#3.1)]

Thus, T∗ is a linear map.
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Self-Adjoint and Normal Operators
The Spectral Theorem

Adjoints
Self-Adjoint Operators
Normal Operators

Properties of the Adjoint

Properties (Properties of the Adjoint)
(S + T )∗ = S∗ + T ∗ ∀S ,T ∈ L(V ,W );
(λT )∗ = λ∗T ∗ ∀λ ∈ F, and ∀T ∈ L(V ,W );
(T ∗)∗ = T ∀T ∈ L(V ,W );
I ∗ = I , where I is the identity operator on V ;
(ST )∗ = T ∗S∗ ∀T ∈ L(V ,W ), ∀S ∈ L(W ,U).

The proofs are standard plug-into-the-definitions-and-move-things-
around; and are left as an “exercise.”

These properties probably look vaguely familiar?
(Think about matrices..... and transposes?)
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Self-Adjoint and Normal Operators
The Spectral Theorem

Adjoints
Self-Adjoint Operators
Normal Operators

Null Space and Range of the Adjoint

Theorem (Null Space and Range of T ∗)
Suppose T ∈ L(V ,W ), then:

(a) null(T ∗) = (range(T ))⊥

(b) range(T ∗) = (null(T ))⊥

(c) null(T ) = (range(T ∗))⊥

(d) range(T ) = (null(T ∗))⊥

Proof (Null Space and Range of T ∗)
(a) Let w ∈ W , then:

w ∈ null(T ∗) ⇐⇒ T ∗(w) = 0
⇐⇒ 〈v , T ∗(w)〉 = 0, ∀v ∈ V

⇐⇒ 〈T (v), w〉 = 0, ∀v ∈ V

⇐⇒ w ∈ (range(T ))⊥

(b), (c), (d) similar...
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Self-Adjoint and Normal Operators
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Null Space and Range of the Adjoint, Visualized

Range(T)

null(T)

Ortho−Complement
null(T)

Ortho−Complement
Range(T)

T

T

T−star

T−star
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Self-Adjoint and Normal Operators
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Conjugate Transpose, Hermitian Transpose

Definition (Conjugate Transpose)
The conjugate transpose of an (m × n) matrix is the (n × m)
matrix obtained by interchanging the rows and columns and then
taking the complex conjugate of each entry; i.e. aij 7→ a∗

ji .

Notation (Conjugate Transpose)
For A ∈ Fm×n, we let A∗ ∈ Fn×m be the conjugate transpose of A.
Sometimes you see the notation AH to indicate the Hermitian
(Conjugate) transpose.

When F = R, the conjugate transpose is just the transpose.
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The Matrix of T ∗

Theorem (The Matrix of T ∗)
Let T ∈ L(V ,W ), and let v1, . . . , vn be an orthonormal basis of V , and
w1, . . . ,wm be an orthonormal basis of W . Then
M(T ∗, (w1, . . . ,wm), (v1, . . . , vn)) = M(T , (v1, . . . , vn), (w1, . . . ,wm))∗

In the above, it is absolutely essential for the bases of V and W
to be orthonormal.

The adjoint of a linear map itself does not depend on the choice
of basis; but the matrices of a linear map and its adjoint depend
strongly on the choice of bases. This is one of the compelling reasons
why we develop our linear algebra toolbox in a more abstract rather
than matrix-centered way.

Peter Blomgren 〈blomgren@sdsu.edu〉 7.1. Operators on Inner Product Spaces — (14/52)

Self-Adjoint and Normal Operators
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The Matrix of T ∗

Proof (The Matrix of T ∗)
The entries of M(T , (v1, . . . , vn), (w1, . . . ,wm)) are the
coefficients of

T (vk) = 〈T (vk), w1〉w1 + · · · + 〈T (vk), wm〉wm

i.e. M(T )ij = 〈T (vi ), wj〉.
Likewise, the entries of M(T ∗, (w1, . . . ,wm), (v1, . . . , vn)) are the
coefficients of

T ∗(wk) = 〈T ∗(wk), v1〉v1 + · · · + 〈T ∗(wk), vn〉vn.

M(T∗)ij = 〈T∗(wi ), vj 〉 = 〈wi , T (vj )〉 = (〈T (vj ), wi 〉)∗ = (M(T )ji )∗
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Self-Adjoint Operators

We now consider operators T ∈ L(V ), on inner product spaces
(i.e. vector spaces with an inner product).

Definition (Self-Adjoint (Hermitian))
An operator T ∈ L(V ) is called self-adjoint if T = T ∗, i.e.
T ∈ L(V ) is self-adjoint if and only if

〈T (v), w〉 = 〈v , T (w)〉
∀v ,w ∈ V .
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Sources of Hermitian / Self-Adjoint Operators

Comment
Physicists are sometimes(?) a bit careless with mathematical
language, but in particular the field of quantum mechanics is full of
Hermitian / Self-Adjoint operators — usually on
infinite-dimensional Hilbert spaces.

Comment
Roughly speaking, the study of “linear algebra” on
infinite-dimensional spaces is branded “Functional Analysis.”
—
Functional Analysis is the meeting point of linear algebra and anal-
ysis, with a good measurefunny? of topology sprinkled in.
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Eigenvalues of Self-Adjoint Operators are Real

! Theorem (Eigenvalues of Self-Adjoint Operators are Real)
Every eigenvalue of a self-adjoint operator is real. !

Proof (Eigenvalues of Self-Adjoint Operators are Real)
Suppose T ∈ L(V ) is self-adjoint. Let λ be an eigenvalue of T ,
and let v be an eigenvector: T (v) = λv . Then

λ‖v‖2 = 〈λv , v〉 = 〈T (v), v〉 = 〈v , T (v)〉 = 〈v , λv〉 = λ∗‖v‖2

Since λ = λ∗, λ ∈ R.

Note that if we are restricting ourselves to F = R then the
theorem is true by definition (restriction), so it is of interest (use)
only in the case F = C.
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Self-Adjoint and Normal Operators
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Over C, T (v) ⊥ v ∀v ∈ V Only for the 0-Operator

Theorem (Over C, T (v) ⊥ v ∀v ∈ V Only for the 0-Operator)
Suppose V is a complex inner products space, and T ∈ L(V ). Then if
〈T (v), v〉 = 0 ∀v ∈ V , then T = 0.

Note that the theorem is not true for real inner products spaces: consider
the rotation by π/2 in R2.
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Over C, T (v) ⊥ v ∀v ∈ V Only for the 0-Operator

Proof (Over C, T (v) ⊥ v ∀v ∈ V Only for the 0-Operator)
We need to show 〈T (u), w〉 = 0, ∀u,w ∈ V . We rewrite this inner
product in an appropriately complicated way:

〈T (u), w〉 = 〈T (u + w), u + w〉 − 〈T (u − w), u − w〉
4

+i
〈T (u + iw), u + iw〉 − 〈T (u − iw), u − iw〉

4

each term on the right-hand-side is of the form 〈T (v), v〉, so if
〈T (v), v〉 = 0 ∀v ∈ V , then it follows that 〈T (u), w〉 = 0,
∀u,w ∈ V , and thus T = 0 (let w = T (u)).
For peace of mind, let’s just verify the equality!
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Post-Proof: Verifying the Equality

+1 〈T (u + w), u + w〉 = 〈T (u), u〉 + 〈T (u), w〉 + 〈T (w), u〉 + 〈T (w), w〉
−1 〈T (u − w), u − w〉 = 〈T (u), u〉 − 〈T (u), w〉 − 〈T (w), u〉 + 〈T (w), w〉

= 2〈T (u), w〉 + 2〈T (w), u〉

+i 〈T (u + iw), u + iw〉 = 〈T (u), u〉 + 〈T (u), iw〉 + 〈T (iw), u〉 + 〈T (iw), iw〉
= 〈T (u), u〉 − i〈T (u), w〉 + i〈T (w), u〉 + 〈T (w), w〉

−i 〈T (u − iw), u − iw〉 = 〈T (u), u〉 + 〈T (u), −iw〉 + 〈T (−iw), u〉 + 〈T (−iw), −iw〉
= 〈T (u), u〉 + i〈T (u), w〉 − i〈T (w), u〉 + 〈T (w), w〉

= 2〈T (u), w〉 − 2〈T (w), u〉

= 4〈T (u), w〉
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Over C, 〈T (v), v〉 ∈ R ∀v ∈ V Only for Self-Adjoint Operators

“Self-adjoint operators behave like real numbers...”:

Theorem (Over C, 〈T (v), v〉 ∈ R ∀v ∈ V Only for Self-Adjoint Operators)

Suppose V is a complex inner product space and T ∈ L(V ). Then T is
self-adjoint if and only if

〈T (v), v〉 ∈ R

∀v ∈ V .
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Over C, 〈T (v), v〉 ∈ R ∀v ∈ V Only for Self-Adjoint Operators

Proof (Over C, 〈T (v), v〉 ∈ R ∀v ∈ V Only for Self-Adjoint Operators)
Let v ∈ V , then

〈T (v), v〉 − 〈T (v), v〉∗ = 〈T (v), v〉 − 〈v , T (v)〉
= 〈T (v), v〉 − 〈T ∗(v), v〉
= 〈(T − T ∗)(v), v〉

⇐ If 〈T (v), v〉 ∈ R ∀v ∈ V , then the left-hand-side is 0;
so 〈(T − T ∗)(v), v〉 = 0 ⇒ T = T ∗

[Over C, T (v) ⊥ v ∀v ∈ V Only for the 0-Operator]

⇒ If T = T ∗, then the right-hand-side is 0.
Thus 〈T (v), v〉 = 〈T (v), v〉∗ ⇒ 〈T (v), v〉 ∈ R.
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If T = T ∗ and 〈T (v), v〉 = 0, ∀v ∈ V , then T = 0.

On a real inner product space V , a nonzero operator T might satisfy
〈T (v), v〉 = 0, ∀v ∈ V . However, this cannot happen for a self-adjoint
operator:

Theorem (If T = T ∗ and 〈T (v), v〉 = 0, ∀v ∈ V , then T = 0)
Suppose T is a self-adjoint operator on V such that
〈T (v), v〉 = 0, ∀v ∈ V , then T = 0.

[Over C, T (v) ⊥ v ∀v ∈ V Only for the 0-Operator] covered the case for
complex inner product spaces without the self-adjointness property; so we
only have to cover the real product spaces with the self-adjointness
property:
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If T = T ∗ and 〈T (v), v〉 = 0, ∀v ∈ V , then T = 0

Proof (If T = T ∗ and 〈T (v), v〉 = 0, ∀v ∈ V , then T = 0)
If u,w ∈ V , then

〈T (u), w〉 = 〈T (u + w), u + w〉 − 〈T (u − w), u − w〉
4

the equality holds due to self-adjointness and the fact that we are in a
real inner product space, see top of [slide 21], and use:

〈T (w), u〉 sa= 〈w , T (u)〉 R= 〈T (u), w〉

again, each term on the right-hand-side is of the form 〈T (v), v〉; hence
〈T (v), v〉 = 0 ∀v ∈ V ⇒ 〈T (u), w〉 = 0 ∀u,w ∈ V ⇒ T = 0.
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Normal Operators

Definition (Normal Operator)
An operator on an inner product space is called normal if it commutes with its
adjoint.
T ∈ L(V ) is normal if

TT∗ = T∗T

Every self-adjoint operator is normal (T∗T = T 2 = TT∗), but the converse does not
hold:

Example (Non Self-Adjoint, but Normal Operator)

Let T ∈ L(F2) be the operator with matrix (wrt standard basis)

M(T ) =
�

2 −3
3 2

�

Since 3 6= (−3)∗ the operator is not self adjoint, but
�

2 −3
3 2

� �

2 3
−3 2

�

=
�

2 3
−3 2

� �

2 −3
3 2

�

=
�

13 0
0 13

�

shows that T∗T and TT∗ have the same matrix ⇒ T∗T = TT∗ ⇒ T is normal.
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Properties of Normal Operators

Theorem (T is Normal if-and-only-if ‖T (v)‖ = ‖T ∗(v)‖ ∀v ∈ V )
An operator T ∈ L(V ) is normal if and only if

‖T (v)‖ = ‖T ∗(v)‖, ∀v ∈ V

Proof (T is Normal if-and-only-if ‖T (v)‖ = ‖T ∗(v)‖ ∀v ∈ V )
Let T ∈ L(V ), then

T is normal ⇔ T ∗T − TT ∗ = 0
⇔ 〈(T ∗T − TT ∗)(v), v〉 = 0 ∀v ∈ V

⇔ 〈(T ∗T (v), v〉 = 〈(TT ∗(v), v〉 ∀v ∈ V

⇔ 〈(T (v), T (v)〉 = 〈(T ∗(v), T ∗(v)〉 ∀v ∈ V

⇔ ‖T (v)‖2 = ‖T ∗(v)‖2 ∀v ∈ V
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Properties of Normal Operators :: Eigenvectors of T and T ∗

Theorem (For T Normal, T and T ∗ Have the Same Eigenvectors)
Suppose T ∈ L(V ) is normal; v ∈ V is an eigenvector of T with
eigenvalue λ. Then v is also an eigenvector of T ∗ with eigenvalue λ∗.

Proof (For T Normal, T and T ∗ Have the Same Eigenvectors)
Since T ∈ L(V ) is normal, so is T − λI ; using the previous theorem we
have

0 = ‖(T − λI )(v)‖ = ‖(T − λI )∗(v)‖ = ‖(T ∗ − λ∗I )(v)‖
hence T ∗v = λ∗v .
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Properties of Normal Operators :: Orthogonal Eigenvectors

Don’t forget: Every self-adjoint operator is normal.

!
Theorem (Orthogonal Eigenvectors for Normal Operators)
Suppose T ∈ L(V ) is normal. Then eigenvectors of T corresponding to
distinct eigenvalues are orthogonal.
[ This is a fairly big deal. Consider the impact on invariant subspaces, etc... ]
[ Orthogonality is the “ultimate” linear independece! Also the path to computational efficiency. ]

!

Proof (Orthogonal Eigenvectors for Normal Operators)
Let (λ1, v1), (λ2, v2) be distinct eigen-value/vector pairs of T , then:

(λ1 − λ2)〈v1, v2〉 = 〈λ1v1, v2〉 − 〈v1, λ∗
2v2〉

= 〈T (v1), v2〉 − 〈v1, T ∗(v2)〉
= 0 [Using the definition of T∗]

This shows 〈v1, v2〉 = 0, i.e. v1 ⊥ v2.
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〈〈〈 Live Math 〉〉〉

e.g. 7A-{2, 3, 5, 7, 12, 14}
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Live Math :: Covid-19 Version 7A-14

7A-14: Suppose T is a normal operator on V . Suppose also that
v ,w ∈ V satisfy the equations

‖v‖ = ‖w‖ = 2, T (v) = 3v , T (w) = 4w .

Show that ‖T (v + w)‖ = 10.

The given information shows that (3, v) and (4,w) are two
eigen-value/vector pairs. [Orthogonal Eigenvectors for Normal
Operators] says that v ⊥ w (hinting at the use of the [Pythagorean
Theorem])...
Putting it all together gives:

‖T (v + w)‖ = ‖3v + 4w‖ =
√

9‖v‖2 + 16‖w‖2

=
√

9 · 4 + 16 · 4 =
√

100
= 10
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

The Spectral Theorem

Rewind (+ Comments)

A diagonal matrix is a square matrix that is 0 everywhere except
possibly along the diagonal.
An operator on V has a diagonal matrix wrt a basis if and only if
the basis consists of eigenvectors of the operator [Conditions
Equivalent to Diagonalizability (Notes#5)]

The most easily understood operators on V are those for which
there is an orthonormal basis of V wrt which the operator has a
diagonal matrix. These are the operators T ∈ L(V ) such that
there is an orthonormal basis of V consisting of eigenvectors
of T .

Next, we look at the Spectral Theorem, which characterizes these
operators as the normal operators when F = C, and as the
self-adjoint operators when F = R.
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

Complex Spectral Theorem

Theorem (Complex Spectral Theorem)
Suppose F = C, and T ∈ L(V ). Then the following are
equivalent:

T is normal (TT ∗ = T ∗T )
V has an orthonormal basis consisting of eigenvectors of T .
T has a diagonal matrix wrt some orthonormal basis of V .

Copyright: Creative Commons Attribution-Share Alike 2.5 Generic license
[https://commons.wikimedia.org/wiki/File:Fireworks4 amk.jpg]
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

Complex Spectral Theorem

Example (T ∈ L(F2) — Normal, but not Self-adjoint)
We again consider T ∈ L(F2) with matrix (wrt standard basis)

M(T ) =
[
2 −3
3 2

]

An orthonormal basis of C2 consisting of eigenvectors of M(T ) is
given by B(F2) =

{
1√
2(i , 1), 1√

2(−i , 1)
}

, and

M(T ;B(F2)) =
[
2 + 3i 0

0 2 − 3i

]
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

Complex Spectral Theorem

Proof (Complex Spectral Theorem)
(c)⇒(a): Suppose T has a diagonal matrix wrt some orthonormal basis, B(V ) of V , i.e.

M(T ;B(V )) is diagonal. M(T∗;B(V )) = M(T ;B(V ))∗ is also diagonal.
Any two diagonal matrices commute, thus TT∗ = T∗T .

(a)⇒(c): Suppose TT∗ = T∗T . [Schur’s Theorem (Notes#6)] guarantees ∃ an
orthogonal basis v1, . . . , vn of V so that

M(T ; (v1, . . . , vn)) =

2

6

4

a1,1 . . . a1,n

. . .
...

0 an,n

3

7

5

Now, ‖T (v1)‖2 = ‖T∗(v1)‖2 since TT∗ = T∗T , but
‖T (v1)‖2 = |a1,1|2

‖T∗(v1)‖2 = |a1,1|2 + |a1,2|2 + · · · + |a1,n|2
| {z }

⇒All must be zero

Next, ‖T (v2)‖2 = ‖T∗(v2)‖2 shows in the same way that |a2,3| = · · · =
|a2,n| = 0; and in the same way, all non-diagonal elements are zero; and
therefore M(T ; (v1, . . . , vn)) is diagonal.
Also, T (vi ) = ai,ivi , so the basis vector are eigenvectors ⇔ (b).
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

The Real Spectral Theorem

Rewind (Complete the Square)
Let b, c ∈ R : b2 < 4c , then

x2 + bx + c =
(
x + b

2

)2
+
(
c − b2

4

)
> 0.

In particular (x2 + bx + c)−1 is well-defined, or “(x2 + bx + c) is an
invertible real number.”

Now, we replace x with a self-adjoint operator...
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

Invertible Quadratic (Operator) Expressions

Theorem (Invertible Quadratic (Operator) Expressions)
Suppose T ∈ L(V ) is self-adjoint, and b, c ∈ R : b2 < 4c , then

T 2 + bT + cI

is invertible.

Proof (Invertible Quadratic (Operator) Expressions)
Let v ∈ V \ {0}, then

〈(T 2 + bT + cI )(v), v〉 = 〈T 2(v), v〉 + b〈T (v), v〉 + c〈v , v〉
= 〈T (v), T (v)〉 + b〈T (v), v〉 + c‖v‖2

≥ ‖T (v)‖2 − |b| ‖T (v)‖ ‖v‖ + c‖v‖2 [CBS (#6)]

=
�

‖T (v)‖ − |b| ‖v‖
2

�2
+
�

c − b2

4

�

‖v‖2

> 0.

Thus (T 2 + bT + cI )(v) 6= 0 ⇒ (T 2 + bT + cI ) is injective ⇒ invertible.
[For L(V ): Injectivity ⇔ Surjectivity in Finite Dimensions (Notes#3.2)]
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

Self-Adjoint Operators Have Eigenvalues

!
Rewind ([Existence of Eigenvalues (Notes#5)])
Every operator on a finite-dimensional, nonzero, complex vector
space has an eigenvalue.

!

Theorem (Self-Adjoint Operators Have Eigenvalues)
Suppose V 6= {0}, and T ∈ L(V ) is a self-adjoint operator. Then
T has an eigenvalue.

This theorem tells us something new for Real inner product spaces.
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

Self-Adjoint Operators Have Eigenvalues

Proof (Self-Adjoint Operators Have Eigenvalues)
Let V be a real inner product space; n = dim(V ), and v ∈ V \ {0}, then
the list of (n + 1) vectors

v ,T (v),T 2(v), . . . ,T n(v)
cannot be linearly independent. ⇒ ∃a0, . . . , an (not all zero):

0 = a0v + a1T (v) + a2T
2(v) + · · · + anT

n(v),
let p(x) =

∑n
k=0 akx

k ∈ Pn(R) — which makes the above statement
p(T )v = 0. Now, p(x) [Factorization of a Polynomial Over
R (Notes#4)] can be factored:

p(x) = c
M∏

k=1
(x2 + bkx + ck)

m∏

ℓ=1
(x − λℓ)

where c 6= 0; bi , ci , λi ∈ R; b2
i < 4ci ; M + m ≥ 1; ∀x ∈ R.
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

Proof (Self-Adjoint Operators Have Eigenvalues)

Proof (Self-Adjoint Operators Have Eigenvalues)
Now, [Invertible Quadratic (Operator) Expressions] guarantees that

(T 2 + akT + ck I ), k = 1, . . . ,M

are invertible operators, and (m > 0 since p(x) = 0 has at least one solution)

0 =
(

m∏

ℓ=1
(T − λℓI )

)
(v)

Thus (T − λℓI ) is not injective for at least one ℓ ∈ {1, . . . ,m ≥ 1};
which means that T has an eigenvalue.
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

Self-Adjoint Operators and Invariant Subspaces

Theorem (Self-Adjoint Operators and Invariant Subspaces)
Suppose T ∈ L(V ) is self-adjoint and U is a subspace of V that is
invariant under T . Then
(a) U⊥ is invariant under T ;
(b) T |U ∈ L(U) is self-adjoint
(c) T |U⊥ ∈ L(U⊥) is self-adjoint

Proof (Self-Adjoint Operators and Invariant Subspaces)

(a) Let v ∈ U⊥, u ∈ U, then

〈T (v), u〉 sa= 〈v , T (u)〉 T (u)∈U= 0 ⇒ T (v) ∈ U⊥

(b) If u, v ∈ U, then 〈T |U(u), v〉 = 〈T (u), v〉 = 〈u, T (v)〉 = 〈u, T |U(v)〉

(c) If u, v ∈ U⊥, then 〈T |U⊥ (u), v〉 = 〈T (u), v〉 = 〈u, T (v)〉 = 〈u, T |U⊥ (v)〉
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

Real Spectral Theorem

Theorem (Real Spectral Theorem)
Suppose F = R, and T ∈ L(V ). Then the following are
equivalent:
(a) T is self-adjoint
(b) V has an orthonormal basis consisting of eigenvectors of T .
(c) T has a diagonal matrix with respect to some orthonormal

basis of V .

Copyright: Creative Commons Attribution-Share Alike 2.5 Generic license
[https://commons.wikimedia.org/wiki/File:Fireworks4 amk.jpg]
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

Real Spectral Theorem

Proof (Real Spectral Theorem)
(c ⇒ a) Suppose (c) : T has a diagonal matrix with respect to some orthonormal basis

of V . A real diagonal matrix equals its transpose. Therefore T = T∗, and
thus T is self-adjoint. ⇒ (a).

(a ⇒ b) If dim(V ) = 1, then (a ⇒ b); when dim(V ) > 1, and (Inductive Hypoth-
esis) that (a ⇒ b) for all real product spaces W : dim(W ) < dim(V ) — Let
(a) T ∈ L(V ) be self-adjoint, and let u be an eigenvector of T with ‖u‖ = 1.
[Self-Adjoint Operators Have Eigenvalues]
Then U = span(u) is a 1-D subspace of V , invariant under T ; T |U⊥
is self-adjoint [Self-Adjoint Operators and Invariant Subspaces];
dim(U⊥) = dim(V ) − 1 < dim(V ); therefore ∃ an orthonormal basis of
U⊥ consisting of eigenvectors of T |U⊥ . Adding u to this basis given an or-
thonormal basis of V consisting of eigenvectors of T . ⇒ (b)

(b ⇒ c) M(T ) with respect to an orthonormal eigen-basis of V is a diagonal matrix.
(That’s the point of finding an eigen-basis!)
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

Real and Complex Spectral Theorems

Rewind (Complex Spectral Theorem)
Suppose F = C, and T ∈ L(V ). Then the following are equivalent:

T is normal (TT ∗ = T ∗T )
V has an orthonormal basis consisting of eigenvectors of T .
T has a diagonal matrix wrt some orthonormal basis of V .

Rewind (Real Spectral Theorem)
Suppose F = R, and T ∈ L(V ). Then the following are equivalent:

T is self-adjoint (T = T ∗)
V has an orthonormal basis consisting of eigenvectors of T .
T has a diagonal matrix wrt some orthonormal basis of V .
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

Real and Complex Spectral Theorems

Comment (Complex Spectral Theorem)
If F = C, then the Complex Spectral Theorem gives a complete
description of the normal operators on V .
A complete description of the self-adjoint operators on V then
easily follows — they are the normal operators on V whose
eigenvalues all are real.

Comment (Real Spectral Theorem)
If F = R, then the Real Spectral Theorem gives a complete
description of the self-adjoint operators on V .
A a complete description of the normal operators on V are
forthcoming.
[Normal Operators and Invariant Subspaces (Notes#7.1–Preview)]
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

“Preview”

Preview (Normal Operators and Invariant Subspaces)
Suppose V is an inner product space, T ∈ L(V ) is normal, and U
is a subspace of V invariant under T . Then

(a) U⊥ is invariant under T ;
(b) U is invariant under T ∗;
(c) (T |U)∗ = (T ∗)|U ;
(d) T |U ∈ L(U), and T |U⊥ ∈ L(U⊥) are normal operators.
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

〈〈〈 Live Math 〉〉〉

e.g. 7B-{3, 7, 9, 15}
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Self-Adjoint and Normal Operators
The Spectral Theorem

Part Un — The C-Spectral Theorem
Part Deux — The R-Spectral Theorem

Live Math :: Covid-19 Version 7B-7

7B-7: Suppose V is a complex inner product space and T ∈ L(V ) is a
normal operator such that T 9 = T 8. Prove that T is self-adjoint,
and T 2 = T . Note: There’s nothing magical about 8, and 9...

By [CST], there exists an orthonormal basis u1, . . . , un of V such that
T (uk) = λkuk (where λk , k = 1, . . . , n are the eigenvalues).
Applying T repeatedly on both sides of the eigen-relation gives
T 8(uk) = λ8

kuk , and T 9(uk) = λ9
kuk ; which by the given property

T 9 = T 8, means λ8
k = λ9

k . The only possibilities are λk ∈ {0, 1} ∈ R.
Since the eigenvalues are real, T is self-adjoint. Also,

T 2(uk) = λ2
kuk = λkuk︸ ︷︷ ︸

since λk∈{0, 1}

= T (uk)

Hence, T 2 = T .
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Problems, Homework, and Supplements
Suggested Problems
Assigned Homework
Supplements

Suggested Problems

7.A — 1, 2, 3, 4, 5, 6, 7, 12, 14

7.B — 2, 3, 6, 7, 9, 15
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Problems, Homework, and Supplements
Suggested Problems
Assigned Homework
Supplements

Assigned Homework HW#7.1, Due Date in Canvas/Gradescope

7.A—1, 4, 6, 14

7.B—2, 6

Note: Assignment problems are not official and subject to change
until the first lecture on the chapter has been delivered (or
virtually “scheduled.”)

Upload homework to www.Gradescope.com
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Problems, Homework, and Supplements
Suggested Problems
Assigned Homework
Supplements

Explicit References to Previous Theorems or Definitions (with count)

1

2 3-1 3-2 4

5

67-17-28

2
1

1

2

3
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Problems, Homework, and Supplements
Suggested Problems
Assigned Homework
Supplements

Explicit References to Previous Theorems or Definitions

1

2 3-1 3-2 4

5

67-17-28
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