	Outline
Math 524: Linear Algebra Notes #7.1 — Operators on Inner Product Spaces	 Student Learning Targets, and Objectives SLOs: Operators on Inner Product Spaces Self-Adjoint and Normal Operators
<section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	 Adjoints Self-Adjoint Operators Normal Operators The Spectral Theorem Part Un — The C-Spectral Theorem Part Deux — The R-Spectral Theorem Problems, Homework, and Supplements Suggested Problems Assigned Homework Supplements
Peter Blomgren (blomgren@sdsu.edu) 7.1. Operators on Inner Product Spaces (1/52)	Peter Blomgren (blomgren@sdsu.edu) 7.1. Operators on Inner Product Spaces - (2/52)
	Student Learning Targets, and Objectives SLOs: Operators on Inner Product Spaces
What We Know So Far — Operators, $ \mathcal{T} \in \mathcal{L}(V)$	Student Learning Targets, and Objectives SLOs: Operators on Inner Product Spaces Student Learning Targets, and Objectives
 What We Know So Far — Operators, T ∈ L(V) Some operators are diagonalizable, <i>i.e.</i> ∃ 𝔅(V) so that M(T,𝔅(V)) is diagonal ∀ = ⊕ ⊕ ⊕ U_k = ⊕ E (λ_k, T), m ≤ dim(V) It is always possible to find an orthonormal basis 𝔅(V) = b₁,, b_n so that M(T,𝔅(V)) is upper triangular ₩_k = span(b₁,, b_k) are nested subspaces: W_{k-1} ⊂ W_k, dim(W_k) = k We now, in the next 8 lectures, seek to build better understanding in the huge void between "some are diagonalizable" and "all are upper triangularizable." 	

— (3/52)

Self-Adjoint and Normal Operators The Spectral Theorem Adjoints Self-Adjoint Operators Normal Operators

Conjugate Transpose, Hermitian Transpose

Definition (Conjugate Transpose)

The **conjugate transpose** of an $(m \times n)$ matrix is the $(n \times m)$ matrix obtained by interchanging the rows and columns and then taking the complex conjugate of each entry; *i.e.* $a_{ij} \mapsto a_{ii}^*$.

Notation (Conjugate Transpose)

For $A \in \mathbb{F}^{m \times n}$, we let $A^* \in \mathbb{F}^{n \times m}$ be the conjugate transpose of A. Sometimes you see the notation A^H to indicate the Hermitian (Conjugate) transpose.

When $\mathbb{F} = \mathbb{R}$, the conjugate transpose is just the transpose.

Self-Adjoint and Normal Operators The Spectral Theorem

Adjoints Self-Adjoint Operators Normal Operators

The Matrix of T^*

Theorem (The Matrix of T^*)

Let $T \in \mathcal{L}(V, W)$, and let v_1, \ldots, v_n be an orthonormal basis of V, and w_1, \ldots, w_m be an orthonormal basis of W. Then

 $\mathcal{M}(T^*,(w_1,\ldots,w_m),(v_1,\ldots,v_n))=\mathcal{M}(T,(v_1,\ldots,v_n),(w_1,\ldots,w_m))^*$

In the above, it is **absolutely essential** for the bases of V and W to be orthonormal.

The adjoint of a linear map itself does not depend on the choice of basis; but the matrices of a linear map and its adjoint depend strongly on the choice of bases. *This is one of the compelling reasons why we develop our linear algebra toolbox in a more abstract rather than matrix-centered way.*

SAN DIEGO

Self-Adjoint and Normal Operators Adjoints The Spectral Theorem Self-Adjoint Operators Normal Operators	Self-Adjoint and Normal Operators The Spectral Theorem Adjoints Normal Operators
The Matrix of \mathcal{T}^*	Self-Adjoint Operators
Proof (The Matrix of T^*) The entries of $\mathcal{M}(T, (v_1, \dots, v_n), (w_1, \dots, w_m))$ are the coefficients of	We now consider operators $\mathcal{T} \in \mathcal{L}(V)$, on inner product spaces (<i>i.e.</i> vector spaces with an inner product).
$T(v_k) = \langle T(v_k), w_1 \rangle w_1 + \dots + \langle T(v_k), w_m \rangle w_m$ <i>i.e.</i> $\mathcal{M}(T)_{ij} = \langle T(v_i), w_j \rangle$. Likewise, the entries of $\mathcal{M}(T^*, (w_1, \dots, w_m), (v_1, \dots, v_n))$ are the	Definition (Self-Adjoint (Hermitian)) An operator $T \in \mathcal{L}(V)$ is called self-adjoint if $T = T^*$, <i>i.e.</i> $T \in \mathcal{L}(V)$ is self-adjoint if and only if
coefficients of $T^*(w_k) = \langle T^*(w_k), v_1 \rangle v_1 + \dots + \langle T^*(w_k), v_n \rangle v_n.$ $\mathcal{M}(T^*)_{ij} = \langle T^*(w_i), v_j \rangle = \langle w_i, T(v_j) \rangle = (\langle T(v_j), w_i \rangle)^* = (\mathcal{M}(T)_{ji})^*$	$\langle T(v), w \rangle = \langle v, T(w) \rangle$ $\forall v, w \in V.$

- (15/52)

SAN DIEGO STAT UNIVERSITY Self-Adjoint Operators

Sources of Hermitian / Self-Adjoint Operators

Comment

Physicists are sometimes(?) a bit careless with mathematical language, but in particular the field of quantum mechanics is full of Hermitian / Self-Adjoint operators — usually on infinite-dimensional Hilbert spaces.

Comment

Roughly speaking, the study of "linear algebra" on infinite-dimensional spaces is branded "Functional Analysis."

Functional Analysis is the meeting point of linear algebra and analysis, with a good measure^{funny?} of topology sprinkled in.

Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} \rangle$	7.1. Operators on Inner Product Spaces
Self-Adjoint and Normal Operators	Adjoints Self-Adjoint Operators

Over \mathbb{C} , $T(v) \perp v \forall v \in V$ Only for the 0-Operator

Theorem (Over \mathbb{C} , $T(v) \perp v \ \forall v \in V$ Only for the 0-Operator)

Suppose V is a complex inner products space, and $T \in \mathcal{L}(V)$. Then if $\langle T(v), v \rangle = 0 \ \forall v \in V$, then T = 0.

Note that the theorem is not true for real inner products spaces: consider the rotation by $\pi/2$ in \mathbb{R}^2 .

Self-Adjoint and Normal Operators The Spectral Theorem

Self-Adjoint Operators Normal Operators

Eigenvalues of Self-Adjoint Operators are Real

Theorem (Eigenvalues of Self-Adjoint Operators are Real)

Every eigenvalue of a self-adjoint operator is real.

Proof (Eigenvalues of Self-Adjoint Operators are Real)

Suppose $T \in \mathcal{L}(V)$ is self-adjoint. Let λ be an eigenvalue of T, and let v be an eigenvector: $T(v) = \lambda v$. Then

$$\lambda \|v\|^2 = \langle \lambda v, v \rangle = \langle T(v), v \rangle = \langle v, T(v) \rangle = \langle v, \lambda v \rangle = \lambda^* \|v\|^2$$

Since $\lambda = \lambda^*$, $\lambda \in \mathbb{R}$.

Ê

SAN DIEGO UNIVERS

(17/52)

Ê

SAN DIEG

(19/52)

Note that if we are restricting ourselves to $\mathbb{F} = \mathbb{R}$ then the theorem is true by definition (restriction), so it is of interest (use) only in the case $\mathbb{F} = \mathbb{C}$.

Peter Blomgren (blomgren@sdsu.edu)7.1. Operators on Inner Product Spaces- (18/52)

Self-Adjoint and Normal Operators The Spectral Theorem

Self-Adjoint Operators

Over \mathbb{C} , $T(v) \perp v \forall v \in V$ Only for the 0-Operator

Proof (Over \mathbb{C} , $T(v) \perp v \ \forall v \in V$ Only for the 0-Operator)

We need to show $\langle T(u), w \rangle = 0$, $\forall u, w \in V$. We rewrite this inner product in an appropriately complicated way:

$$\langle T(u), w \rangle = \frac{\langle T(u+w), u+w \rangle - \langle T(u-w), u-w \rangle}{4}$$

$$+ i \frac{\langle T(u+iw), u+iw \rangle - \langle T(u-iw), u-iw \rangle}{4}$$

each term on the right-hand-side is of the form $\langle T(v), v \rangle$, so if $\langle T(v), v \rangle = 0 \ \forall v \in V$, then it follows that $\langle T(u), w \rangle = 0$, $\forall u, w \in V$, and thus T = 0 (let w = T(u)).

For peace of mind, let's just verify the equality!

Ê

(20/52)

Adioints Adioints Self-Adjoint and Normal Operators Self-Adjoint and Normal Operators Self-Adjoint Operators Self-Adjoint Operators The Spectral Theorem The Spectral Theorem **Normal Operators** If $T = T^*$ and $\langle T(v), v \rangle = 0, \forall v \in V$, then T = 0Normal Operators Definition (Normal Operator) Proof (If $T = T^*$ and $\langle T(v), v \rangle = 0, \forall v \in V$, then T = 0) • An operator on an inner product space is called **normal** if it commutes with its adjoint. If $u, w \in V$, then • $T \in \mathcal{L}(V)$ is normal if $\langle T(u), w \rangle = \frac{\langle T(u+w), u+w \rangle - \langle T(u-w), u-w \rangle}{4}$ $TT^* = T^*T$ Every self-adjoint operator is normal ($T^*T = T^2 = TT^*$), but the converse does not hold: the equality holds due to self-adjointness and the fact that we are in a real inner product space, see top of [SLIDE 21], and use: Example (Non Self-Adjoint, but Normal Operator) Let $T \in \mathcal{L}(\mathbb{F}^2)$ be the operator with matrix (wrt standard basis) $\langle T(w), u \rangle \stackrel{sa}{=} \langle w, T(u) \rangle \stackrel{\mathbb{R}}{=} \langle T(u), w \rangle$ $\mathcal{M}(T) = \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix}$ again, each term on the right-hand-side is of the form $\langle T(v), v \rangle$; hence Since $3 \neq (-3)^*$ the operator is not self adjoint, but $\langle T(v), v \rangle = 0 \ \forall v \in V \Rightarrow \langle T(u), w \rangle = 0 \ \forall u, w \in V \Rightarrow T = 0.$ $\begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 13 & 0 \\ 0 & 13 \end{bmatrix}$ Ê shows that T^*T and TT^* have the same matrix $\Rightarrow T^*T = TT^* \Rightarrow T$ is normal. Ê SAN DIEGO Peter Blomgren (blomgren@sdsu.edu) 7.1. Operators on Inner Product Spaces Peter Blomgren (blomgren@sdsu.edu) 7.1. Operators on Inner Product Spaces — (25/52) - (26/52) Adioints Self-Adjoint and Normal Operators Self-Adjoint and Normal Operators Self-Adjoint Operators Self-Adjoint Operators The Spectral Theorem The Spectral Theorem Normal Operators Normal Operators **Properties of Normal Operators** Properties of Normal Operators :: Eigenvectors of T and T^* Theorem (T is Normal if-and-only-if $||T(v)|| = ||T^*(v)|| \quad \forall v \in V$) Theorem (For T Normal, T and T^* Have the Same Eigenvectors) An operator $T \in \mathcal{L}(V)$ is normal if and only if Suppose $T \in \mathcal{L}(V)$ is normal; $v \in V$ is an eigenvector of T with $||T(\mathbf{v})|| = ||T^*(\mathbf{v})||, \forall \mathbf{v} \in V$ eigenvalue λ . Then v is also an eigenvector of T^* with eigenvalue λ^* . Proof (*T* is Normal if-and-only-if $||T(v)|| = ||T^*(v)|| \quad \forall v \in V$) Proof (For T Normal, T and T^* Have the Same Eigenvectors) Let $T \in \mathcal{L}(V)$, then Since $T \in \mathcal{L}(V)$ is normal, so is $T - \lambda I$; using the previous theorem we T is normal \Leftrightarrow $T^*T - TT^* = 0$ have $\Leftrightarrow \langle (T^*T - TT^*)(v), v \rangle = 0$ $\forall v \in V$ $0 = \|(T - \lambda I)(v)\| = \|(T - \lambda I)^*(v)\| = \|(T^* - \lambda^* I)(v)\|$ $\forall v \in V$ $\Leftrightarrow \langle (T^*T(v), v) \rangle = \langle (TT^*(v), v) \rangle$ hence $T^*v = \lambda^*v$. $\Leftrightarrow \langle (T(v), T(v)) \rangle = \langle (T^*(v), T^*(v)) \rangle \quad \forall v \in V$ $\Leftrightarrow ||T(v)||^2 = ||T^*(v)||^2$ $\forall v \in V$

A

SAN DIEGO

(27/52)

Êı

Part Un — The C-Spectral Theorem Part Deux — The ℝ-Spectral Theorem

Complex Spectral Theorem

Theorem (Complex Spectral Theorem)

Suppose $\mathbb{F} = \mathbb{C}$, and $T \in \mathcal{L}(V)$. Then the following are equivalent:

- T is normal $(TT^* = T^*T)$
- V has an orthonormal basis consisting of eigenvectors of T.
- T has a diagonal matrix wrt some orthonormal basis of V.

Copyright: Creative Commons Attribution-Share Alike 2.5 Generic license [https://commons.wikimedia.org/wiki/File:Fireworks4_amk.jpg]

Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} \rangle$	7.1. Operators on Inner Product S
Self-Adjoint and Normal Operators The Spectral Theorem	Part Un — The $\mathbb{C} ext{-Spectral Theory}$ Part Deux — The $\mathbb{R} ext{-Spectral Theory}$

Complex Spectral Theorem

Proof (Complex Spectral Theorem)

- $(c) \Rightarrow (a)$: Suppose T has a diagonal matrix wrt some orthonormal basis, $\mathfrak{B}(V)$ of V, *i.e.* $\mathcal{M}(T;\mathfrak{B}(V))$ is diagonal. $\mathcal{M}(T^*;\mathfrak{B}(V)) = \mathcal{M}(T;\mathfrak{B}(V))^*$ is also diagonal. Any two diagonal matrices commute, thus $TT^* = T^*T$.
- (a) \Rightarrow (c): Suppose $TT^* = T^*T$. [Schur's Theorem (Notes#6)] guarantees \exists an orthogonal basis v_1, \ldots, v_n of V so that

$$\mathcal{M}(T; (v_1, \ldots, v_n)) = \begin{bmatrix} a_{1,1} & \ldots & a_{1,n} \\ & \ddots & \vdots \\ 0 & & a_{n,n} \end{bmatrix}$$

Now,
$$||T(v_1)||^2 = ||T^*(v_1)||^2$$
 since $TT^* = T^*T$, but
 $||T(v_1)||^2 = |a_{1,1}|^2$
 $||T^*(v_1)||^2 = |a_{1,1}|^2 + |a_{1,2}|^2 + \dots + |a_{1,n}|^2$

 \Rightarrow All must be zero

Next, $||T(v_2)||^2 = ||T^*(v_2)||^2$ shows in the same way that $|a_{2,3}| = \cdots =$ $|a_{2,n}| = 0$; and in the same way, all non-diagonal elements are zero; and therefore $\mathcal{M}(T; (v_1, \ldots, v_n))$ is diagonal.

Also, $T(v_i) = a_{i,i}v_i$, so the basis vector are eigenvectors \Leftrightarrow (b).

Complex Spectral Theorem

Example ($T \in \mathcal{L}(\mathbb{F}^2)$ — Normal, but not Self-adjoint)

We again consider $T \in \mathcal{L}(\mathbb{F}^2)$ with matrix (wrt standard basis)

 $\mathcal{M}(T) = \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix}$

An orthonormal basis of \mathbb{C}^2 consisting of eigenvectors of $\mathcal{M}(T)$ is given by $\mathfrak{B}(\mathbb{F}^2) = \left\{ \frac{1}{\sqrt{2}}(i,1), \frac{1}{\sqrt{2}}(-i,1) \right\}$, and

$$\mathcal{M}(T;\mathfrak{B}(\mathbb{F}^2)) = egin{bmatrix} 2+3i & 0 \ 0 & 2-3i \end{bmatrix}$$

Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} \rangle$	7.1. Operators on Inner Product Spaces	— (34/52)
Self-Adjoint and Normal Operators The Spectral Theorem	Part Un — The ℂ-Spectral Theorem Part Deux — The ℝ-Spectral Theorem	

The Real Spectral Theorem

— (33/52)

Ê

(35/52)

baces

Rewind (Complete the Square) Let $b, c \in \mathbb{R}$: $b^2 < 4c$, then $x^{2} + bx + c = \left(x + \frac{b}{2}\right)^{2} + \left(c - \frac{b^{2}}{4}\right) > 0.$ In particular $(x^2 + bx + c)^{-1}$ is well-defined, or " $(x^2 + bx + c)$ is an invertible real number.'

Now, we replace x with a self-adjoint operator...

Ê

Self-Adjoint and Normal Operators Part Un — The C-Spectral Theorem The Spectral Theorem Part Deux — The R-Spectral Theorem	Self-Adjoint and Normal Operators Part Un — The C-Spectral Theorem The Spectral Theorem Part Deux — The ℝ-Spectral Theorem
Self-Adjoint Operators and Invariant Subspaces	Real Spectral Theorem
Theorem (Self-Adjoint Operators and Invariant Subspaces) Suppose $T \in \mathcal{L}(V)$ is self-adjoint and U is a subspace of V that is invariant under T. Then	Theorem (Real Spectral Theorem)
(a) U^{\perp} is invariant under T; (b) $T _U \in \mathcal{L}(U)$ is self-adjoint (c) $T _{U^{\perp}} \in \mathcal{L}(U^{\perp})$ is self-adjoint	Suppose $\mathbb{F} = \mathbb{R}$, and $T \in \mathcal{L}(V)$. Then the following are equivalent: (a) T is self-adjoint (b) V has an orthonormal basis consisting of eigenvectors of T .
Proof (Self-Adjoint Operators and Invariant Subspaces) (a) Let $v \in U^{\perp}$, $u \in U$, then $\langle T(v), u \rangle \stackrel{s_2}{=} \langle v, T(u) \rangle \stackrel{T(u) \in U}{=} 0 \Rightarrow T(v) \in U^{\perp}$ (b) If $u, v \in U$, then $\langle T _U(u), v \rangle = \langle T(u), v \rangle = \langle u, T(v) \rangle = \langle u, T _U(v) \rangle$ (c) If $u, v \in U^{\perp}$, then $\langle T _{U^{\perp}}(u), v \rangle = \langle T(u), v \rangle = \langle u, T(v) \rangle = \langle u, T _{U^{\perp}}(v) \rangle$	 (c) T has a diagonal matrix with respect to some orthonormal basis of V. Copyright: Creative Commons Attribution-Share Alike 2.5 Generic license <pre>[https://commons.wikimedia.org/wiki/File:Fireworks4.amk.jpg]</pre>
Peter Blomgren (blomgren@sdsu.edu) 7.1. Operators on Inner Product Spaces	Peter Blomgren (blomgren@sdsu.edu) 7.1. Operators on Inner Product Spaces - (42/52)
Self-Adjoint and Normal OperatorsPart Un — The C-Spectral TheoremThe Spectral TheoremPart Deux — The R-Spectral Theorem	Self-Adjoint and Normal OperatorsPart Un — The C-Spectral TheoremThe Spectral TheoremPart Deux — The ℝ-Spectral Theorem
Real Spectral Theorem	Real and Complex Spectral Theorems
 Proof (Real Spectral Theorem) (c ⇒ a) Suppose (c) : T has a diagonal matrix with respect to some orthonormal basis of V. A real diagonal matrix equals its transpose. Therefore T = T*, and thus T is self-adjoint. ⇒ (a). (a ⇒ b) If dim(V) = 1, then (a ⇒ b); when dim(V) > 1, and (INDUCTIVE HYPOTH-ESIS) that (a ⇒ b) for all real product spaces W : dim(W) < dim(V) — Let (a) T ∈ L(V) be self-adjoint, and let u be an eigenvector of T with u = 1. [SELF-ADJOINT OPERATORS HAVE EIGENVALUES] Then U = span(u) is a 1-D subspace of V, invariant under T; T U[⊥] is self-adjoint [SELF-ADJOINT OPERATORS AND INVARIANT SUBSPACES]; dim(U[⊥]) = dim(V) - 1 < dim(V); therefore ∃ an orthonormal basis of U[⊥] consisting of eigenvectors of T U[⊥]. Adding u to this basis given an orthonormal basis of V consisting of eigenvectors of T. ⇒ (b) (b ⇒ c) M(T) with respect to an orthonormal eigen-basis of V is a diagonal matrix. (That's the point of finding an eigen-basis!) 	Rewind (Complex Spectral Theorem)Suppose $\mathbb{F} = \mathbb{C}$, and $T \in \mathcal{L}(V)$. Then the following are equivalent:• T is normal $(TT^* = T^*T)$ • V has an orthonormal basis consisting of eigenvectors of T .• T has a diagonal matrix wrt some orthonormal basis of V .Rewind (Real Spectral Theorem)Suppose $\mathbb{F} = \mathbb{R}$, and $T \in \mathcal{L}(V)$. Then the following are equivalent:• T is self-adjoint $(T = T^*)$ • V has an orthonormal basis consisting of eigenvectors of T .
	• T has a diagonal matrix wrt some orthonormal basis of V .

Self-Adjoint and Normal OperatorsPart Un — The C-Spectral TheoremThe Spectral TheoremPart Deux — The R-Spectral Theorem	Self-Adjoint and Normal OperatorsPart Un — The C-Spectral TheoremThe Spectral TheoremPart Deux — The R-Spectral Theorem
Real and Complex Spectral Theorems	"Preview"
<pre>Comment (Complex Spectral Theorem) If F = C, then the Complex Spectral Theorem gives a complete description of the normal operators on V. A complete description of the self-adjoint operators on V then easily follows — they are the normal operators on V whose eigenvalues all are real. Comment (Real Spectral Theorem) If F = R, then the Real Spectral Theorem gives a complete description of the self-adjoint operators on V.</pre>	Preview (Normal Operators and Invariant Subspaces) Suppose V is an inner product space, $T \in \mathcal{L}(V)$ is normal, and U is a subspace of V invariant under T. Then (a) U^{\perp} is invariant under T; (b) U is invariant under T^* ; (c) $(T _U)^* = (T^*) _U$; (d) $T _U \in \mathcal{L}(U)$, and $T _{U^{\perp}} \in \mathcal{L}(U^{\perp})$ are normal operators.
A a complete description of the normal operators on <i>V</i> are forthcoming. [Normal Operators and Invariant Subspaces (Notes#7.1–Preview)]	See Data State UNIVERSITY
Peter Blomgren (blomgren@sdsu.edu) 7.1. Operators on Inner Product Spaces — (45/52)	Peter Blomgren (blomgren@sdsu.edu) 7.1. Operators on Inner Product Spaces
Self-Adjoint and Normal OperatorsPart Un — The C-Spectral TheoremThe Spectral TheoremPart Deux — The R-Spectral Theorem	Self-Adjoint and Normal OperatorsPart Un — The C-Spectral TheoremThe Spectral TheoremPart Deux — The R-Spectral Theorem
	The Spectral Theorem Part Deux — The ℝ-Spectral Theorem
	The Spectral Theorem Part Deux — The R-Spectral Theorem Live Math :: Covid-19 Version 7B-7 7B-7: Suppose V is a complex inner product space and $T \in \mathcal{L}(V)$ is a normal operator such that $T^9 = T^8$. Prove that T is self-adjoint, and $T^2 = T$. Note: There's nothing magical about 8, and 9 By [CST], there exists an orthonormal basis u_1, \ldots, u_n of V such that
The Spectral Theorem Part Deux — The ℝ-Spectral Theorem	Part Deux — The R-Spectral TheoremThe Spectral TheoremZB-7 TB-7: Suppose V is a complex inner product space and $T \in \mathcal{L}(V)$ is a normal operator such that $T^9 = T^8$. Prove that T is self-adjoint, and $T^2 = T$.Note: There's nothing magical about 8, and 9By [CST], there exists an orthonormal basis u_1, \ldots, u_n of V such that $T(u_k) = \lambda_k u_k$ (where $\lambda_k, k = 1, \ldots, n$ are the eigenvalues).Applying T repeatedly on both sides of the eigen-relation gives $T^8(u_k) = \lambda_k^8 u_k$, and $T^9(u_k) = \lambda_k^9 u_k$; which by the given property $T^9 = T^8$, means $\lambda_k^8 = \lambda_k^9$. The only possibilities are $\lambda_k \in \{0, 1\} \in \mathbb{R}$.Since the eigenvalues are real, T is self-adjoint. Also,
The Spectral Theorem Part Deux — The \mathbb{R} -Spectral Theorem $\langle \langle \langle \langle \text{Live Math } \rangle \rangle \rangle$	Part Deux — The R-Spectral TheoremThe Spectral TheoremZB-7 TB-7: Suppose V is a complex inner product space and $T \in \mathcal{L}(V)$ is a normal operator such that $T^9 = T^8$. Prove that T is self-adjoint, and $T^2 = T$.Note: There's nothing magical about 8, and 9By [CST], there exists an orthonormal basis u_1, \ldots, u_n of V such that $T(u_k) = \lambda_k u_k$ (where $\lambda_k, k = 1, \ldots, n$ are the eigenvalues).Applying T repeatedly on both sides of the eigen-relation gives $T^8(u_k) = \lambda_k^8 u_k$, and $T^9(u_k) = \lambda_k^9 u_k$; which by the given property $T^9 = T^8$, means $\lambda_k^8 = \lambda_k^9$. The only possibilities are $\lambda_k \in \{0, 1\} \in \mathbb{R}$.Since the eigenvalues are real, T is self-adjoint. Also,
The Spectral Theorem Part Deux — The \mathbb{R} -Spectral Theorem $\langle \langle \langle \langle \text{Live Math } \rangle \rangle \rangle$	Part Deux — The R-Spectral TheoremThe Spectral TheoremItive Math :: Covid-19 Version7B-7: Suppose V is a complex inner product space and $T \in \mathcal{L}(V)$ is a normal operator such that $T^9 = T^8$. Prove that T is self-adjoint, and $T^2 = T$.Note: There's nothing magical about 8, and 9By [CST], there exists an orthonormal basis u_1, \ldots, u_n of V such that $T(u_k) = \lambda_k u_k$ (where $\lambda_k, k = 1, \ldots, n$ are the eigenvalues).Applying T repeatedly on both sides of the eigen-relation gives $T^8(u_k) = \lambda_k^8 u_k$, and $T^9(u_k) = \lambda_k^9 u_k$; which by the given property $T^9 = T^8$, means $\lambda_k^8 = \lambda_k^9$. The only possibilities are $\lambda_k \in \{0, 1\} \in \mathbb{R}$.

