

Self-Adjoint and Normal OperatorsThe Spectral Theorem

Adjoints Self-Adjoint OperatorsNormal Operators

Conjugate Transpose, Hermitian Transpose

Definition (Conjugate Transpose)

The **conjugate transpose** of an $(m \times n)$ matrix is the $(n \times m)$ matrix obtained by interchanging the rows and columns and thentaking the complex conjugate of each entry; *i.e.* $a_{ij} \mapsto a_{ji}^*$ *.*

Notation (Conjugate Transpose)

For $A \in \mathbb{F}^{m \times n}$, we let $A^* \in \mathbb{F}^{n \times m}$ be the conjugate transpose of A . Sometimes you see the notation A^H to indicate the Hermitian (Conjugate) transpose.

When $\mathbb{F} = \mathbb{R}$, the conjugate transpose is just the transpose.

Ĥ **SAN DIEGO** Peter Blomgren (blomgren@sdsu.edu) 7.1. Operators on Inner Product Spaces — (13/52) Peter Blomgren (blomgren@sdsu.edu) 7.1. Operators on Inner Product Spaces — $(14/52)$ **AdjointsAdjoints Self-Adjoint OperatorsSelf-Adjoint and Normal OperatorsSelf-Adjoint and Normal Operators Self-Adjoint Operators The Spectral Theorem The Spectral TheoremNormal OperatorsNormal Operators**Self-Adjoint OperatorsThe Matrix of \mathcal{T}^*

Å

SAN DIEG

Proof (The Matrix of $\mathcal{T}^*)$

The entries of $\mathcal{M}(\mathcal{T}, (\nu_1, \ldots, \nu_n), (\nu_1, \ldots, \nu_m))$ are the coefficients of

$$
T(v_k) = \langle T(v_k), w_1 \rangle w_1 + \cdots + \langle T(v_k), w_m \rangle w_m
$$

i.e. $\mathcal{M}(T)_{ij} = \langle T(v_i), w_j \rangle$.

Likewise, the entries of $\mathcal{M}(\,T^\ast,\allowbreak(\,\mathsf{w}_1,\ldots,\allowbreak\mathsf{w}_m),\allowbreak(\,\mathsf{v}_1,\ldots,\mathsf{v}_n))$ are the coefficients of

 $\mathcal{T}^*(w_k) = \langle \mathcal{T}^*(w_k), v_1 \rangle v_1 + \cdots + \langle \mathcal{T}^*(w_k), v_n \rangle v_n.$ $\mathcal{M}(T^*)_{ij} = \langle T^*(w_i), v_j \rangle = \langle w_i, T(v_j) \rangle = (\langle T(v_j), w_i \rangle)^* = (\mathcal{M}(T)_{ji})^*$

Self-Adjoint and Normal OperatorsThe Spectral Theorem

Adjoints Self-Adjoint OperatorsNormal Operators

The Matrix of \mathcal{T}^*

Theorem (The Matrix of $\mathcal{T}^{*})$

Let $T \in \mathcal{L}(V, W)$, and let v_1, \ldots, v_n be an orthonormal basis of V, and w_1, \ldots, w_m be an orthonormal basis of W . Then

 $\mathcal{M}(\mathcal{T}^*,(w_1,\ldots,w_m),(v_1,\ldots,v_n)) = \mathcal{M}(\mathcal{T},(v_1,\ldots,v_n),(w_1,\ldots,w_m))^*$

In the above, it is **absolutely essential** for the bases of ^V and ^Wto be orthonormal.

The adjoint of a linear map itself does not depend on the choice of basis; but the matrices of a linear map and its adjoint depend strongly on the choice of bases. This is one of the compelling reasonswhy we develop our linear algebra toolbox in a more abstract rather than matrix-centered way.

m

Ĥ

We now consider operators $\mathcal{T} \in \mathcal{L}(\mathcal{V}),$ on inner product spaces (*i.e.* vector spaces with an inner product).

Definition (Self-Adjoint (Hermitian))

An operator $T \in \mathcal{L}(V)$ is called **self-adjoint** if $T = T^*$, *i.e.*
 $\overline{T} = \mathcal{L}(V)$ is the self-adjoint if $T = T^*$, *i.e.* $T \in \mathcal{L}(V)$ is **self-adjoint** if and only if

$$
\langle T(v), w \rangle = \langle v, T(w) \rangle
$$

∀^v*,*^w [∈] ^V.

Adjoints Self-Adjoint OperatorsNormal Operators

Sources of Hermitian / Self-Adjoint Operators

Comment

Physicists are sometimes(?) a bit careless with mathematical language, but in particular the field of quantum mechanics is full ofHermitian / Self-Adjoint operators — usually oninfinite-dimensional Hilbert spaces.

Comment

Roughly speaking, the study of "linear algebra" oninfinite-dimensional spaces is branded "Functional Analysis."

 Functional Analysis is the meeting point of linear algebra and analysis, with a good measure^{funny?} of topology sprinkled in.

Over $\mathbb{C}, \mathcal{T}(v) \perp v \; \forall v \in V$ Only for the 0-Operator

Theorem (Over $\mathbb{C}, T(v) \perp v \; \forall v \in V$ Only for the 0-Operator)

Suppose V is a complex inner products space, and $T \in \mathcal{L}(V)$. Then if $\langle T(v), v \rangle = 0$ $\forall v \in V$, then $T = 0$.

Note that the theorem is not true for real inner products spaces: consider the rotation by $\pi/2$ in \mathbb{R}^2 .

Self-Adjoint and Normal OperatorsThe Spectral Theorem

!

Ĥ

Eigenvalues of Self-Adjoint Operators are Real

Theorem (Eigenvalues of Self-Adjoint Operators are Real)

Every eigenvalue of a self-adjoint operator is real.

Proof (Eigenvalues of Self-Adjoint Operators are Real)

Suppose $\mathcal{T} \in \mathcal{L}(V)$ is self-adjoint. Let λ be an eigenvalue of $\mathcal{T},$ and let v be an eigenvector: $T(v) = \lambda v$. Then

$$
\lambda ||v||^2 = \langle \lambda v, v \rangle = \langle \mathcal{T}(v), v \rangle = \langle v, \mathcal{T}(v) \rangle = \langle v, \lambda v \rangle = \lambda^* ||v||^2
$$

 $Sinee \ \lambda = \lambda^*, \ \lambda \in \mathbb{R}.$

!

 \mathbb{P}

Å

SAN DIEG

Note that if we are restricting ourselves to $\mathbb{F} = \mathbb{R}$ then the theorem is true by definition (restriction), so it is of interest (use)only in the case $\mathbb{F} = \mathbb{C}$.

Peter Blomgrenhelomgrenous 7.1. Operators on Inner Product Spaces — (18/52)

Self-Adjoint and Normal OperatorsThe Spectral Theorem

Adjoints Self-Adjoint OperatorsNormal Operators

Over $\mathbb{C}, \mathcal{T}(v) \perp v \; \forall v \in V$ Only for the 0-Operator

Proof (Over $\mathbb{C}, \mathcal{T}(v) \perp v \; \forall v \in V$ Only for the 0-Operator)

We need to show $\langle T(u), w \rangle = 0$, $\forall u, w \in V$. We rewrite this inner product in an appropriately complicated way:

$$
\langle T(u), w \rangle = \frac{\langle T(u+w), u+w \rangle - \langle T(u-w), u-w \rangle}{4} + i \frac{\langle T(u+iw), u+iw \rangle - \langle T(u-iw), u-iw \rangle}{4}
$$

each term on the right-hand-side is of the form $\langle T(v), v \rangle$, so if $\langle \mathcal{T}(v),\, v\rangle=0\,\,\forall v\in V,$ then it follows that $\langle \mathcal{T}(u),\, w\rangle=0,$ $\forall u, w \in V$, and thus $T = 0$ (let $w = T(u)$).

For peace of mind, let's just verify the equality!

AdjointsAdjointsSelf-Adjoint and Normal OperatorsSelf-Adjoint and Normal Operators Self-Adjoint Operators Self-Adjoint Operators The Spectral Theorem The Spectral TheoremNormal OperatorsNormal OperatorsIf $T = T^*$ and $\langle T(v), v \rangle = 0, \forall v \in V$, then $T = 0$ Normal OperatorsDefinition (Normal Operator)Proof (If $T = T^*$ and $\langle T(v), v \rangle = 0, \forall v \in V$, then $T = 0$) An operator on an inner product space is called **normal** if it commutes with its adjoint.If $u, w \in V$, then $T \in \mathcal{L}(V)$ is normal if hT(u ⁺ ^w)*,* ^u ⁺ ^wi − hT(^u [−] ^w)*,* ^u [−] ^wⁱ 4 $TT^* = T^*T$ $\langle\, T(u),\ w\rangle =$ Every self-adjoint operator is normal $(T^*T = T^2 = TT^*)$, but the converse does not hold:the equality holds due to self-adjointness and the fact that we are in areal inner product space, see top of $\left[\text{slope 21}\right]$, and use: Example (Non Self-Adjoint, but Normal Operator)Let $\mathcal{T} \in \mathcal{L}(\mathbb{F}^2)$ be the operator with matrix (wrt standard basis) $\langle T(w), u \rangle \stackrel{\text{sa}}{=} \langle w, T(u) \rangle \stackrel{\mathbb{R}}{=} \langle T(u), w \rangle$ $\mathcal{M}(\mathcal{T}) = \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix}$ $\overline{}$ again, each term on the right-hand-side is of the form $\langle T(v), v \rangle$; hence Since 3 $\neq (-3)^{*}$ the operator is not self adjoint, but $\langle T(v), v \rangle = 0 \,\forall v \in V \Rightarrow \langle T(u), w \rangle = 0 \,\forall u, w \in V \Rightarrow T = 0.$ $\begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ $\overline{}$ $\begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix} =$ $\overline{}$ $\begin{bmatrix} 13 & 0 \\ 0 & 13 \end{bmatrix}$ $\overline{}$ \mathbf{f}_1 shows that T^*T and TT^* have the same matrix $\Rightarrow T^*T = TT^* \Rightarrow T$ is normal. 剛 **SAN DIEGO** Peter Blomgren (blomgren@sdsu.edu) 7.1. Operators on Inner Product Spaces — (25/52) Peter Blomgren (blomgren@sdsu.edu) 7.1. Operators on Inner Product Spaces — (26/52) **AdjointsAdjointsSelf-Adjoint and Normal OperatorsSelf-Adjoint and Normal Operators Self-Adjoint Operators Self-Adjoint Operators The Spectral Theorem The Spectral TheoremNormal OperatorsNormal Operators**Properties of Normal OperatorsProperties of Normal Operators $::$ Eigenvectors of $\mathcal T$ and $\mathcal T^*$ Theorem $(T$ is Normal if-and-only-if $||T(v)|| = ||T^*(v)|| \,\, \forall v \in V$ Theorem (For $\mathcal T$ Normal, $\mathcal T$ and $\mathcal T^*$ Have the Same Eigenvectors) An operator $T \in \mathcal{L}(V)$ is normal if and only if Suppose $T\in \mathcal{L}(V)$ is normal; $v\in V$ is an eigenvector of T with $\|T(v)\| = \|T^*(v)\|, \forall v \in V$ eigenvalue *^λ*. Then ^v is also an eigenvector of ^T∗ with eigenvalue *^λ*∗ .Proof (τ is Normal if-and-only-if $||\tau(v)|| = ||\tau^*(v)|| \,\, \forall v \in V$) Proof (For $\mathcal T$ Normal, $\mathcal T$ and $\mathcal T^*$ Have the Same Eigenvectors) Let $\mathcal{T} \in \mathcal{L}(V)$, then Since $\mathcal{T} \in \mathcal{L}(V)$ is normal, so is $\mathcal{T} - \lambda I$; using the previous theorem we have $\begin{array}{ccc} \nabla & \text{is normal} & \Leftrightarrow & T^*T - TT^* = 0 \ \nabla T^*T & T^* \nabla T^* \n\end{array}$ \Leftrightarrow $\langle (T^*T - TT^*)(v), v \rangle = 0$ 0 $\forall v \in V$ $0 = ||(T - \lambda I)(v)|| = ||(T - \lambda I)^*(v)|| = ||(T^* - \lambda^* I)(v)||$ $\Leftrightarrow \quad \langle (T^*T(v), v) = \langle (TT^*(v), v) \rangle$ $v \in V$ hence $T^*\nu = \lambda^*\nu$. $\Leftrightarrow \langle (T(v), T(v)) = \langle (T^*(v), T^*(v)) \rangle \quad \forall v \in V$ \Leftrightarrow $||T(v)||^2 = ||T^*(v)||^2$ 2 $\forall v \in V$ \mathbb{A}_1 Ĥ

Part Un — The ^C**-Spectral TheoremPart Deux — The** ^R**-Spectral Theorem**

Complex Spectral Theorem

Theorem (Complex Spectral Theorem)

Suppose $\mathbb{F} = \mathbb{C}$, and $\mathcal{T} \in \mathcal{L}(V).$ Then the following are equivalent:

- T is normal $(TT^* = T^*T)$
- V has an orthonormal basis consisting of eigenvectors of ^T.
- T has a diagonal matrix wrt some orthonormal basis of ^V.

Copyright: Creative Commons Attribution-Share Alike 2.5 Generic license[https://commons.wikimedia.org/wiki/File:Fireworks4 amk.jpg]

Complex Spectral Theorem

Proof (Complex Spectral Theorem)

- (c)⇒(a): Suppose \overline{T} has a diagonal matrix wrt some orthonormal basis, $\mathfrak{B}(V)$ of V , *i.e.*
 $\mathfrak{B}(V)$ of \overline{V} , $\mathfrak{B}(V)$ $\mathcal{M}(T; \mathfrak{B}(V))$ is diagonal. $\mathcal{M}(T^*; \mathfrak{B}(V)) = \mathcal{M}(T; \mathfrak{B}(V))^*$ is also diagonal. Any two diagonal matrices commute, thus $TT^* = T^*T$.
- (a)⇒(c): Suppose $TT^* = T^*T$. [SCHUR's THEOREM (NOTES#6)] guarantees ∃ an orthogonal basis v_1, \ldots, v_n of V so that

$$
\mathcal{M}(\mathcal{T}; (v_1,\ldots,v_n)) = \begin{bmatrix} a_{1,1} & \ldots & a_{1,n} \\ & \ddots & \vdots \\ 0 & & a_{n,n} \end{bmatrix}
$$

Now,
$$
||T(v_1)||^2 = ||T^*(v_1)||^2
$$
 since $TT^* = T^*T$, but
 $||T(v_1)||^2 = |a_{1,1}|^2$

$$
||T^*(v_1)||^2 = |a_{1,1}|^2 + |a_{1,2}|^2 + \cdots + |a_{1,n}|^2
$$

\n
$$
\rightarrow
$$
 All must be zero

Next, $||T(v_2)||^2 = ||T^*(v_2)||^2$ shows in the same way that $|a_{2,3}| =$ $|a_{2,n}| = 0$; and in the same way, all non-diagonal elements are zero; and $|a_{2,n}| = 0$; and in the same way, all non-diagonal elements are zero; and therefore $\mathcal{M}(\,T\,;\,(\,\mathsf{v}_1,\ldots,\,\mathsf{v}_n)\,)$ is diagonal.

Also, $T(v_i) = a_{i,i}v_i$, so the basis vector are eigenvectors \Leftrightarrow (b) .

Complex Spectral Theorem

Example $(\mathcal{T}\in\mathcal{L}(\mathbb{F}^2)\longrightarrow \mathsf{Normal},$ but not Self-adjoint)

We again consider $\mathcal{T} \in \mathcal{L}(\mathbb{F}^2)$ with matrix (wrt standard basis)

 $\mathcal{M}(\mathcal{T})=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}/\sqrt{\frac{2\pi}{n}}\sum_{\alpha,\beta}\left(\frac{1}{\alpha}\right) ^{\alpha}\left(\frac{1}{\alpha}\right) ^{\alpha}\left(\frac{1}{\alpha}\right) ^{\beta}\frac{1}{\alpha}\text{.} \label{M1}%$ $\begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix}$ 3 2 $\overline{}$

An orthonormal basis of \mathbb{C}^2 consisting of eigenvectors of $\mathcal{M}(T)$ is given by $\mathfrak{B}(\mathbb{F}^2) = \Big\{ \frac{1}{\sqrt{2}}(i$ $\frac{1}{\sqrt{2}}(i,1),\frac{1}{\sqrt{2}}(-i,1)\Big\}$, and

$$
\mathcal{M}(T; \mathfrak{B}(\mathbb{F}^2)) = \begin{bmatrix} 2+3i & 0\\ 0 & 2-3i \end{bmatrix}
$$

The Real Spectral Theorem

Ĥ

Å

Rewind (Complete the Square)Let $b, c \in \mathbb{R} : b^2 < 4c$, then

$$
x^{2} + bx + c = \left(x + \frac{b}{2}\right)^{2} + \left(c - \frac{b^{2}}{4}\right) > 0.
$$

In particular $(x^2 + bx + c)^{-1}$ is well-defined, or " $(x^2 + bx + c)$ is an invertible real number."

Now, we replace ${\sf x}$ with a self-adjoint operator...

Ĥ

