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What We Know So Far — Operators, T € L(V)

@ Some operators are diagonalizable, i.e. 3 B(V) so that
M(T,B(V)) is diagonal

dim(V) m
=V =@ b=FENT), m<dm(V)
k=1 k=1

@ It is always possible to find an orthonormal basis
B(V) = bi,..., b, so that M(T,B(V)) is upper triangular
= Wy =span(by,..., bx) are nested subspaces: Wj_; C W,
dim(W) = k

@ We now, in the next 8 lectures, seek to build better
understanding in the huge void between “some are
diagonalizable” and “all are upper triangularizable.”
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Student Learning Targets, and Objectives SLOs: Operators on Inner Product Spaces

Student Learning Targets, and Objectives

Target Adjoint [Operator] — T*
Objective Be able to state the definition of the adjoint [operator]; and
manipulate inner product expressions to obtain the adjoint T*
given an operator T
Objective Know the definition of, and useful properties of Self-Adjoint,
and Normal, Operators

Target Real and Complex Spectral Theorems

Objective Know under what circumstances operators over the Real and
Complex fields have orthonormal eigenbases; with respect to
which the matrix of the operator is diagonal.

Time-Target: 2X75-minute lectures.
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Self-Adjoint and Normal Operators
The Spectral Theorem

Introduction

We now look at operators T € L(V) on inner product spaces,
V = {vector space, with (v, w) : V x V — F}.

1)
Inner Products = Norms, Orthogonality, Gram-Schmidt, RRT
i)
Linear Maps . .
= Eigen-Values/Vectors; Invariant Subspaces
Operators

T

Finite Dimensional Vector Spaces
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. Adjoints
Self-Adjoint and Normal Operators S/ e O

The Spectral Theorem
p Normal Operators

Adjoints

Definition (Adjoint, T*)
Suppose T € L(V,W). The adjoint of T is the function
T*: W V, such that Vv € V, and Yw € W:

(Tv, w) = (v, T*w).

T*w is uniquely defined due to [RiEsz REPRESENTATION

THEOREM (NOTES#6)]

Note that in the case when V # W, the inner product (Tv, w) is
on the space W, and (v, T*w) is on the space V.

We will shortly show that T* € L(W, V), i.e. itis a linear map.

There is another “adjoint” in linear algebra... we will not speak about it, shhhhhh!!! -
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Self-Adjoint and Normal Operators
The Spectral Theorem

Example#1: Find the Adjoint

Let T € £(R3,R?) be defined by

Adjoints
Self-Adjoint Operators
Normal Operators

T(X15X23X3) - (X2 oy 3X3,2X]_).

Solution: T*:R? — R3, fix a point (y1,y2) € R?; then

Y(x1,x2,x3) € R3:

<(X17X27X3)7 T*(YLY2)> -

<T(X17X27X3)7 (YI7Y2)>
((x2 4 3x3,2x1), (y1,¥2))
xoy1 + 3x3y1 + 2x1y2
((x1,x2,x3), (2¥2, y1,3¥1))

T*(y1,y2) =

(2)/2;)/1-/3)/1)
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Example#2: Find the Adjoint

Fix ue V,and x € W. Let T € L(V, W) be defined by
Tv = (v, u)x

Solution: Fix w € W. Then Vv € V, we have

(v, T*w) = (Tv, w)
= (v, u)x, w)
= (v, u)(x, w)
= <V7 <X7 W>*u>
= (v, (w, x)u)
T*'w = (w, x)u

In both examples, T* turned out to be a linear map.
This is true in general:
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

The Adjoint is a Linear Map

Theorem (The Adjoint is a Linear Map)

IF T € L(V, W), then T* € L(W, V).
y
Proof (The Adjoint is a Linear Map)
Suppose T € L(V,W). Fix wi,w; € W, if v € V, then
(v, T*(wi + w2)) = (Tv, wy + wp) = (Tv,w1) +(Tv, wo)
= (v, T*wi) + (v, T*w2) = (v, T*w1+ T*ws)
T*(wi+w) = T*wi+ T 'ws [ApDITIVITY (NOTES#3.1)]
Next, fix w € W, and A € FF, if v € V, then
(v, T*(Aw)) = (Tv, Aw) = X(Tv,w)
= X{v, T*w) = (v, AT*w)
T*(Aw) = AT*w [HOMOGENEITY (NOTES#3.1)]
Thus, T* is a linear map. )

UNIVERSITY
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Properties of the Adjoint

Properties (Properties of the Adjoint)

(S+T)y =S"+T*VS, TeLl(V,W),
(AT)*=XT*VAXeF, and VT € L(V, W),
(T =TVT e L(V, W),

I* = I, where I is the identity operator on V;
(ST)*=T*S*VT € L(V,W), VS € L(W,U).

The proofs are standard plug-into-the-definitions-and-move-things-
around; and are left as an “exercise.”

These properties probably look vaguely familiar?

(Think about matrices..... and transposes?)
ORIy
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Null Space and Range of the Adjoint

Theorem (Null Space and Range of T*)
Suppose T € L(V, W), then:

(a) null(T*) = (range(T))*
(b) range(T*) = (null(T))*

(¢) null(T) = (range(T*))*
(d) range(T) = (null(T*))*+

Proof (Null Space and Range of T*)

(a) Let w € W, then:
wenull(T*) < T*(w)=0

— (v, T*(w))=0,VveV

— (T(v),w)=0,VveV

—

w € (range(T))*+

(b), (), (d) similar...

iATE
[ Univisiy
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Self-Adjoint and Normal Operators Adjoints

The Spectral Theorem

Self-Adjoint Operators
Normal Operators

Null Space and Range of the Adjoint, Visualized

T-star

Ortho—Complement
Range(T)
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Conjugate Transpose, Hermitian Transpose

Definition (Conjugate Transpose)

The conjugate transpose of an (m x n) matrix is the (n x m)
matrix obtained by interchanging the rows and columns and then
taking the complex conjugate of each entry; i.e. aj — aj’-‘l-.

Notation (Conjugate Transpose)
For A € F™*7 we let A* € F™™ be the conjugate transpose of A.

Sometimes you see the notation A" to indicate the Hermitian
(Conjugate) transpose.

When F = R, the conjugate transpose is just the transpose.
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. Adjoints
Self-Adjoint and Normal Operators S/ e O
The Spectral Theorem
Normal Operators

The Matrix of T*

Theorem (The Matrix of T*)

Let T € L(V, W), and let v, ..., v, be an orthonormal basis of V, and
Wi, ..., Wy be an orthonormal basis of W. Then

M(T* (W, ooy W)y (Vay ooy Vi) = M(T, (vay ooy Vi), (W, ooy wim))®

In the above, it is absolutely essential for the bases of V and W
to be orthonormal.

The adjoint of a linear map itself does not depend on the choice
of basis; but the matrices of a linear map and its adjoint depend
strongly on the choice of bases. This is one of the compelling reasons

why we develop our linear algebra toolbox in a more abstract rather
than matrix-centered way.

Peter Blomgren (blomgren@sdsu.edu) 7.1. Operators on Inner Product Spaces — (14/52)



Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

The Matrix of T*

Proof (The Matrix of T*)

The entries of M(T,(v1,..., V), (wi,...,wp)) are the
coefficients of

T(Vk) = <T(Vk)7 W1>W1 + -+ <T(Vk)7 Wm>Wm
ie. M(T)j=(T(vi), wj).
Likewise, the entries of M(T*, (w1, ..., Wm),(v1,...,vn)) are the
coefficients of
T*(wk) = (T*(wk), vi)vi + -+ (T*(wWk), Vn)Vp.
M(T)j =(T*(w), vj) = (wi, T(v)) = ((T(v), wj))* = (M(T);)*

nnnnnnnnnnn
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Self-Adjoint Operators

We now consider operators T € L(V/), on inner product spaces
(i.e. vector spaces with an inner product).

Definition (Self-Adjoint (Hermitian))

An operator T € L(V) is called self-adjoint if T = T*, i.e.
T € L(V) is self-adjoint if and only if

(T(v), w) = (v, T(w))

Vv,w e V.
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Sources of Hermitian / Self-Adjoint Operators

Comment

Physicists are sometimes(?) a bit careless with mathematical
language, but in particular the field of quantum mechanics is full of
Hermitian / Self-Adjoint operators — usually on
infinite-dimensional Hilbert spaces.

Comment

Roughly speaking, the study of “linear algebra” on
infinite-dimensional spaces is branded “Functional Analysis.”

Functional Analysis is the meeting point of linear algebra and anal-
ysis, with a good measure™™’ of topology sprinkled in.

v

s e

an ATt
UNveRsITY
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Eigenvalues of Self-Adjoint Operators are Real

Theorem (Eigenvalues of Self-Adjoint Operators are Real)
Every eigenvalue of a self-adjoint operator is real.

Proof (Eigenvalues of Self-Adjoint Operators are Real)

Suppose T € L(V) is self-adjoint. Let A be an eigenvalue of T,
and let v be an eigenvector: T(v) = Av. Then

AvI? = v, v) = (T(v), v) = (v, T(v)) = (v, Av) = X*|lv||?

Since A = \*, A e R.

Note that if we are restricting ourselves to IF = R then the
theorem is true by definition (restriction), so it is of interest (use)
only in the case F = C.

UNIVERSITY
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- Adjoints
Self-Adjoint and Normal Operators Self-Adjoint Operators
The Spectral Theorem
Normal Operators

Over C, T(v) L v Vv € V Only for the 0-Operator

Theorem (Over C, T(v) L v ¥Yv € V Only for the 0-Operator)

Suppose V is a complex inner products space, and T € L(V). Then if
(T(v),v)=0VveV, then T=0.

Note that the theorem is not true for real inner products spaces: consider
the rotation by 7/2 in R2.

San
U
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Over C, T(v) L v Vv € V Only for the 0-Operator

Proof (Over C, T(v) L v Vv € V Only for the 0-Operator)

We need to show (T (u), w) =0, Yu,w € V. We rewrite this inner
product in an appropriately complicated way:

(T(u+w), u+w) —(T(u—w), u—w)
4

+I,<T(u+ iw), u+ iw) ; (T(u—iw), u—iw)

(T(u), w) =

each term on the right-hand-side is of the form (T (v), v), so if
(T(v), v) =0Vv € V, then it follows that (T (v), w) =0,
Vu,w e V, and thus T =0 (let w = T(u)).

For peace of mind, let's just verify the equality!

UNIVERSITY
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Post-Proof: Verifying the Equality

1 (Twtw),utw) = (T(u), v) +(T(v), w) +(T(w), u) + (T(w), w)
-1 (Tu=-w),u—w) = (T(u), v) =(T(u), w) = (T(w), u) + (T(w), w)
= 2T(u), w) +2(T(w), u)

+i (T(u+iw), u+iw)y = (T(u), u)+ (T (u), iw) + (T(iw), u) + (T (iw), iw)
= (T(v), v) = i(T(u), w) + i(T(w), u) + (T (w), w)

—i (T(u—iw), u—iw) = (T(u), u)+(T(u), —iw) +(T(—=iw), u) + (T (—iw), —iw
= (T(v), v) + (T (), w) —i(T(w), u) + (T (W), w)

= 2(T(u), w) = 2(T(w), u)

= AT(uv), w)
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Over C, (T(v), v) € R ¥v € V Only for Self-Adjoint Operators

“Self-adjoint operators behave like real numbers...":

Theorem (Over C, (T(v), v) € R Yv € V Only for Self-Adjoint Operators)

Suppose V is a complex inner product space and T € L(V). Then T is
self-adjoint if and only if

(T(v), v) eR
Vv e V.

Peter Blomgren (blomgren@sdsu.edu) 7.1. Operators on Inner Product Spaces — (22/52)



Adjoints
Self-Adjoint Operators
Normal Operators

Over C, (T(v), v) € R ¥v € V Only for Self-Adjoint Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Proof (Over C, (T(v), v) € R ¥v € V Only for Self-Adjoint Operators)
Let v € V, then

(T(V), v) =(T(v), v)* = (T(v), v) = (v, T(v))
= (T(v), v) =(T"(v), v)
(T =T7)(v), v)
< If (T(v), v) € R Vv € V, then the left-hand-side is 0;
so ((T—T*)(v),v)=0=>T=T*

[OVER C, T(v) L v Vv € V ONLY FOR THE 0-OPERATOR]

= If T = T¥*, then the right-hand-side is 0.
Thus (T(v), v) ={(T(v), v)* = (T(v), v) € R.

nnnnnnnnnnn
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Adjoints
Self-Adjoint Operators
Normal Operators

If T=T*and (T(v),v)=0,Vv eV, then T =0.

Self-Adjoint and Normal Operators
The Spectral Theorem

On a real inner product space V/, a nonzero operator T might satisfy
(T(v), v) =0, ¥Yv € V. However, this cannot happen for a self-adjoint
operator:

Theorem (If T=T* and (T(v), v) =0, Vv € V, then T =0)

Suppose T is a self-adjoint operator on V' such that
(T(v),v)=0,VveV,then T =0.

[OVER C, T(v) L v Vv € V ONLY FOR THE 0-OPERATOR] covered the case for
complex inner product spaces without the self-adjointness property; so we
only have to cover the real product spaces with the self-adjointness
property:
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Adjoints
Self-Adjoint Operators
Normal Operators

If T=T*and (T(v),v)=0,VveV, then T=0

Self-Adjoint and Normal Operators
The Spectral Theorem

Proof (If T = T* and (T(v), v) =0, Vv € V, then T =0)
If u,w € V, then

(Tu+w),u+w) —(T(u—w), u—w)
4

(T(u), w) =

the equality holds due to self-adjointness and the fact that we are in a
real inner product space, see top of [suipE 21], and use:

(T(w), u) 2 (w, T(u)) = (T(u), w)

again, each term on the right-hand-side is of the form (T(v), v); hence
(T(v),v)=0VveV=(T(u),w)=0Vu,we V=T=0.
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Normal Operators

Definition (Normal Operator)

@ An operator on an inner product space is called normal if it commutes with its
adjoint.
@ T € L(V) is normal if
TT*=T*T

Every self-adjoint operator is normal (T*T = T2 = TT*), but the converse does not
hold:

Let T € L£(F?) be the operator with matrix (wrt standard basis)
2 -3
mn =3 73]
Since 3 # (—3)* the operator is not self adjoint, but
2 —3][ 2 3] _[2 3][2 3] _[13 o0
3 2|3 2 [-3 2]|3 2|0 13

shows that T*T and TT* have the same matrix = T*T = TT* = T is normal.

DIEGO STATE
UNIVERSITY
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Properties of Normal Operators

Theorem (T is Normal if-and-only-if || T(v)|| = || T*(v)| Vv € V)

An operator T € L(V) is normal if and only if
[T =TV, yv eV )
Proof (T is Normal if-and-only-if || T(v)|| = || T*(v)|| Vv € V)
Let T € L(V), then
Tisnormal & T*T—-TT*=0
& (T'T =TT*)(v), v) = YveV
s (T*T(v), v) = <(TT*(v) v) YveV
& ((T(v), T(v)) ={(T*(v), T*(v)) VveV
& [TWIP=ITW) vveVv ,,
‘a2

nnnnnnnnnnn
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Properties of Normal Operators :: Eigenvectors of T and T*

Theorem (For T Normal, T and T* Have the Same Eigenvectors)

Suppose T € L(V) is normal; v € V is an eigenvector of T with
eigenvalue \. Then v is also an eigenvector of T* with eigenvalue \*.

Proof (For T Normal, T and T* Have the Same Eigenvectors)

Since T € L(V) is normal, so is T — Al; using the previous theorem we
have

0=[I(T = AN = I(T = AD* (Il = [[(T" = A" DH(W)]

hence T*v = \*v.

San
U
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Properties of Normal Operators :: Orthogonal Eigenvectors

Don't forget: Every self-adjoint operator is normal.

Theorem (Orthogonal Eigenvectors for Normal Operators)

Suppose T € L(V) is normal. Then eigenvectors of T corresponding to
distinct eigenvalues are orthogonal.

[ This is a fairly big deal. Consider the impact on invariant subspaces, etc... |

[ Orthogonality is the “ultimate” linear independece! Also the path to computational efficiency. |

Proof (Orthogonal Eigenvectors for Normal Operators)

Let (A1, v1), (A2, v2) be distinct eigen-value/vector pairs of T, then:
(/\1 - )\2)<V1, V2> = </\1V1, V2> - <V1, )\EV2>
(T(n), v2) = (v1, T*(w2))

= 0 [Using the definition of T*]

This shows (v, v2) =0, i.e. vi L va.

SAN DIEGO STATE
UNveRsITY

.
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

((( Live Math }))

eg 7A-{2, 3,5 7, 12, 14}

SAN DIEGO STATE
UNveRsITY
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Adjoints
Self-Adjoint Operators
Normal Operators

Self-Adjoint and Normal Operators
The Spectral Theorem

Live Math :: Covid-19 Version TA-14

7A-14: Suppose T is a normal operator on V. Suppose also that
v,w € V satisfy the equations

vl =lwll =2, T(v)=3v, T(w)=4w.
Show that || T(v + w)| = 10.

The given information shows that (3, v) and (4, w) are two
eigen-value/vector pairs. [ORTHOGONAL EIGENVECTORS FOR NORMAL
OperaToRs] says that v L w (hinting at the use of the [PyTHaGOREAN

THEOREM])...
Putting it all together gives:
IT(v+w) = [Bv+4wl = /9[|v[* + 16] w]]?
= v9-4416-4=+100

= 10

San
U
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Self-Adjoint and Normal Operators Part Un — The C-Spectral Theorem
The Spectral Theorem Part Deux — The R-Spectral Theorem

The Spectral Theorem

Rewind (+ Comments)

@ A diagonal matrix is a square matrix that is 0 everywhere except
possibly along the diagonal.

@ An operator on V has a diagonal matrix wrt a basis if and only if
the basis consists of eigenvectors of the operator [ConpiTIONS
EQUIVALENT TO DIAGONALIZABILITY (NOTES#D5)]

The most easily understood operators on V are those for which
there is an orthonormal basis of V' wrt which the operator has a

@ diagonal matrix. These are the operators T € £(V/) such that
there is an orthonormal basis of V' consisting of eigenvectors
of T.

@ Next, we look at the Spectral Theorem, which characterizes these
operators as the normal operators when F = C, and as the
self-adjoint operators when F = R.

b ate
UV
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Self-Adjoint and Normal Operators Part Un — The C-Spectral Theorem
The Spectral Theorem Part Deux — The R-Spectral Theorem

Complex Spectral Theorem
: B8

Theorem ( )
Suppose F = C, and T € L(V). Then the following are
equivalent:

e T isnormal (TT*=T*T)

e V has an orthonormal basis consisting of eigenvectors of T.

e T has a diagonal matrix wrt some orthonormal basis of V.

) A \. / ,

Copyright: Creative Commans /-u ibution-Share Alike 2.5 Generic license
[https://commons.wikimedia .‘o;*g/wiki/Fil"e:Fireworks4,amk .ipe]
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Self-Adjoint and Normal Operators Part Un — The C-Spectral Theorem
The Spectral Theorem Part Deux — The R-Spectral Theorem

Complex Spectral Theorem

We again consider T € L£(IF?) with matrix (wrt standard basis)

wn-[;

An orthonormal basis of C? consisting of eigenvectors of M(T) is
given by B(F2) = {%(i, 1), (-, 1)}, and

M(T: B(E?)) = [2+3i 0]

0 2-3i
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Self-Adjoint and Normal Operators Part Un — The C-Spectral Theorem
The Spectral Theorem Part Deux — The R-Spectral Theorem

Complex Spectral Theorem

Proof (Complex Spectral Theorem)

(c)=(a):

(a)=(c):

Suppose T has a diagonal matrix wrt some orthonormal basis, B(V) of V, i.e.
M(T;B(V)) is diagonal. M(T*;B(V)) = M(T; ‘B( ))* is also diagonal.
Any two diagonal matrices commute, thus TT* = T*T.

Suppose TT* = T*T. [SCHUR'S THEOREM (NOTES#G)} guarantees 3 an
orthogonal basis vy, ..., v, of V so that

a1 ... ain
M(T;(vi,...yvn)) =
0 an,n
Now, || T(v1)||? = || T*(v1)||? since TT* = T*T, but
ITO)IP = laaf
1T (v)l? la1,1? + |ar2f? + - + arnl?

=-All must be zero

Next, = || T*(v2)|I> shows in the same way that |ax3| = -+ =
|327,,| = 0; and in the same way, all non-diagonal elements are zero; and
therefore M(T; (vi,...,vn)) is diagonal.

Also, T(v;) = aj,jv;, so the basis vector are eigenvectors < (b).

DIEGO STATE

UNIVERSITY

Peter Blomgren (blomgren@sdsu.edu) 7.1. Operators on Inner Product Spaces — (35/52)



Self-Adjoint and Normal Operators Part Un — The C-Spectral Theorem
The Spectral Theorem Part Deux — The R-Spectral Theorem

The Real Spectral Theorem

Rewind (Complete the Square)
Let b,c € R : b? < 4c, then

2 2
x2—|—bx+C=(x+12)> +<c—i)>0.

In particular (x? 4+ bx + ¢)~ ! is well-defined, or “(x? + bx + ¢) is an
invertible real number.”

Now, we replace x with a self-adjoint operator...

SAN DIEGO STATE
UNveRsITY
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The Spectral Theorem Part Deux — The R-Spectral Theorem

Invertible Quadratic (Operator) Expressions

Theorem (Invertible Quadratic (Operator) Expressions)

Suppose T € L(V) is self-adjoint, and b,c € R : b? < 4c, then
T2+ bT +cl
is invertible. )
Proof (Invertible Quadratic (Operator) Expressions)
Let v € V' \ {0}, then
(T2 +bT +cl)(v), v) = (T?(v), v) +b(T(v), v) +c{v, v)
(T(v), T(v)) + b(T(v), v) +cllv|?
> ITWIP = BT IvI+ cllvi? [CBS (#6)]
b 2 b?
= (=P (e 2 e
0.
Thus (T? 4+ bT +cl)(v) # 0 = (T? + bT + cl) is injective = invertible. _
[Fon L(V): INJECTIVITY <> SURJECTIVITY IN FINITE DIMENSIONS (NOTES#3.2)] ) Dm"
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Self-Adjoint and Normal Operators Part Un — The C-Spectral Theorem
The Spectral Theorem Part Deux — The R-Spectral Theorem

Self-Adjoint Operators Have Eigenvalues

Rewind ([ExisteENcE oF EIGENVALUES (NOTES#5)])
Every operator on a finite-dimensional, nonzero, complex vector
space has an eigenvalue.

Theorem (Self-Adjoint Operators Have Eigenvalues)

Suppose V' # {0}, and T € L(V) is a self-adjoint operator. Then
T has an eigenvalue.

This theorem tells us something new for Real inner product spaces.

SAN DIEGO STATE
UNveRsITY
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Self-Adjoint and Normal Operators Part Un — The C-Spectral Theorem
The Spectral Theorem Part Deux — The R-Spectral Theorem

Self-Adjoint Operators Have Eigenvalues

Proof (Self-Adjoint Operators Have Eigenvalues)

Let V be a real inner product space; n = dim(V), and v € V' \ {0}, then
the list of (n + 1) vectors

v, T(v), T2(v),..., T"(v)
cannot be linearly independent. = Jay, ..., a, (not all zero):
O=av+arT(v)+a T2(v) + 4+ a, T"(v),

let p(x) = > _}_ akx* € Pa(R) — which makes the above statement
p(T)v = 0. Now, p(x) [FACTORIZATION OF A POLYNOMIAL OVER
R (NoTes#4)] can be factored:

M m
P(X)ZCH(X2+ka+Ck H x = Ae)
k=1 =1

where ¢ # 0; b;, ¢i, \j € R; b,-2 <dci; M+ m>1;Vx e R.

U
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Proof (Self-Adjoint Operators Have Eigenvalues)

Proof (Self-Adjoint Operators Have Eigenvalues)
Now, [INVERTIBLE QUADRATIC (OPERATOR) EXPRESSIONS] guarantees that

(T? +axT+cl), k=1,...,M

are invertible operators, and (m > 0 since p(x) = 0 has at least one solution)

m

o={JI(T=x) ) (v)

(=1

Thus (T — A\¢l) is not injective for at least one £ € {1,...,m > 1};
which means that T has an eigenvalue.

SAN DIEGO STATE
UNveRsITY
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The Spectral Theorem Part Deux — The R-Spectral Theorem

Self-Adjoint Operators and Invariant Subspaces

Theorem (Self-Adjoint Operators and Invariant Subspaces)

Suppose T € L(V) is self-adjoint and U is a subspace of V that is
invariant under T. Then

(a) U™ is invariant under T;
(b) T|u € L(U) is self-adjoint
(c) Tlyr € L(UY) is self-adjoint

Proof (Self-Adjoint Operators and Invariant Subspaces)
(a) Let v € UL, u € U, then
sa T(u)eU n
(T(v), u) = (v, T(v)) "= 0=T(v)eU
(b) If u,v € U, then (T|y(u), v) = (T(u), v) = (u, T(v)) = (u, T|u(v))

(c) fuve UL, then (Tlys(u), v) =(T(u), v) =(u, T(v)) = (u, T|yL(v))

U
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The Spectral Theorem Part Deux — The R-Spectral Theorem

2 s
P Fepmii t

Theorem (Real Spctral heorem)

Suppose F =R, and T € L(V). Then the following are

equivalent:
(a) T is self-adjoint
(b) V has an orthonormal basis consisting of eigenvectors of T.

(c) T has a diagonal matrix with respect to some orthonormal
basis of V.

Copyright: Creativé Commons Attribution-Share Alike 2.5 Generic license
[https://commons .wikimedia.org/wiki/File Fireworks4 amk.]jpg|
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The Spectral Theorem Part Deux — The R-Spectral Theorem

Real Spectral Theorem

Proof (Real Spectral Theorem)

(c = a) Suppose (c) : T has a diagonal matrix with respect to some orthonormal basis
of V. A real diagonal matrix equals its transpose. Therefore T = T*, and
thus T is self-adjoint. = (a).

(a = b) If dim(V) =1, then (a = b); when dim(V) > 1, and (INDUCTIVE HYPOTH-
ESIS) that (a = b) for all real product spaces W : dim(W) < dim(V) — Let
(a) T € L(V) be self-adjoint, and let u be an eigenvector of T with [Ju|| = 1.
[SELF-ADJOINT OPERATORS HAVE EIGENVALUES]

Then U = span(u) is a 1-D subspace of V, invariant under T; T|,L
is self-adjoint [SELF-ADJOINT OPERATORS AND INVARIANT SUBSPACES];
dim(Ut) = dim(V) — 1 < dim(V); therefore 3 an orthonormal basis of
U~ consisting of eigenvectors of T|y1- Adding u to this basis given an or-
thonormal basis of V' consisting of eigenvectors of T. = (b)

(b = ¢) M(T) with respect to an orthonormal eigen-basis of V is a diagonal matrix.
(That’s the point of finding an eigen-basis!)
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Real and Complex Spectral Theorems

Rewind (Complex Spectral Theorem)

Suppose F = C, and T € £(V). Then the following are equivalent:

@ Tisnormal (TT*=T*T)
@ V has an orthonormal basis consisting of eigenvectors of T.

@ T has a diagonal matrix wrt some orthonormal basis of V.

Rewind (Real Spectral Theorem)

Suppose F =R, and T € £(V). Then the following are equivalent:

o T is self-adjoint (T = T*)
@ V has an orthonormal basis consisting of eigenvectors of T.

@ T has a diagonal matrix wrt some orthonormal basis of V.
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Real and Complex Spectral Theorems

Comment (Complex Spectral Theorem)

If F = C, then the Complex Spectral Theorem gives a complete
description of the normal operators on V.

A complete description of the self-adjoint operators on V then
easily follows — they are the normal operators on V whose
eigenvalues all are real.

Comment (Real Spectral Theorem)

If F =R, then the Real Spectral Theorem gives a complete
description of the self-adjoint operators on V.

A a complete description of the normal operators on V are

forthcoming.
[NORMAL OPERATORS AND INVARIANT SUBSPACES (NOTES#7.1-PREVIEW)]

ATE
UNIVERSITY
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“Preview”

Preview (Normal Operators and Invariant Subspaces)

Suppose V is an inner product space, T € L(V) is normal, and

is a subspace of V invariant under T. Then

(a) Ut is invariant under T;
(b) U is invariant under T*;
(©) (Tlv)* = (T")|u;

(d)

T|y € L(U), and T|y. € L(U*) are normal operators.
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((( Live Math }))

eg. 7B-{3,7,9, 15}

SAN DIEGO STATE
UNveRsITY
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The Spectral Theorem Part Deux — The R-Spectral Theorem

Live Math :: Covid-19 Version 7B-7

7B-7: Suppose V is a complex inner product space and T € L(V) is a
normal operator such that 7° = T®. Prove that T is self-adjoint,

and T2 =T. Note: There's nothing magical about 8, and 9...
By [CST], there exists an orthonormal basis uy, ..., u, of V such that
T(uk) = Akuk (where Mg, k =1,...,n are the eigenvalues).

Applying T repeatedly on both sides of the eigen-relation gives
T8(uk) = Nuk, and T°(uk) = A} uk; which by the given property
T9 = T8 means A8 = X\]. The only possibilities are s € {0, 1} € R.

Since the eigenvalues are real, T is self-adjoint. Also,

T2(Uk) = )\%(le = )\kuk = T(Uk)
—_——
since A\,€{0,1}
Hence, T2 =T.
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Suggested Problems
Probl H k, and Suppl Assigned Homework
Supplements

Suggested Problems

7.A—1,23,4,56,7 12, 14

7.B—2,3,6,7,9, 15
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Suggested Problems
A

Problems, Homework, and Suppl igned H k
Supplements
Assigned Homework HW+#7.1, Due Date in Canvas/Gradescope
7.A—1, 4,6, 14
7.B—2, 6

Note: Assignment problems are not official and subject to change
until the first lecture on the chapter has been delivered (or
virtually “scheduled.”)

Upload homework to www.Gradescope.com
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Suggested Problems
Probl H k, and Suppl: Assigned Homework
Supplements

Explicit References to Previous Theorems or Definitions (with count)

®@ & ¢

SAN DIEGO STATE
UNIviRsITY
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Suggested Problems
Probl H k, and Suppl: Assigned Homework
Supplements

Explicit References to Previous Theorems or Definitions

@ @ @ O

@ @ @ o
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