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Student Learning Targets, and Objectives SLOs: Operators on Inner Product Spaces

Student Learning Targets, and Objectives

Target Positive Operators
Objective Be able to characterize Positive Operators, and in particular construct the

Unique Positive Square Root Operator.

Target Isometries
Objective Be able to state the definition of, and characterize Isometries

Target Polar Decomposition
Objective Be able to abstractly construct∗ the Polar Decomposition of an Operator,

through Identification of the appropriate Isometry and Postive Operator.

Target Singular Value Decomposition
Objective Be able to abstractly construct∗ the Singular Value Decomposition of an

Operator, by Identifying the Singular Values and Orthonormal Bases.

∗ Generally practical constructions must be addressed with computational tools from
[Math 543].
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Positive Operators and Isometries
Polar Decomposition and Singular Value Decomposition

Positive Operators
Isometries

Positive Operators

Definition (Positive Operator)
An operator T ∈ L(V ) is called positive if T is self-adjoint and

〈T (v), v〉 ≥ 0
∀v ∈ V .

If V is a complex vector space, then the requirement that T is self-adjoint
can be dropped from the definition above:

Rewind (Over C, 〈T (v), v〉 ∈ R ∀v ∈ V Only for Self-Adjoint Operators [Notes#7.1])

Suppose V is a complex inner product space and T ∈ L(V ). Then T is
self-adjoint if and only if

〈T (v), v〉 ∈ R

∀v ∈ V .

Peter Blomgren 〈blomgren@sdsu.edu〉 7.2. Operators on Inner Product Spaces — (4/56)



Positive Operators and Isometries
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Positive Operators
Isometries

Positive Operators

Example (Positive Operators)
If U is a subspace of V , then the orthogonal projections PU

and PU⊥ are positive operators
If T ∈ L(V ) is self-adjoint and b, c ∈ R are such that
b2 < 4c , then (T 2 + bT + cI ) is a positive operator, as shown
by the proof of [Invertible Quadratic (Operator)
Expressions (Notes#7.1)]

Rewind (Invertible Quadratic (Operator) Expressions [Notes#7.1])
Suppose T ∈ L(V ) is self-adjoint, and b, c ∈ R : b2 < 4c , then

T 2 + bT + cI

is invertible.
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Positive Operators and Isometries
Polar Decomposition and Singular Value Decomposition

Positive Operators
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Square Root

Definition (Square Root)
An operator R is called a square root of an operator T if R2 = T .

Example (Square Root)
If T ∈ L(F3) is defined by T (z1, z2, z3) = (z3, 0, 0), then the operator
R ∈ L(F3) defined by R(z1, z2, z3) = (z2, z3, 0) is a square root of T :

R2(z1, z2, z3) = R(z2, z3, 0) = (z3, 0, 0) = T (z1, z2, z3)

Example (n-th Roots?)

If T ∈ L(Fn+1) is defined by T (z1, . . . , zn+1) = (zn+1, 0, . . . , 0), then the operator
R ∈ L(Fn+1) defined by R(z1, . . . , zn+1) = (z2, z3, . . . , zn+1, 0) is an nth root of T :

Rn(z1, . . . , zn) = Rn−1(z2, z3, . . . , zn+1, 0) = Rn−2(z3, z4, . . . , zn+1, 0, 0)
= . . . = (zn+1, 0, . . . , 0) = T (z1, . . . , zn+1)
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Positive Operators and Isometries
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Isometries

“Positive” vs “Non-Negative” vs “Semi-Positive”

Comment (“Positive” vs “Non-Negative” vs “Semi-Positive”)
The positive operators correspond to the numbers [0, ∞), so a
more precise terminology would use the term non-negative
instead of positive.
However, operator-theorists consistently call these the positive
operators.
Restricted to the Matrix-Vector “universe” we tend to talk about
(strictly) Positive Definite and Positive Semi-Definite Matrices
(“Matrix-Operators,” if you want).
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Positive Operators and Isometries
Polar Decomposition and Singular Value Decomposition

Positive Operators
Isometries

Characterization of Positive Operators

Theorem (Characterization of Positive Operators)
Let T ∈ L(V ), then the following are equivalent
(a) T is positive
(b) T is self-adjoint and all the eigenvalues of T are non-negative
(c) T has a positive square root
(d) T has a self-adjoint square root;
(e) there exists an operator R ∈ L(V ) such that T = R∗R

Matrices: Cholesky factorization; or “Hermitian LU-factorization”

Peter Blomgren 〈blomgren@sdsu.edu〉 7.2. Operators on Inner Product Spaces — (8/56)



Positive Operators and Isometries
Polar Decomposition and Singular Value Decomposition

Positive Operators
Isometries

Characterization of Positive Operators

Proof (Characterization of Positive Operators)
(a)⇒(b) T is positive (〈T (v), v〉 ≥ 0), and by (R:definition or

C:[Notes#7.1] we also have T = T ∗); suppose λ is an
eigenvalue of T and v the corresponding eigenvector, then

0 ≤ 〈T (v), v〉 = 〈λv , v〉 = λ〈v , v〉

⇒ λ ∈ [0, ∞) ⇒ (b)
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Positive Operators and Isometries
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Positive Operators
Isometries

Characterization of Positive Operators

Proof (Characterization of Positive Operators)
(b)⇒(c) T is self-adjoint (T = T ∗) and λ(T ) ∈ [0, ∞). By

[Complex Spectral Theorem (Notes#7.1)] or [Real Spectral
Theorem (Notes#7.1)], there is an orthonormal basis
v1, . . . , vn of V consisting of eigenvectors of T ; let
λk : T (vk) = λkvk ; thus λk ∈ [0, ∞). Let R ∈ L(V )
such that

R(vk) =
√

λk vk , k = 1, . . . , n

R is a positive operator, and R2(vk) = λkvk = T (vk),
k = 1, . . . , n; i.e. R2 = T .
Thus R is a positive square root of T . ⇒ (c)
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Characterization of Positive Operators

Proof (Characterization of Positive Operators)
(c)⇒(d) By definition, every positive operator is self-adjoint.
(d)⇒(e) Assume ∃R ∈ L(V ) so that R = R∗ and R2 = T :

Then T = R∗R ⇒ (e)
(e)⇒(a) Suppose ∃R ∈ L(V ) : T = R∗R , then T ∗ = (R∗R)∗ =

R∗(R∗)∗ = R∗R = T . (which makes T self-adjoint).
Also,

〈T (v), v〉 = 〈(R∗R)(v), v〉 = 〈R(v), R(v)〉 ≥ 0
∀v ∈ V , hence T is positive. ⇒ (a)

We now have (a)⇒(b)⇒(c)⇒(d)⇒(e)⇒(a). √
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Positive Operators
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Uniqueness of the Square Root

Theorem (Each Positive Operator Has Only One Positive Square Root)
Every positive operator on V has a unique positive square root.

Comment (“Positive Operators Act Like Real Numbers”)
Each non-negative number has a unique non-negative square root.
Again, positive operators have “real” properties.

Comment (What is Unique?)
A positive operator can have infinitely many square roots; only one
of them can be positive.
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Uniqueness of the Square Root

Proof (Each Positive Operator Has Only One Positive Square Root)
Suppose T ∈ L(V ) is positive; let t ∈ V be an eigenvector, and
λ(T ) ≥ 0: T (t) = λ(T )t.
Let R be a positive square root of T .
Note: We show R(t) =

√
λ(T ) t ⇒ the action of R on the eigenvectors

of T is uniquely determined. Since there is a basis of V consisting
of eigenvectors of T [C/R Spectral Theorem (Notes#7.1)], this
implies that R is uniquely determined.

To show that R(t) =
√

λ(T ) t, we use the fact that [C/R Spectral
Theorem (Notes#7.1)] guarantees an orthonormal basis r1, . . . , rn of V
consisting on eigenvectors of R . Since R is a positive operator λ(R) ≥ 0
⇒ ∃λ

(R)
1 , . . . , λ

(R)
n ≥ 0 such that R(rk) = λ

(R)
k rk for k = 1, . . . , n.

→ → → → →
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Positive Operators and Isometries
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Positive Operators
Isometries

Uniqueness of the Square Root

Proof (Each Positive Operator Has Only One Positive Square Root)

Since r1, . . . , rn is a basis of V , we can write t
!= (a1r1 + · · · + anrn), for

a1, . . . , an ∈ F, thus
R(t) = a1λ

(R)
1 r1 + · · · + anλ

(R)
n rn

R2(t) = a1(λ(R)
1 )2r1 + · · · + an(λ(R)

n )2rn

But R2 = T (by assumption, it is a positive square root of T ), and
T (t) = λ(T )t; therefore, the above implies

a1λ(T )r1 + · · · + anλ(T )rn = a1(λ(R)
1 )2r1 + · · · + an(λ(R)

n )2rn

⇒ aj (λ(T ) − (λ(R)
j )2) = 0, j = 1, . . . , n (either aj = 0, or (λ(T ) − (λ(R)

j )2) = 0).

Hence, t =
X

j :aj 6=0
aj rj ⇒ R(t) =

X

j :aj 6=0
aj
p

λ(T ) rj =
p

λ(T ) t,

which is what we needed to show. √
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Positive Operators and Isometries
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Positive Operators
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Isometries — Norm-Preserving Operators

Definition (Isometry)

An operator S ∈ L(V ) is called an isometry if
‖S(v)‖ = ‖v‖

∀v ∈ V .
“An operator is an isometry if it preserves norms.”

Rewind (Orthogonal Transformations [Math-254 (Notes#5.3)])
A linear transformation T : Rn → Rn is called orthogonal if it preserves the length of
vectors:

‖T (~x)‖ = ‖~x‖, ∀~x ∈ Rn.

If T (~x) = A~x is an orthogonal transformation, we say that A is an orthogonal (or
unitary, when it has complex entries) matrix.
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Positive Operators and Isometries
Polar Decomposition and Singular Value Decomposition

Positive Operators
Isometries

Isometries — Norm-Preserving Operators

Example
Suppose λ1, . . . , λn are scalars with |λk | = 1, and S ∈ L(V ) satisfies S(sj ) = λj sj for
some orthonormal basis s1, . . . , sn of V .
We demonstrate that S is an isometry.
Let v ∈ V , then

v = 〈v , s1〉s1 + · · · + 〈v , sn〉sn

‖v‖2 1= |〈v , s1〉|2 + · · · + |〈v , sn〉|2

S(v) = 〈v , s1〉S(s1) + · · · + 〈v , sn〉S(sn)
= λ1〈v , s1〉s1 + · · · + λn〈v , sn〉sn

‖S(v)‖2 1= |λ1|2|〈v , s1〉|2 + · · · + |λn|2|〈v , sn〉|2

= |〈v , s1〉|2 + · · · + |〈v , sn〉|2

1= [Writing a Vector as a Linear Combination of Orthonormal Basis (Notes#6)]
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Characterization of Isometries

Theorem (Characterization of Isometries)
Suppose S ∈ L(V ), then the following are equivalent:
(a) S is an isometry
(b) 〈S(u), S(v)〉 = 〈u, v〉 ∀u, v ∈ V

(c) S(u1), . . . ,S(un) is orthonormal for every orthonormal list of vectors
u1, . . . , un in V

(d) there exists an orthonormal list of vectors u1, . . . , un of V such that
S(u1), . . . ,S(un) is orthonormal

(e) S∗S = I

(f) SS∗ = I

(g) S∗ is an isometry
(h) S is invertible and S−1 = S∗
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Positive Operators and Isometries
Polar Decomposition and Singular Value Decomposition

Positive Operators
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Some Help for the Proof

Theorem (The Inner Product on a Real Inner Product Space)
Suppose V is a real inner product space, then

〈u, v〉 = ‖u + v‖2 − ‖u − v‖2

4
∀u, v ∈ V .

Theorem (The Inner Product on a Complex Inner Product Space)
Suppose V is a complex inner product space, then

〈u, v〉 = ‖u + v‖2 − ‖u − v‖2 + i‖u + iv‖2 − i‖u − iv‖2

4
∀u, v ∈ V .

The proofs for these identities are by “direct computation” (very similar
to what we did in [Notes#7.1]). The bottom line is that we can express
the inner product in terms of the norm.
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Positive Operators and Isometries
Polar Decomposition and Singular Value Decomposition

Positive Operators
Isometries

Characterization of Isometries

Proof (Characterization of Isometries)
(a)⇒(b) Suppose S is an isometry; the “help theorems” show that inner

products can be computed from norms. Since S preserves norms,
⇒ S preserves inner products. ⇒ (b)

(b)⇒(c) Assume S preserves inner products, let u1, . . . , un be an orthonor-
mal list of vectors in V ; S(u1), . . . ,S(un) must be an orthonor-
mal list of vectors since 〈S(ui ), S(uj)〉 = 〈ui , uj〉 = δij . ⇒ (c)

(c)⇒(d) √
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Positive Operators and Isometries
Polar Decomposition and Singular Value Decomposition

Positive Operators
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Characterization of Isometries

Proof (Characterization of Isometries)
(d)⇒(e) Let u1, . . . , un be an orthonormal basis of V such that

S(u1), . . . ,S(un) is orthonormal. Thus
〈S∗S(uj), uk〉 = 〈S(uj), S(uk)〉 = 〈uj , uk〉

All v ,w ∈ V can be written as unique linear combinations of
u1, . . . , un, therefore 〈S∗S(v), w〉 = 〈v , w〉 ⇒ S∗S = I . ⇒ (e)

(e)⇒(f) S∗S = I . ⇒ {S∗(SS∗) = S∗, (SS∗)S = S} ⇒ SS∗ = I . ⇒ (f)
(f)⇒(g) SS∗ = I , let v ∈ V , then

‖S∗(v)‖2 = 〈S∗(v), S∗(v)〉 = 〈SS∗(v), v〉 = 〈v , v〉 = ‖v‖2

⇒ S∗ is an isometry. ⇒ (g)
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Characterization of Isometries

Proof (Characterization of Isometries)
(g)⇒(h) S∗ is an isometry. We can apply the previously shown parts of

the theorem, in particular (a)⇒(e), and (a)⇒(f) to S∗ (with
(S∗)∗). This gives S∗S = SS∗ = I , which means that S is
invertible, and S−1 = S∗. ⇒ (h)

(h)⇒(a) S is invertible, and S−1 = S∗; let v ∈ V , then
‖S(v)‖2 = 〈S(v), S(v)〉 = 〈(S∗S)(v), v〉 = 〈v , v〉 = ‖v‖2

that is S is an isometry. ⇒ (a)
We now have (a)⇒(b)⇒(c)⇒(d)⇒(e)⇒(f)⇒(g)⇒(h)⇒(a). √
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Description of Isometries when F = C

Theorem (Description of Isometries when F = C)
Suppose V is a complex inner product space and S ∈ L(V ). Then the following are
equivalent:

(a) S is an isometry
(b) There is an orthonormal basis of V consisting of eigenvectors of S whose

corresponding eigenvalues all have absolute value 1

Proof (Description of Isometries when F = C)
The example on slide 16 shows (b)⇒(a). To show (a)⇒(b), we assume S is an
isometry and use [Complex Spectral Theorem (Notes#7.1)] to guarantee an
orthonormal basis s1, . . . , sn of V consisting of eigenvectors of S . Let λ1, . . . , λn be
the corresponding eigenvalues. Then

|λj | = ‖λj sj‖ = ‖S(sj )‖ = ‖sj‖ = 1,

that is |λj | = 1 j = 1, . . . , n. √.

Upcoming: [Description of Isometries when F = R (Notes#7.2–Preview)].
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“Preview”

Preview (Description of Isometries when F = R)
Suppose V is a real inner product space and S ∈ L(V ). Then the
following are equivalent:
(a) S is an isometry
(b) There is an orthonormal basis of V with respect to which S

has a block-diagonal matrix such that each block on the
diagonal is either a (1 × 1) matrix containing 1 or −1, or is a
(2 × 2) matrix of the form

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, θ ∈ (0, π)
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〈〈〈 Live Math 〉〉〉

e.g. 7C-{1, 6}
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Live Math :: Covid-19 Version 7C-1

7C-1: Prove or give a counterexample: If T ∈ L(V ) is self-adjoint
and there exists an orthonormal basis u1, . . . , un of V such that
〈T (uk), uk〉 ≥ 0 ∀k , then T is a positive operator.

We have no theorem that helps us, so therefore we suspect the statement
is false.

> Constructing a Counter-Example >

Consider V = R2, with the standard inner product, and standard basis.
Let T (x1, x2) = (x2, x1).
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Live Math :: Covid-19 Version 7C-1

> T is Self-Adjoint: >

〈(x1, x2), T ∗(y1, y2)〉 = 〈T (x1, x2), (y1, y2)〉 = 〈(x2, x1), (y1, y2)〉
= x2y1 + x1y2 = 〈(x1, x2), (y2, y1)〉

T ∗(y1, y2) = (y2, y1)

> However, T is not a Positive Operator >

〈T (1, 0), (1, 0)〉 = 0 OK
〈T (0, 1), (0, 1)〉 = 0 OK

〈T (1, −1), (1, −1)〉 = −2 NOT ≥ 0
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Polar Decomposition
Singular Value Decomposition

Analogies: C and L(V )

C L(V )
z T

z∗ T ∗

z = ℜ(z) ≥ 0 (non-negative) 〈T (v), v〉 ≥ 0 (positive)
z∗z = |z |2 = 1 (unit circle) T ∗T = I (isometry)

Any complex z ∈ C \ {0} can be written in the form

z =
(

z

|z |

)
|z | =

(
z

|z |

)√
z∗z ,

where, of course
w =

(
z

|z |

)
∈ {unit circle},
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Polar Decomposition

Notation (
√
T , The Square Root of T )

If T is a positive operator, then
√
T is the unique positive square

root of T .

Note: T ∗T is a positive operator for every T ∈ L(V )

〈(T ∗T )(v), v〉 = 〈T (v), T (v)〉 = ‖T (v)‖2 ≥ 0,

therefore
√
T ∗T is always well defined.

!
Theorem (Polar Decomposition)
Suppose T ∈ L(V ). Then there exists an isometry S ∈ L(V ) such
that

T = S
√
T ∗T

!
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Polar Decomposition Why Should We Care???

The [Polar Decomposition Theorem] shows that we can write any
operator on V as the product of an isometry, and a positive operator.
The characterization of the positive operators is given by the [C/R
Spectral Theorem (Notes#7.1)]; and

we have characterized the isometries over C in [Description of
Isometries when F = C]; and
have “previewed” the characterization over R [Description of
Isometries when F = R (Notes#7.2–Preview)].

Thus, the [Polar Decomposition Theorem] provides us with a “complete”
characterization of all operators in the sense of the [C/R Spectral Theo-
rem (Notes#7.1)] and the matching [Description of Isometries when F = C,
or F = R] results.

I do daresay, this is quite a major result, indeed.
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Polar Decomposition
Singular Value Decomposition

Polar Decomposition

Proof (Polar Decomposition)
Let v ∈ V , then

‖T (v)‖2 = 〈T (v), T (v)〉 = 〈(T∗T )(v), v〉
= 〈(

√
T∗T )(

√
T∗T )(v), v〉 = 〈(

√
T∗T )(v), (

√
T∗T )(v)〉

= ‖(
√
T∗T )(v)‖2

Thus
‖T (v)‖ = ‖(

√
T ∗T )(v)‖, ∀v ∈ V . (PD-1)

We define a linear map S1 : range(
√
T ∗T ) 7→ range(T ) by

S1((
√
T ∗T )(v)) = T (v) (PD-2)

The goal is to extend S1 to an isometry S ∈ L(V ) so that
T = S

√
T ∗T ...
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Polar Decomposition
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Proof (Polar Decomposition)
First, we make sure S1 is well defined: let v1, v2 ∈ V such that√
T ∗T (v1) =

√
T ∗T (v2). For (PD-2) to make sense, we need

T (v1) = T (v2).

‖T (v1) − T (v2)‖ = ‖T (v1 − v2)‖ (PD-1)= ‖
√
T ∗T (v1 − v2)‖

= ‖
√
T ∗T (v1) −

√
T ∗T (v2)‖ = 0

Hence T (v1) = T (v2), and S1 is well-defined (we leave the verification of the
basic linear mapping properties as an “exercise.”)

By definition (PD-2) S1 : range(
√
T ∗T ) 7→ range(T ); together with

(PD-1), we have that
‖S1(u)‖ = ‖u‖, ∀u ∈ range(

√
T ∗T )
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Proof (Polar Decomposition)
Now, we extend S1 to an isometry S on all of V :
By construction S1 is injective (null(S1) = {0} by norm-preservation), so
the [Fundamental Theorem of Linear Maps (Notes#3.1)] gives

dim(range(
√
T ∗T )) = dim(range(T ))

By [Dimension of the Orthogonal Complement (Notes#6)]

dim(range(
√
T ∗T )⊥) = dim(range(T )⊥)

Let e1, . . . , em be an orthonormal basis of (range(
√
T ∗T ))⊥,

and f1, . . . , fm be an orthonormal basis of (range(T ))⊥.
Both bases have the same length.
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Proof (Polar Decomposition)

Now, we define linear map S2 : (range(
√
T ∗T ))⊥ 7→ (range(T ))⊥ by

S2(a1e1 + · · · + amem) = a1f1 + · · · + amfm

[The Norm of an Orthonormal Linear Combination (Notes#6)] guarantees
‖S2(w)‖ = ‖w‖, ∀w ∈ (range(

√
T ∗T ))⊥.

Due to [Direct Sum of a Subspace and its Orthogonal
Complement (Notes#6)] any v ∈ V can be uniquely written in the form

v = u + w , u ∈ range(
√
T ∗T ), w ∈ (range(

√
T ∗T ))⊥ (PD-3)
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Proof (Polar Decomposition)
Now, we define S(v) by

S(v) = S1(u) + S2(w), u ∈ range(
√
T ∗T ), w ∈ (range(

√
T ∗T ))⊥

∀v ∈ V we have
S(

√
T ∗T (v)) = S1(

√
T ∗T (v)) = T (v)

so T = S
√
T ∗T . We must show that S is an isometry; with the

decomposition (PD-3) v = u + w (u ⊥ w), we can use the [Pythagorean
Theorem (≈500 BC)]:

‖S(v)‖2 = ‖S1(u) + S2(w)‖2 PT∗
= ‖S1(u)‖2 + ‖S2(w)‖2

= ‖u‖2 + ‖w‖2 PT= ‖v‖2

PT∗
= holds since S1(u) ∈ (range(T )), and S2(w) ∈ (range(T )⊥)
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Comment (Diagonalizability)

When F = C let T = S
√
T ∗T be the Polar Decomposition of an

operator T ∈ L(V ), where S is an isometry.
Then
(1) there is an orthonormal basis, B1(V ), of V with respect to which S

has a diagonal matrix, and
(2) there is an orthonormal basis, B2(V ), of V with respect to which√

T ∗T has a diagonal matrix.
WARNING: Usually, there does not exist an orthonormal basis that diag-

onalizes M(S), and M(
√
T ∗T ) at the same time.
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So far, we have used the eigenvalues (and eigenvectors) to describe the
properties of operators.

Rewind (Eigenspace, E(λ,T ))
Suppose T ∈ L(V ) and λ ∈ F. The Eigenspace of T corresponding to λ denoted
E(λ,T ) is defined to be

E(λ,T ) = null(T − λI )
E(λ,T ) is the set of all eigenvectors of T corresponding to λ, along with the 0 vector.

We are particularly interested in (obsessed with?) scenarios where we can
find orthonormal bases; this is the focus of [Schur’s Theorem (Notes#6)]],
[Complex Spectral Theorem (Notes#7.1)], and [Real Spectral
Theorem (Notes#7.1)]

In [Polar Decomposition Theorem] we needed (in general) 2 orthonormal
bases to perform the decomposition. The Singular Value Decomposition
is an “alternate” way to leverage the use of 2 bases.
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Definition (Singular Values, σ)
Suppose T ∈ L(V ). The singular values of T are the
eigenvalues, in this context denoted σi , of

√
T ∗T , with each

eigenvalue repeated dim(E (σi ,
√
T ∗T )) times.

In applications, and algorithms, it is customary to sort the singular
values in descending order, σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

The singular values of T are all non-negative, because they are the
eigenvalues of the positive operator

√
T ∗T .
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Example (T (z1, z2, z3, z4) = (0, 3z1, 2z2, −3z4))
Let T ∈ L(F4) be defined by

T (z1, z2, z3, z4) = (0, 3z1, 2z2, −3z4)
we find the singular values.
(1) First we find the eigenvalues, λ(T ); consider:

λ(z1, z2, z3, z4) = (0, 3z1, 2z2, −3z4)
the only solutions are λ ∈ {0, −3}, and the eigenspaces are given by

{
E (λ = 0,T ) = span((0, 0, 1, 0))

E (λ = −3,T ) = span((0, 0, 0, 1))

Since dim(E (0,T ))+dim(E (−3,T )) = 2 < 4 = dim(F4) we cannot
fully diagonalize the operator with an eigenbasis.
F4 6= E (−3,T ) ⊕ E (0,T ) ⇒ No Diagonalization.
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Example (T (z1, z2, z3, z4) = (0, 3z1, 2z2, −3z4))

(2) Next, we find the adjoint T ∗; T ∗T , and
√
T ∗T :

〈z , T ∗(w)〉 = 〈T (z), w〉 = 〈(0, 3z1, 2z2, −3z4), (w1,w2,w3,w4)〉
= 3z1w2 + 2z2w3 − 3z4w4
= 〈(z1, z2, z3, z4), (3w2, 2w3, 0, −3w4)〉

T ∗(w) = (3w2, 2w3, 0, −3w4)
T ∗T (z) = T ∗(0, 3z1, 2z2, −3z4) = (9z1, 4z2, 0, 9z4)√
T ∗T (z) = (3z1, 2z2, 0, 3z4)

λ(T ∗) = {−3, 0}
λ(T ∗T ) = {9, 4, 0}

λ(
√
T ∗T ) = {3, 2, 0}  the singular values
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Example (T (z1, z2, z3, z4) = (0, 3z1, 2z2, −3z4))

(3) We need the eigenspaces of
√
T ∗T :

E (0;
√
T ∗T ) = span ((0, 0, 1, 0))

E (2;
√
T ∗T ) = span ((0, 1, 0, 0))

E (3;
√
T ∗T ) = span((1, 0, 0, 0), (0, 0, 0, 1))

Thus, the singular values are σ(T ) = {3, 3, 2, 0}.

Comment (T (z1, z2, z3, z4) = (0, 3z1, 2z2, −3z4))
Note that λ(T ) = {0, −3} did not ”capture” the 2, but
σ(T ) = {3, 3, 2, 0} did.
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Comment (T (z1, z2, z3, z4) = (0, 3z1, 2z2, −3z4))

M(T , {ei}) =

2

6

6

4

0 3 0 0
0 0 2 0
0 0 0 0
0 0 0 −3

3

7

7

5

, M(T∗, {ei}) =

2

6

6

4

0 0 0 0
3 0 0 0
0 2 0 0
0 0 0 −3

3

7

7

5

,

M(
√
T∗T )2 = M(T∗)M(T ) =

2

6

6

4

0 0 0 0
0 9 0 0
0 0 4 0
0 0 0 9

3

7

7

5

=

2

6

6

4

0 0 0 0
0 3 0 0
0 0 2 0
0 0 0 3

3

7

7

5

2

Using [Eigenvalues and Determinants: The Characteristic
Equation (Math-254, Notes#7.2)], we can get

pM(T )(λ) = λ3(λ + 3), pM(
√
T∗T )(λ) = λ(λ − 2)(λ − 3)2
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Each T ∈ L(V ) has dim(V ) singular values; this follows from [C/R
Spectral Theorem (Notes#7.1)], and [Conditions Equivalent to
Diagonalizability (Notes#5)] applied to the positive (⇒ self-adjoint)
operator

√
T ∗T .

The next statement gives a characterization ∀T ∈ L(V ) in terms
of the singular values, and two orthonormal bases of V .
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Theorem (Singular Value Decomposition)
Suppose T ∈ L(V ) has singular values σ1, . . . , σn. Then there
exists orthonormal bases v1, . . . , vn, and u1, . . . , un of V such that

T (w) = σ1〈w , v1〉u1 + · · · + σn〈w , vn〉un
∀w ∈ V .

Comment (The Fundamental Theorem of Data Science)
If you want to be Buzzword Compliant, you could call this the
Fundamental Theorem of Page Rank ////Big///////Data Data Science
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Proof (Singular Value Decomposition)
By the [C/R Spectral Theorem (Notes#7.1)], we can find an orthonormal basis
v1, . . . , vn of V such that

√
T∗T (vk ) = σkvk , k = 1, . . . , n. Hence due to [Writing a

Vector as a Linear Combination of Orthonormal Basis (Notes#6)] ∀w ∈ V

w = 〈w , v1〉v1 + · · · + 〈w , vn〉vn
√
T∗T (w) =

√
T∗T (〈w , v1〉v1 + · · · + 〈w , vn〉vn)

= σ1〈w , v1〉v1 + · · · + σn〈w , vn〉vn

By [Polar Decomposition], ∃ an isometry S ∈ L(V ) such that T = S
√
T∗T ; thus

T (w) = σ1〈w , v1〉S(v1) + · · · + σn〈w , vn〉S(vn)

Let uk = S(vk), k = 1, . . . , n, then u1, . . . , un is an orthonormal basis
[Characterization of Isometries]; and we have

T (w) = σ1〈w , v1〉u1 + · · · + σn〈w , vn〉un
∀w ∈ V . √
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Comment (Singular Value Decomposition and Polar Decomposition)

When considering linear maps T ∈ L(V ,W ), we considered
M(T ;B(V );B(W ));

in the operator setting (W = V ) T ∈ L(V ) we usually consider
M(T ;B(V )),

making the basis B(V ) play both the input/domain and
output/range roles.
In the Polar Decomposition setting, where T = S

√
T ∗T , we may

consider two bases for V , B1(V ), and B2(V ), so that
M(S ;B1(V )), and M(

√
T ∗T ;B2(V ))

both are diagonal matrices.
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Comment (Singular Value Decomposition)
Now, in the Singular Value Decomposition we use one basis B1(V ) for
the input/domain side, and another B2(V ) for the output/range side, so
that

M(T ;B1(V ),B2(V )) =




σ1 0 . . . 0

0 . . . . . . ...
... . . . . . . 0
0 . . . 0 σn




= diag(σ1, . . . , σn)

Every T ∈ L(V ) has orthonormal bases B1(V ) = (v1, . . . , vn) and
B2(V ) = (u1, . . . , un) so that

M(T ;B1(V ),B2(V )) = diag(σ1, . . . , σn)
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The following result is useful when developing strategies for finding
singular values:

Theorem (Singular Values Without Taking Square Root of an Operator)
Suppose T ∈ L(V ). Then the singular values of T are the
nonnegative square roots of the eigenvalues of T ∗T , with each
eigenvalue σ repeated dim(E (σ,T ∗T )) times.

Proof (Singular Values Without Taking Square Root of an Operator)
The [C/R Spectral Theorem (Notes#7.1)] implies that there is an
orthonormal basis v1, . . . , vn and nonnegative numbers σ1, . . . , σn

such that T ∗T (vi ) = σivi , j = 1, . . . , n. As we have done
previously, defining

√
T ∗T (vi ) = √

σi vi gives the desired result.
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〈〈〈 Live Math 〉〉〉

e.g. 7D-{4, 6, 7, 10}

Peter Blomgren 〈blomgren@sdsu.edu〉 7.2. Operators on Inner Product Spaces — (48/56)



Positive Operators and Isometries
Polar Decomposition and Singular Value Decomposition

Polar Decomposition
Singular Value Decomposition

Live Math :: Covid-19 Version 7D-6

7D-6: Find the singular values of the differentiation operator D ∈
L(P2(R)) defined by Dp = p′, where the inner product on P2(R)
is the “Legendre Inner Product”, 〈p, q〉 =

∫ 1
−1 p(x)q(x) dx .

> Reference Orthonormal Basis >

In [Notes#6] we derived an orthonormal basis for P2(R) with this
particular inner product:

u0 =
√

1
2 , u1 =

√
3
2x , u2 =

√
45
8

(
x2 − 1

3

)
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> Matrix wrt. the Standard Basis {1, x , x2} >

The matrix of D with respect to the Standard Basis of P2(R) is

M(D, {1, x , x2}) =




0 1 0
0 0 2
0 0 0




which shows that the only Eigenvalue of D is 0 by [Determination of
Eigenvalues from Upper-Triangular Matrix (Notes#5)].

> Toward Singular Values... >

However, M(D, {1, x , x2}) cannot be used to compute the singular
values since {1, x , x2} is not an orthonormal basis.
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> M(T , {u0(x), u1(x), u2(x)}) >

Getting the coefficients for the matrix with respect to the reference
orthonormal basis is a little messy, but not too bad:

D

(√
1
2

)
= 0

D

(√
3
2x
)

=
√

3
2 =

√
3 ·
√

1
2

D

(√
45
8

(
x2 − 1

3

))
=

√
45
2 x =

√
15 ·

√
3
2x
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M(T , {u0(x), u1(x), u2(x)}) =




0
√

3 0
0 0

√
15

0 0 0




M(T ∗, {u0(x), u1(x), u2(x)}) =




0 0 0√
3 0 0
0

√
15 0




M(T ∗T ) =




0 0 0√
3 0 0
0

√
15 0






0
√

3 0
0 0

√
15

0 0 0


 =




0 0 0
0 3 0
0 0 15




Hence, by [Singular Values Without Taking Square Root of an
Operator], we have

σ(T ) =
{√

15,
√

3, 0
}
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Problems, Homework, and Supplements
Suggested Problems
Assigned Homework
Supplements

Suggested Problems

7.C—1, 2, 4, 6, 7

7.D—1, 2, 4, 5, 6, 7, 10
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Suggested Problems
Assigned Homework
Supplements

Assigned Homework HW#7.2, Due Date in Canvas/Gradescope

7.C—2, 4, 7

7.D—1, 2, 5

Note: Assignment problems are not official and subject to change
until the first lecture on the chapter has been delivered (or
virtually “scheduled.”)

Upload homework to www.Gradescope.com
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Suggested Problems
Assigned Homework
Supplements

Explicit References to Previous Theorems or Definitions (with count)

1

2 3-1 3-2 4

5

67-17-28

1 1

6

12
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1

2 3-1 3-2 4

5

67-17-28

Peter Blomgren 〈blomgren@sdsu.edu〉 7.2. Operators on Inner Product Spaces — (56/56)


