Math 524: Linear Algebra

Notes #7.2 — Operators on Inner Product Spaces

Peter Blomgren (blomgren@sdsu.edu)

Department of Mathematics and Statistics

Dynamical Systems Group

Computational Sciences Research Center

San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Fall 2021

(Revised: December 7, 2021)

Outline

- Student Learning Targets, and Objectives
 - SLOs: Operators on Inner Product Spaces
- Positive Operators and Isometries
 - Positive Operators
 - Isometries
- 3 Polar Decomposition and Singular Value Decomposition
 - Polar Decomposition
 - Singular Value Decomposition
- Problems, Homework, and Supplements
 - Suggested Problems
 - Assigned Homework
 - Supplements

Student Learning Targets, and Objectives

Target Positive Operators

Objective Be able to characterize Positive Operators, and in particular construct the Unique Positive Square Root Operator.

Target Isometries

Objective Be able to state the definition of, and characterize Isometries

Target Polar Decomposition

Objective Be able to abstractly construct* the Polar Decomposition of an Operator, through Identification of the appropriate Isometry and Postive Operator.

Target Singular Value Decomposition

Objective Be able to abstractly construct* the Singular Value Decomposition of an Operator, by Identifying the Singular Values and Orthonormal Bases.

 $^{^{\}ast}$ Generally practical constructions must be addressed with computational tools from $[{\rm Math}\,543].$

Positive Operators

Definition (Positive Operator)

An operator $T \in \mathcal{L}(V)$ is called **positive** if T is self-adjoint and

$$\langle T(v), v \rangle \geq 0$$

 $\forall v \in V$.

If V is a complex vector space, then the requirement that T is self-adjoint can be dropped from the definition above:

Rewind (Over \mathbb{C} , $\langle T(v), v \rangle \in \mathbb{R} \ \forall v \in V$ Only for Self-Adjoint Operators [Notes #7.1])

Suppose V is a complex inner product space and $T \in \mathcal{L}(V)$. Then T is self-adjoint if and only if

$$\langle T(v), v \rangle \in \mathbb{R}$$

 $\forall v \in V$.

Positive Operators

Example (Positive Operators)

- If U is a subspace of V, then the orthogonal projections P_U and $P_{U^{\perp}}$ are positive operators
- If $T \in \mathcal{L}(V)$ is self-adjoint and $b, c \in \mathbb{R}$ are such that $b^2 < 4c$, then $(T^2 + bT + cI)$ is a positive operator, as shown by the proof of [Invertible Quadratic (Operator)

Expressions (Notes#7.1)]

Rewind (Invertible Quadratic (Operator) Expressions [NOTES#7.1])

Suppose $T \in \mathcal{L}(V)$ is self-adjoint, and $b, c \in \mathbb{R}$: $b^2 < 4c$, then

$$T^2 + bT + cI$$

is invertible.

Square Root

Definition (Square Root)

An operator R is called a **square root** of an operator T if $R^2 = T$.

Example (Square Root)

If $T \in \mathcal{L}(\mathbb{F}^3)$ is defined by $T(z_1, z_2, z_3) = (z_3, 0, 0)$, then the operator $R \in \mathcal{L}(\mathbb{F}^3)$ defined by $R(z_1, z_2, z_3) = (z_2, z_3, 0)$ is a square root of T:

$$R^2(z_1, z_2, z_3) = R(z_2, z_3, 0) = (z_3, 0, 0) = T(z_1, z_2, z_3)$$

Example (*n*-th Roots?

If $T \in \mathcal{L}(\mathbb{F}^{n+1})$ is defined by $T(z_1,\ldots,z_{n+1})=(z_{n+1},0,\ldots,0)$, then the operator $R \in \mathcal{L}(\mathbb{F}^{n+1})$ defined by $R(z_1,\ldots,z_{n+1})=(z_2,z_3,\ldots,z_{n+1},0)$ is an nth root of T:

$$R^{n}(z_{1},...,z_{n}) = R^{n-1}(z_{2},z_{3},...,z_{n+1},0) = R^{n-2}(z_{3},z_{4},...,z_{n+1},0,0)$$

= ... = $(z_{n+1},0,...,0) = T(z_{1},...,z_{n+1})$

Polar Decomposition and Singular Value Decomposition

"Positive" vs "Non-Negative" vs "Semi-Positive"

Comment ("Positive" vs "Non-Negative" vs "Semi-Positive")

The positive operators correspond to the numbers $[0, \infty)$, so a more precise terminology would use the term **non-negative** instead of positive.

However, operator-theorists consistently call these the positive operators.

Restricted to the Matrix-Vector "universe" we tend to talk about (strictly) Positive Definite and Positive Semi-Definite Matrices ("Matrix-Operators," if you want).

Theorem (Characterization of Positive Operators)

Let $T \in \mathcal{L}(V)$, then the following are equivalent

- (a) T is positive
- (b) T is self-adjoint and all the eigenvalues of T are non-negative
- (c) T has a positive square root
- (d) T has a self-adjoint square root;
- (e) there exists an operator $R \in \mathcal{L}(V)$ such that $T = R^*R$ Matrices: Cholesky factorization; or "Hermitian LU-factorization"

Proof (Characterization of Positive Operators)

(a) \Rightarrow (b) T is positive ($\langle T(v), v \rangle \geq 0$), and by (\mathbb{R} :definition or \mathbb{C} :[Notes#7.1] we also have $T = T^*$); suppose λ is an eigenvalue of T and v the corresponding eigenvector, then

$$0 \le \langle T(v), v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle$$

 $\Rightarrow \lambda \in [0, \infty)$ \Rightarrow (b)

Proof (Characterization of Positive Operators)

(b) \Rightarrow (c) T is self-adjoint ($T = T^*$) and $\lambda(T) \in [0, \infty)$. [Complex Spectral Theorem (Notes#7.1)] or [Real Spectral THEOREM (NOTES#7.1)], there is an orthonormal basis v_1, \ldots, v_n of V consisting of eigenvectors of T; let $\lambda_k : T(v_k) = \lambda_k v_k$; thus $\lambda_k \in [0, \infty)$. Let $R \in \mathcal{L}(V)$ such that

$$R(v_k) = \sqrt{\lambda_k} v_k, \ k = 1, \dots, n$$

R is a positive operator, and $R^2(v_k) = \lambda_k v_k = T(v_k)$, k = 1, ..., n: i.e. $R^2 = T$.

Thus R is a positive square root of T. \Rightarrow (c)

Proof (Characterization of Positive Operators)

- $(c) \Rightarrow (d)$ By definition, every positive operator is self-adjoint.
- (d) \Rightarrow (e) Assume $\exists R \in \mathcal{L}(V)$ so that $R = R^*$ and $R^2 = T$: Then $T = R^*R$ \Rightarrow (e)
- (e) \Rightarrow (a) Suppose $\exists R \in \mathcal{L}(V) : T = R^*R$, then $T^* = (R^*R)^* =$ $R^*(R^*)^* = R^*R = T$. (which makes T self-adjoint). Also.

$$\langle T(v), v \rangle = \langle (R^*R)(v), v \rangle = \langle R(v), R(v) \rangle \ge 0$$

$$\forall v \in V, \text{ hence } T \text{ is positive.} \Rightarrow \text{(a)}$$

We now have $(a)\Rightarrow(b)\Rightarrow(c)\Rightarrow(d)\Rightarrow(e)\Rightarrow(a)$. $\sqrt{}$

Uniqueness of the Square Root

Theorem (Each Positive Operator Has Only One Positive Square Root)

Every positive operator on V has a unique positive square root.

Comment ("Positive Operators Act Like Real Numbers")
Each non-negative number has a unique non-negative square root.
Again, positive operators have "real" properties.

Comment (What is Unique?)

A positive operator can have infinitely many square roots; only one of them can be positive.

Uniqueness of the Square Root

Proof (Each Positive Operator Has Only One Positive Square Root)

Suppose $T \in \mathcal{L}(V)$ is positive; let $t \in V$ be an eigenvector, and $\lambda^{(T)} > 0$: $T(t) = \lambda^{(T)}t$.

Let R be a positive square root of T.

NOTE: We show $R(t) = \sqrt{\lambda^{(T)}} t \Rightarrow$ the action of R on the eigenvectors of T is uniquely determined. Since there is a basis of V consisting of eigenvectors of T [\mathbb{C}/\mathbb{R} Spectral Theorem (Notes#7.1)], this implies that R is uniquely determined.

To show that $R(t) = \sqrt{\lambda^{(T)}} t$, we use the fact that \mathbb{C}/\mathbb{R} Spectral Theorem (Notes#7.1)] guarantees an orthonormal basis r_1, \ldots, r_n of Vconsisting on eigenvectors of R. Since R is a positive operator $\lambda(R) \geq 0$ $\Rightarrow \exists \lambda_1^{(R)}, \dots, \lambda_n^{(R)} > 0$ such that $R(r_k) = \lambda_k^{(R)} r_k$ for $k = 1, \dots, n$.

-(13/56)

Uniqueness of the Square Root

Proof (Each Positive Operator Has Only One Positive Square Root)

Since r_1, \ldots, r_n is a basis of V, we can write $t \stackrel{!}{=} (a_1r_1 + \cdots + a_nr_n)$, for $a_1, \ldots, a_n \in \mathbb{F}$, thus

$$R(t) = a_1 \lambda_1^{(R)} r_1 + \dots + a_n \lambda_n^{(R)} r_n$$

$$R^2(t) = a_1 (\lambda_1^{(R)})^2 r_1 + \dots + a_n (\lambda_n^{(R)})^2 r_n$$

But $R^2 = T$ (by assumption, it is a positive square root of T), and $T(t) = \lambda^{(T)}t$; therefore, the above implies

$$\begin{aligned} a_1 \lambda^{(T)} r_1 + \dots + a_n \lambda^{(T)} r_n &= a_1 \big(\lambda_1^{(R)} \big)^2 r_1 + \dots + a_n \big(\lambda_n^{(R)} \big)^2 r_n \\ \Rightarrow a_j (\lambda^{(T)} - (\lambda_j^{(R)})^2) &= 0, \ j = 1, \dots, n \ (\text{either } a_j = 0, \ \text{or} \ (\lambda^{(T)} - (\lambda_j^{(R)})^2) = 0). \\ \text{Hence, } t &= \sum a_j r_j \quad \Rightarrow \quad R(t) &= \sum a_j \sqrt{\lambda^{(T)}} \ r_j &= \sqrt{\lambda^{(T)}} \ t, \end{aligned}$$

which is what we needed to show. $\sqrt{}$

Isometries — Norm-Preserving Operators

Definition (Isometry)

• An operator $S \in \mathcal{L}(V)$ is called an **isometry** if

$$||S(v)|| = ||v||$$

 $\forall v \in V$.

• "An operator is an isometry if it preserves norms."

Rewind (Orthogonal Transformations [MATH-254 (NOTES#5.3)])

A linear transformation $\mathcal{T}:\mathbb{R}^n \to \mathbb{R}^n$ is called orthogonal if it preserves the length of vectors:

$$||T(\vec{x})|| = ||\vec{x}||, \ \forall \vec{x} \in \mathbb{R}^n.$$

If $T(\vec{x}) = A\vec{x}$ is an orthogonal transformation, we say that A is an orthogonal (or *unitary*, when it has complex entries) matrix.

Isometries — Norm-Preserving Operators

Suppose $\lambda_1, \ldots, \lambda_n$ are scalars with $|\lambda_k| = 1$, and $S \in \mathcal{L}(V)$ satisfies $S(s_i) = \lambda_i s_i$ for some orthonormal basis s_1, \ldots, s_n of V.

We demonstrate that S is an isometry.

Let $v \in V$, then

$$v = \langle v, s_1 \rangle s_1 + \dots + \langle v, s_n \rangle s_n$$

$$\|v\|^2 \stackrel{1}{=} |\langle v, s_1 \rangle|^2 + \dots + |\langle v, s_n \rangle|^2$$

$$S(v) = \langle v, s_1 \rangle S(s_1) + \dots + \langle v, s_n \rangle S(s_n)$$

$$= \lambda_1 \langle v, s_1 \rangle s_1 + \dots + \lambda_n \langle v, s_n \rangle s_n$$

$$\|S(v)\|^2 \stackrel{1}{=} |\lambda_1|^2 |\langle v, s_1 \rangle|^2 + \dots + |\lambda_n|^2 |\langle v, s_n \rangle|^2$$

$$= |\langle v, s_1 \rangle|^2 + \dots + |\langle v, s_n \rangle|^2$$

[Writing a Vector as a Linear Combination of Orthonormal Basis (Notes#6)]

Theorem (Characterization of Isometries)

Suppose $S \in \mathcal{L}(V)$, then the following are equivalent:

- (a) S is an isometry
- (b) $\langle S(u), S(v) \rangle = \langle u, v \rangle \ \forall u, v \in V$
- (c) $S(u_1), \ldots, S(u_n)$ is orthonormal for every orthonormal list of vectors u_1, \ldots, u_n in V
- (d) there exists an orthonormal list of vectors u_1, \ldots, u_n of V such that $S(u_1), \ldots, S(u_n)$ is orthonormal
- (e) $S^*S = I$
- (f) $SS^* = I$
- (g) S^* is an isometry
- (h) S is invertible and $S^{-1} = S^*$

Some Help for the Proof

Theorem (The Inner Product on a Real Inner Product Space)

Suppose V is a real inner product space, then

$$\langle u, v \rangle = \frac{\|u + v\|^2 - \|u - v\|^2}{4}$$

 $\forall u, v \in V$.

Theorem (The Inner Product on a Complex Inner Product Space)

Suppose V is a complex inner product space, then

$$\langle u, v \rangle = \frac{\|u + v\|^2 - \|u - v\|^2 + i\|u + iv\|^2 - i\|u - iv\|^2}{4}$$

 $\forall u, v \in V$.

The proofs for these identities are by "direct computation" (very similar to what we did in [Notes #7.1]). The bottom line is that we can express the inner product in terms of the norm.

Proof (Characterization of Isometries)

- (a) \Rightarrow (b) Suppose S is an isometry; the "help theorems" show that inner products can be computed from norms. Since S preserves norms. \Rightarrow S preserves inner products. \Rightarrow (b)
- (b) \Rightarrow (c) Assume S preserves inner products, let u_1, \ldots, u_n be an orthonormal list of vectors in V; $S(u_1), \ldots, S(u_n)$ must be an orthonormal list of vectors since $\langle S(u_i), S(u_i) \rangle = \langle u_i, u_i \rangle = \delta_{ii}. \Rightarrow (c)$
- $(c) \Rightarrow (d) \sqrt{}$

Proof (Characterization of Isometries)

 $(d)\Rightarrow (e)$ Let u_1,\ldots,u_n be an orthonormal basis of V such that $S(u_1), \ldots, S(u_n)$ is orthonormal. Thus

$$\langle S^*S(u_j), u_k \rangle = \langle S(u_j), S(u_k) \rangle = \langle u_j, u_k \rangle$$

All $v, w \in V$ can be written as unique linear combinations of u_1, \ldots, u_n , therefore $\langle S^*S(v), w \rangle = \langle v, w \rangle \Rightarrow S^*S = I. \Rightarrow (e)$

(e)
$$\Rightarrow$$
(f) $S^*S = I$. \Rightarrow $\{S^*(SS^*) = S^*$, $(SS^*)S = S\} \Rightarrow $SS^* = I$. \Rightarrow (f)$

(f)
$$\Rightarrow$$
(g) $SS^* = I$, let $v \in V$, then
$$||S^*(v)||^2 = \langle S^*(v), S^*(v) \rangle = \langle SS^*(v), v \rangle = \langle v, v \rangle = ||v||^2$$
$$\Rightarrow S^* \text{ is an isometry.} \Rightarrow (g)$$

Proof (Characterization of Isometries)

- (g) \Rightarrow (h) S^* is an isometry. We can apply the previously shown parts of the theorem, in particular (a) \Rightarrow (e), and (a) \Rightarrow (f) to S^* (with $(S^*)^*$). This gives $S^*S = SS^* = I$, which means that S is invertible, and $S^{-1} = S^*$.
- (h) \Rightarrow (a) S is invertible, and $S^{-1}=S^*$; let $v\in V$, then $\|S(v)\|^2=\langle S(v),\,S(v)\rangle=\langle (S^*S)(v),\,v\rangle=\langle v,\,v\rangle=\|v\|^2$ that is S is an isometry. \Rightarrow (a)

We now have (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (f) \Rightarrow (g) \Rightarrow (h) \Rightarrow (a). \checkmark

Description of Isometries when $\mathbb{F}=\mathbb{C}$

Theorem (Description of Isometries when $\mathbb{F}=\mathbb{C}$)

Suppose V is a complex inner product space and $S \in \mathcal{L}(V)$. Then the following are equivalent:

- (a) S is an isometry
- (b) There is an orthonormal basis of V consisting of eigenvectors of S whose corresponding eigenvalues all have absolute value 1

Proof (Description of Isometries when $\mathbb{F}=\mathbb{C}$)

The example on slide 16 shows (b) \Rightarrow (a). To show (a) \Rightarrow (b), we assume S is an isometry and use [Complex Spectral Theorem (Notes#7.1)] to guarantee an orthonormal basis s_1, \ldots, s_n of V consisting of eigenvectors of S. Let $\lambda_1, \ldots, \lambda_n$ be the corresponding eigenvalues. Then

$$|\lambda_i| = ||\lambda_i s_i|| = ||S(s_i)|| = ||s_i|| = 1,$$

that is $|\lambda_i| = 1$ $j = 1, \ldots, n$. $\sqrt{.}$

Upcoming: [Description of Isometries when $\mathbb{F} = \mathbb{R}$ (Notes#7.2-Preview)].

"Preview"

Preview (Description of Isometries when $\mathbb{F}=\mathbb{R}$)

Suppose V is a real inner product space and $S \in \mathcal{L}(V)$. Then the following are equivalent:

- (a) S is an isometry
- (b) There is an orthonormal basis of V with respect to which S has a block-diagonal matrix such that each block on the diagonal is either a (1×1) matrix containing 1 or -1, or is a (2×2) matrix of the form

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}, \quad \theta \in (0, \pi)$$

$$\langle\langle\langle$$
 Live Math $\rangle\rangle\rangle$ e.g. 7C- $\{\mathbf{1}, 6\}$

Live Math .. Covid-19 Version

7C-1

7C-1: Prove or give a counterexample: If $T \in \mathcal{L}(V)$ is self-adjoint and there exists an orthonormal basis u_1, \ldots, u_n of V such that $\langle T(u_k), u_k \rangle \geq 0 \ \forall k$, then T is a positive operator.

We have no theorem that helps us, so therefore we suspect the statement is false.

*

Constructing a Counter-Example

Consider $V = \mathbb{R}^2$, with the standard inner product, and standard basis. Let $T(x_1, x_2) = (x_2, x_1)$.

*

*

$$\langle (x_1, x_2), T^*(y_1, y_2) \rangle = \langle T(x_1, x_2), (y_1, y_2) \rangle = \langle (x_2, x_1), (y_1, y_2) \rangle$$

$$= \langle I(x_1, x_2), (y_1, y_2) \rangle = \langle (x_2, x_1), = x_2y_1 + x_1y_2 = \langle (x_1, x_2), (y_2, y_1) \rangle$$

$$+ x_1 y_2 =$$

$$\frac{-x_2y_1+x_1y_2}{T^*(y_1,y_2)=(y_2,y_1)}$$

7.2. Operators on Inner Product Spaces

Positive Operators

Isometries

However,
$$T$$
 is not a Positive Operator

$$\langle T(1,0), (1,0) \rangle = 0$$
 OK

$$\langle T(0,1), (0,1) \rangle = 0 \text{ OK}$$

 $\langle T(1,-1), (1,-1) \rangle = -2 \text{ NOT} > 0$

7C - 1

*

Analogies: \mathbb{C} and $\mathcal{L}(V)$

\mathbb{C}	$\mathcal{L}(V)$
Z	T
Z^*	T*
$z=\Re(z)\geq 0$ (non-negative)	$\langle T(v), v \rangle \geq 0$ (positive)
$z^*z = z ^2 = 1$ (unit circle)	$T^*T = I$ (isometry)

Any complex $z \in \mathbb{C} \setminus \{0\}$ can be written in the form

$$z = \left(\frac{z}{|z|}\right)|z| = \left(\frac{z}{|z|}\right)\sqrt{z^*z},$$

where, of course

$$w = \left(\frac{z}{|z|}\right) \in \{\text{unit circle}\},$$

Notation $(\sqrt{T}, \text{ The Square Root of } T)$

If T is a positive operator, then \sqrt{T} is the unique positive square root of T.

Note: T^*T is a positive operator for every $T \in \mathcal{L}(V)$

$$\langle (T^*T)(v), v \rangle = \langle T(v), T(v) \rangle = ||T(v)||^2 \ge 0,$$

therefore $\sqrt{T^*T}$ is always well defined.

Theorem (Polar Decomposition)

Suppose $T \in \mathcal{L}(V)$. Then there exists an isometry $S \in \mathcal{L}(V)$ such that

$$T = S\sqrt{T*T}$$

Why Should We Care???

The [Polar Decomposition Theorem] shows that we can write any operator on V as the product of an isometry, and a positive operator.

The characterization of the positive operators is given by the $[\mathbb{C}/\mathbb{R}$ Spectral Theorem (Notes#7.1)]; and

- ullet we have characterized the isometries over $\mathbb C$ in [Description of Isometries when $\mathbb F=\mathbb C$]; and
- have "previewed" the characterization over \mathbb{R} [Description of Isometries when $\mathbb{F} = \mathbb{R}$ (Notes#7.2–Preview)].

Thus, the [Polar Decomposition Theorem] provides us with a "complete" characterization of all operators in the sense of the $[\mathbb{C}/\mathbb{R} \ \mathrm{Spectral} \ \mathrm{Theorem} \ (\mathrm{Notes}\#7.1)]$ and the matching [Description of Isometries when $\mathbb{F}=\mathbb{C},$ or $\mathbb{F}=\mathbb{R}]$ results.

I do daresay, this is quite a major result, indeed.

Proof (Polar Decomposition)

Let $v \in V$. then

$$||T(v)||^2 = \langle T(v), T(v) \rangle = \langle (T^*T)(v), v \rangle$$

$$= \langle (\sqrt{T^*T})(\sqrt{T^*T})(v), v \rangle = \langle (\sqrt{T^*T})(v), (\sqrt{T^*T})(v) \rangle$$

$$= ||(\sqrt{T^*T})(v)||^2$$

Thus

$$||T(v)|| = ||(\sqrt{T^*T})(v)||, \ \forall v \in V.$$
 (PD-1)

We define a linear map $S_1 : \operatorname{range}(\sqrt{T^*T}) \mapsto \operatorname{range}(T)$ by

$$S_1((\sqrt{T^*T})(v)) = T(v)$$
 (PD-2)

The goal is to extend S_1 to an isometry $S \in \mathcal{L}(V)$ so that $T = S\sqrt{T*T}$...

Proof (Polar Decomposition)

First, we make sure S_1 is well defined: let $v_1, v_2 \in V$ such that $\sqrt{T^*T}(v_1) = \sqrt{T^*T}(v_2)$. For (PD-2) to make sense, we need $T(v_1) = T(v_2)$.

$$||T(v_1) - T(v_2)|| = ||T(v_1 - v_2)|| \stackrel{\text{(PD-1)}}{=} ||\sqrt{T^*T}(v_1 - v_2)||$$

= $||\sqrt{T^*T}(v_1) - \sqrt{T^*T}(v_2)|| = 0$

Hence $T(v_1) = T(v_2)$, and S_1 is well-defined (we leave the verification of the basic linear mapping properties as an "exercise.")

By definition (PD-2) $S_1 : \operatorname{range}(\sqrt{T^*T}) \mapsto \operatorname{range}(T)$; together with (PD-1), we have that

$$\|S_1(u)\| = \|u\|, \ \forall u \in \operatorname{range}(\sqrt{T^*T})$$

Proof (Polar Decomposition)

Now, we extend S_1 to an isometry S on all of V:

By construction S_1 is injective $(\text{null}(S_1) = \{0\} \text{ by norm-preservation})$, so the [Fundamental Theorem of Linear Maps (Notes#3.1)] gives

$$\dim(\operatorname{range}(\sqrt{T^*T})) = \dim(\operatorname{range}(T))$$

By [Dimension of the Orthogonal Complement (Notes#6)]

$$\dim(\operatorname{range}(\sqrt{T^*T})^{\perp}) = \dim(\operatorname{range}(T)^{\perp})$$

Let e_1, \ldots, e_m be an orthonormal basis of $(\operatorname{range}(\sqrt{T^*T}))^{\perp}$, and f_1, \ldots, f_m be an orthonormal basis of $(\operatorname{range}(T))^{\perp}$. Both bases have the same length.

Proof (Polar Decomposition)

Now, we define linear map $S_2: (\operatorname{range}(\sqrt{T^*T}))^\perp \mapsto (\operatorname{range}(T))^\perp$ by $S_2(a_1e_1 + \cdots + a_me_m) = a_1f_1 + \cdots + a_mf_m$

[The Norm of an Orthonormal Linear Combination (Notes#6)] guarantees $||S_2(w)|| = ||w||, \forall w \in (\operatorname{range}(\sqrt{T^*T}))^{\perp}.$

Due to [Direct Sum of a Subspace and its Orthogonal

Complement (Notes#6)] any $v \in V$ can be uniquely written in the form

$$v = u + w, \quad u \in \text{range}(\sqrt{T^*T}), \ w \in (\text{range}(\sqrt{T^*T}))^{\perp}$$
 (PD-3)

Proof (Polar Decomposition)

Now, we define S(v) by

$$S(v) = S_1(u) + S_2(w), \quad u \in \operatorname{range}(\sqrt{T^*T}), \ w \in (\operatorname{range}(\sqrt{T^*T}))^{\perp}$$

 $\forall v \in V$ we have

$$S(\sqrt{T^*T}(v)) = S_1(\sqrt{T^*T}(v)) = T(v)$$

so $T = S\sqrt{T^*T}$. We must show that S is an isometry; with the decomposition (PD-3) v = u + w ($u \perp w$), we can use the [PYTHAGOREAN THEOREM ($\approx 500 \, \mathrm{BC}$)]:

$$||S(v)||^2 = ||S_1(u) + S_2(w)||^2 \stackrel{\text{PT}^*}{=} ||S_1(u)||^2 + ||S_2(w)||^2$$

= $||u||^2 + ||w||^2 \stackrel{\text{PT}}{=} ||v||^2$

$$\overset{\mathrm{PT}^*}{=}$$
 holds since $S_1(u) \in (\mathrm{range}(T))$, and $S_2(w) \in (\mathrm{range}(T)^{\perp})$

Comment (Diagonalizability)

When $\mathbb{F}=\mathbb{C}$ let $T=S\sqrt{T^*T}$ be the Polar Decomposition of an operator $T\in\mathcal{L}(V)$, where S is an isometry.

Then

- (1) there is an orthonormal basis, $\mathfrak{B}_1(V)$, of V with respect to which S has a diagonal matrix, and
- (2) there is an orthonormal basis, $\mathfrak{B}_2(V)$, of V with respect to which $\sqrt{T^*T}$ has a diagonal matrix.

WARNING: Usually, there does **not** exist an orthonormal basis that diagonalizes $\mathcal{M}(S)$, and $\mathcal{M}(\sqrt{T^*T})$ at the same time.

Singular Value Decomposition

So far, we have used the eigenvalues (and eigenvectors) to describe the properties of operators.

Rewind (Eigenspace, $E(\lambda, T)$)

Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. The **Eigenspace** of T corresponding to λ denoted $E(\lambda, T)$ is defined to be

$$E(\lambda, T) = \text{null}(T - \lambda I)$$

 $E(\lambda, T)$ is the set of all eigenvectors of T corresponding to λ , along with the 0 vector.

We are particularly interested in (obsessed with?) scenarios where we can find orthonormal bases; this is the focus of [Schur's Theorem (Notes#6)]], [Complex Spectral Theorem (Notes#7.1)], and [Real Spectral Theorem (Notes#7.1)]

In $[Polar\ Decomposition\ Theorem]$ we needed (in general) 2 orthonormal bases to perform the decomposition. The Singular Value Decomposition is an "alternate" way to leverage the use of 2 bases.

Definition (Singular Values, σ)

Suppose $T \in \mathcal{L}(V)$. The **singular values** of T are the eigenvalues, in this context denoted σ_i , of $\sqrt{T^*T}$, with each eigenvalue repeated $\dim(E(\sigma_i, \sqrt{T^*T}))$ times.

In applications, and algorithms, it is customary to sort the singular values in descending order, $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$.

The singular values of T are all non-negative, because they are the eigenvalues of the positive operator $\sqrt{T^*T}$.

Example
$$(T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4))$$

Let $T \in \mathcal{L}(\mathbb{F}^4)$ be defined by

$$T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4)$$

we find the singular values.

(1) First we find the eigenvalues, $\lambda(T)$; consider:

$$\lambda(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4)$$

the only solutions are $\lambda \in \{0, -3\}$, and the eigenspaces are given by

$$\begin{cases} E(\lambda = 0, T) = \operatorname{span}((0, 0, 1, 0)) \\ E(\lambda = -3, T) = \operatorname{span}((0, 0, 0, 1)) \end{cases}$$

Since $\dim(E(0,T)) + \dim(E(-3,T)) = 2 < 4 = \dim(\mathbb{F}^4)$ we cannot fully diagonalize the operator with an eigenbasis.

$$\mathbb{F}^4 \neq E(-3, T) \oplus E(0, T) \Rightarrow \text{No Diagonalization}.$$

Example
$$(T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4))$$

(2) Next, we find the adjoint T^* ; T^*T , and $\sqrt{T^*T}$:
$$\langle z, T^*(w) \rangle = \langle T(z), w \rangle = \langle (0, 3z_1, 2z_2, -3z_4), (w_1, w_2, w_3, w_4) \rangle$$

$$= 3z_1w_2 + 2z_2w_3 - 3z_4w_4$$

$$= \langle (z_1, z_2, z_3, z_4), (3w_2, 2w_3, 0, -3w_4) \rangle$$

$$T^*(w) = (3w_2, 2w_3, 0, -3w_4)$$

$$T^*T(z) = T^*(0, 3z_1, 2z_2, -3z_4) = (9z_1, 4z_2, 0, 9z_4)$$

$$\sqrt{T^*T}(z) = (3z_1, 2z_2, 0, 3z_4)$$

$$\lambda(T^*) = \{-3, 0\}$$

$$\lambda(T^*T) = \{9, 4, 0\}$$

$$\lambda(\sqrt{T^*T}) = \{3, 2, 0\} \quad \rightsquigarrow \text{ the singular values}$$

Example $(T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4))$

(3) We need the eigenspaces of $\sqrt{T^*T}$:

$$E(0; \sqrt{T^*T}) = \operatorname{span}((0,0,1,0))$$

$$E(2; \sqrt{T^*T}) = \operatorname{span}((0,1,0,0))$$

$$E(3; \sqrt{T^*T}) = \operatorname{span}((1,0,0,0), (0,0,0,1))$$

Thus, the singular values are $\sigma(T) = \{3, 3, 2, 0\}$.

Comment
$$(T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4))$$

Note that $\lambda(T) = \{0, -3\}$ did not "capture" the 2, but $\sigma(T) = \{3, 3, 2, 0\}$ did.

Comment $(T(z_1, z_2, z_3, z_4) = (0, 3z_1, 2z_2, -3z_4))$

$$\mathcal{M}(\textit{T},\{e_i\}) = \begin{bmatrix} 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}, \quad \mathcal{M}(\textit{T}^*,\{e_i\}) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix},$$

$$\mathcal{M}(\sqrt{T^*T})^2 = \mathcal{M}(T^*)\mathcal{M}(T) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 9 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}^2$$

Using [Eigenvalues and Determinants: The Characteristic EQUATION (MATH-254, NOTES#7.2)], we can get

$$p_{\mathcal{M}(T)}(\lambda) = \lambda^3(\lambda + 3), \quad p_{\mathcal{M}(\sqrt{T^*T})}(\lambda) = \lambda(\lambda - 2)(\lambda - 3)^2$$

Each $T \in \mathcal{L}(V)$ has $\dim(V)$ singular values; this follows from $[\mathbb{C}/\mathbb{R}]$ Spectral Theorem (Notes#7.1)], and [Conditions Equivalent to Diagonalizability (Notes#5)] applied to the positive (\Rightarrow self-adjoint) operator $\sqrt{T^*T}$.

The next statement gives a characterization $\forall T \in \mathcal{L}(V)$ in terms of the singular values, and two orthonormal bases of V.

Theorem (Singular Value Decomposition)

Suppose $T \in \mathcal{L}(V)$ has singular values $\sigma_1, \ldots, \sigma_n$. Then there exists orthonormal bases v_1, \ldots, v_n , and u_1, \ldots, u_n of V such that

$$T(w) = \sigma_1 \langle w, v_1 \rangle u_1 + \cdots + \sigma_n \langle w, v_n \rangle u_n$$

 $\forall w \in V$.

Comment (The Fundamental Theorem of Data Science)

If you want to be Buzzword Compliant, you could call this the Fundamental Theorem of Page Rank Big/Data/ Data Science

Proof (Singular Value Decomposition)

By the $[\mathbb{C}/\mathbb{R} \text{ SPECTRAL THEOREM (NOTES}\#7.1)]$, we can find an orthonormal basis v_1,\ldots,v_n of V such that $\sqrt{T^*T}(v_k)=\sigma_kv_k,\ k=1,\ldots,n$. Hence due to $[\text{Writing A Vector as a Linear Combination of Orthonormal Basis (Notes}\#6)] <math>\forall w \in V$

$$w = \langle w, v_1 \rangle v_1 + \dots + \langle w, v_n \rangle v_n$$

$$\sqrt{T^*T}(w) = \sqrt{T^*T} (\langle w, v_1 \rangle v_1 + \dots + \langle w, v_n \rangle v_n)$$

$$= \sigma_1 \langle w, v_1 \rangle v_1 + \dots + \sigma_n \langle w, v_n \rangle v_n$$

By [Polar Decomposition], \exists an isometry $S \in \mathcal{L}(V)$ such that $T = S\sqrt{T^*T}$; thus

$$T(w) = \sigma_1 \langle w, v_1 \rangle S(v_1) + \cdots + \sigma_n \langle w, v_n \rangle S(v_n)$$

Let $u_k = S(v_k)$, k = 1, ..., n, then $u_1, ..., u_n$ is an orthonormal basis [Characterization of Isometries]; and we have

$$T(w) = \sigma_1 \langle w, v_1 \rangle u_1 + \cdots + \sigma_n \langle w, v_n \rangle u_n$$

 $\forall w \in V. \ \sqrt{}$

Comment (Singular Value Decomposition and Polar Decomposition)

When considering linear maps $T \in \mathcal{L}(V,W)$, we considered

$$\mathcal{M}(T;\mathfrak{B}(V);\mathfrak{B}(W));$$

in the operator setting (W=V) $T\in \mathcal{L}(V)$ we usually consider

$$\mathcal{M}(T;\mathfrak{B}(V)),$$

making the basis $\mathfrak{B}(V)$ play both the input/domain and output/range roles.

In the Polar Decomposition setting, where $T = S\sqrt{T^*T}$, we may consider two bases for V, $\mathfrak{B}_1(V)$, and $\mathfrak{B}_2(V)$, so that

$$\mathcal{M}(S; \mathfrak{B}_1(V))$$
, and $\mathcal{M}(\sqrt{T^*T}; \mathfrak{B}_2(V))$

both are diagonal matrices.

Comment (Singular Value Decomposition)

Now, in the Singular Value Decomposition we use one basis $\mathfrak{B}_1(V)$ for the input/domain side, and another $\mathfrak{B}_2(V)$ for the output/range side, so that

$$\mathcal{M}(T;\mathfrak{B}_1(V),\mathfrak{B}_2(V)) = egin{bmatrix} \sigma_1 & 0 & \dots & 0 \ 0 & \ddots & \ddots & dots \ dots & \ddots & \ddots & 0 \ 0 & \dots & 0 & \sigma_n \end{bmatrix} = \mathrm{diag}(\sigma_1,\dots,\sigma_n)$$

Every $T \in \mathcal{L}(V)$ has orthonormal bases $\mathfrak{B}_1(V) = (v_1, \ldots, v_n)$ and $\mathfrak{B}_2(V) = (u_1, \ldots, u_n)$ so that

$$\mathcal{M}(T; \mathfrak{B}_1(V), \mathfrak{B}_2(V)) = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$$

The following result is useful when developing strategies for finding singular values:

Theorem (Singular Values Without Taking Square Root of an Operator) Suppose $T \in \mathcal{L}(V)$. Then the singular values of T are the nonnegative square roots of the eigenvalues of T^*T , with each eigenvalue σ repeated $\dim(E(\sigma, T^*T))$ times.

Proof (Singular Values Without Taking Square Root of an Operator) The $[\mathbb{C}/\mathbb{R} \text{ Spectral Theorem (Notes}\#7.1)]$ implies that there is an orthonormal basis v_1,\ldots,v_n and nonnegative numbers σ_1,\ldots,σ_n such that $T^*T(v_i)=\sigma_i v_i,\ j=1,\ldots,n$. As we have done previously, defining $\sqrt{T^*T}(v_i)=\sqrt{\sigma_i}\ v_i$ gives the desired result.

$$\langle\langle\langle$$
 Live Math $\rangle\rangle\rangle$

e.g. 7D-{4, **6**, 7, 10}

Live Math :: Covid-19 Version

7D-6

7D-6: Find the singular values of the differentiation operator $D \in \mathcal{L}(\mathcal{P}_2(\mathbb{R}))$ defined by Dp = p', where the inner product on $\mathcal{P}_2(\mathbb{R})$ is the "Legendre Inner Product", $\langle p, q \rangle = \int_{-1}^1 p(x) q(x) \, dx$.

*

Reference Orthonormal Basis

*

In [NOTES#6] we derived an orthonormal basis for $\mathcal{P}_2(\mathbb{R})$ with this particular inner product:

$$u_0 = \sqrt{\frac{1}{2}}, \quad u_1 = \sqrt{\frac{3}{2}}x, \quad u_2 = \sqrt{\frac{45}{8}}\left(x^2 - \frac{1}{3}\right)$$

-(49/56)

*

*

Polar Decomposition Singular Value Decomposition

Positive Operators and Isometries

$$\mathcal{M}(D, \{1, x, x^2\}) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

which shows that the only Eigenvalue of D is 0 by [Determination of Eigenvalues from Upper-Triangular Matrix (Notes#5)].

However, $\mathcal{M}(D, \{1, x, x^2\})$ cannot be used to compute the singular values since $\{1, x, x^2\}$ is not an orthonormal basis.

-(50/56)

7D-6

Live Math :: Covid-19 Version

*

7D-6

Getting the coefficients for the matrix with respect to the reference orthonormal basis is a little messy, but not too bad:

 $\mathcal{M}(T, \{u_0(x), u_1(x), u_2(x)\})$

$$D\left(\sqrt{\frac{1}{2}}\right) = 0$$

$$D\left(\sqrt{\frac{3}{2}}x\right) = \sqrt{\frac{3}{2}} = \sqrt{3} \cdot \sqrt{\frac{1}{2}}$$

$$D\left(\sqrt{\frac{45}{8}}\left(x^2 - \frac{1}{3}\right)\right) = \sqrt{\frac{45}{2}}x = \sqrt{15} \cdot \sqrt{\frac{3}{2}}x$$

Live Math :: Covid-19 Version

$$\mathcal{M}(T, \{u_0(x), u_1(x), u_2(x)\}) = \begin{bmatrix} 0 & \sqrt{3} & 0\\ 0 & 0 & \sqrt{15}\\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathcal{M}(T^*, \{u_0(x), u_1(x), u_2(x)\}) = \begin{bmatrix} 0 & 0 & 0\\ \sqrt{3} & 0 & 0\\ 0 & \sqrt{15} & 0 \end{bmatrix}$$

$$\mathcal{M}(T^*T) = \begin{bmatrix} 0 & 0 & 0\\ \sqrt{3} & 0 & 0\\ 0 & \sqrt{15} & 0 \end{bmatrix} \begin{bmatrix} 0 & \sqrt{3} & 0\\ 0 & 0 & \sqrt{15} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 15 \end{bmatrix}$$

Hence, by [Singular Values Without Taking Square Root of an $\mbox{\scriptsize Operator}],$ we have

$$\sigma(T) = \left\{ \sqrt{15}, \sqrt{3}, 0 \right\}$$

7D-6

Suggested Problems

7.C—1, 2, 4, 6, 7

7.D—1, **2**, 4, **5**, 6, 7, 10

Assigned Homework

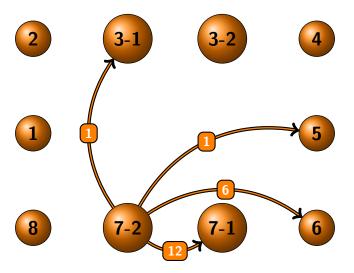
HW#7.2, Due Date in Canvas/Gradescope

- **7.C**—2, 4, 7
- **7.D**—1, 2, 5

Note: Assignment problems are not official and subject to change until the first lecture on the chapter has been delivered (or virtually "scheduled.")

Upload homework to www.Gradescope.com

Explicit References to Previous Theorems or Definitions (with count)



Explicit References to Previous Theorems or Definitions

