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Student Learning Targets, and Objectives SLOs: Operators on Complex Vector Spaces

Student Learning Targets, and Objectives 1 of 2

Target Generalized Eigenvectors and Nilpotent Operators
Objective Be able to identify generalized eigenspaces G (λ,T )
Objective Be able to identify a Nilpotent Operator, N, by the dimension

of its Generalized Eigenspace G (0,N)
Objective Be able to construct an orthonormal basis so that the matrix

of a Nilpotent Operator is upper trianguler with respect to the
basis

Target Decomposition of an Operator
Objective Be able to Decompose all operators on complex vector spaces

V onto direct sums of invariant generalized eigenspaces
Objective Be able to identify a Block Diagonal Matrix
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Student Learning Targets, and Objectives SLOs: Operators on Complex Vector Spaces

Student Learning Targets, and Objectives 2 of 2

Target Characteristic Polynomial and the Cayley–Hamilton Theorem
Objective Be able to state the properties of the Characteristic Polynomial

and its relation to the Eigenvalues of an Operator
Objective Be able to state the properties of the Minimal Polynomial and

its relation to the Eigenvalues of an Operator
Objective Be able to derive the Characteristic and Minimal Polynomials

for an Operator.

Target Jordan Form
Objective Be able to identify the Jordan Chains, and use them to

construct a Jordan Basis for an Operator
Objective Be able to identify the Jordan Normal Form for an Operator
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Generalized Eigenvectors and Nilpotent Operators
Decomposition of an Operator

Characteristic and Minimal Polynomials
Jordan Form

Null Spaces of Powers of an Operator
Generalized Eigenvectors
Nilpotent Operators

Introduction
We return to the issue of describing an operator in terms of its eigenspaces. In
particular, we address the issue of non-Diagonalizability.

Rewind (Sum of Eigenspaces is a Direct Sum [Notes#5])
Suppose V is finite-dimensional and T ∈ L(V ). Suppose also that λ1, . . . , λm are
distinct eigenvalues of T . Then E(λ1,T ) + · · · + E(λm,T ) is a direct sum.
Furthermore, dim (E(λ1,T )) + · · · + dim (E(λm,T )) ≤ dim(V )

Rewind (Conditions Equivalent to Diagonalizability [Notes#5])
Suppose V is finite-dimensional and T ∈ L(V ). Let λ1, . . . , λm denote the distinct
eigenvalues of T . Then the following are equivalent:

(a) T is diagonalizable.
(b) V has a basis consisting of eigenvectors of T
(c) ∃ 1-D subspaces U1, . . . ,Un of V , each invariant under T , such that

V = U1 ⊕ · · · ⊕ Un There may be more than one U∗ per eigenvalue!

(d) V = E(λ1,T ) ⊕ · · · ⊕ E(λm,T )
(e) dim(V ) = dim(E(λ1,T )) + · · · + dim(E(λm,T ))
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Generalized Eigenvectors and Nilpotent Operators
Decomposition of an Operator

Characteristic and Minimal Polynomials
Jordan Form

Null Spaces of Powers of an Operator
Generalized Eigenvectors
Nilpotent Operators

null(T k), for T ∈ L(V ) “Building the Toolbox”

We (temporarily) “discard” our inner products, and return to the
simplicity of Vector Spaces. We look at the behavior of powers of
operators T k ; first we look at the associated null-spaces

   (Generalized) Eigenspaces

Theorem (Sequence of Increasing Null Spaces)
Suppose T ∈ L(V ), then

{0} = null(T 0) ⊂ null(T 1) ⊂ · · · ⊂ null(T k) ⊂ null(T k+1) ⊂ · · ·

Proof (Sequence of Increasing Null Spaces)
Suppose T ∈ L(V ), let k ≥ 0 and v ∈ null(T k). Then T k(v) = 0, and
T k+1(v) = T (T k(v)) = T (0) = 0, so that v ∈ null(T k+1); thus
null(T k) ⊂ null(T k+1). √
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Equality in the Sequence of Null Spaces

Theorem (Equality in the Sequence of Null Spaces)
Suppose T ∈ L(V ), let m ≥ 0 such that null(Tm) = null(Tm+1), then

null(Tm) = null(Tm+1) = null(Tm+2) = · · ·

Proof (Equality in the Sequence of Null Spaces)
Let m, k ≥ 0. From the previous result we already have
null(T k+m) ⊂ null(T k+m+1), to show equality we need to show
null(T k+m+1) ⊂ null(T k+m): Let v ∈ null(T k+m+1), then

Tm+1(T k(v)) = T k+m+1(v) = 0
thus T k(v) ∈ null(Tm+1) = null(Tm) ⇒ Tm+k(v) = Tm(T k(v)) = 0
⇒ v ∈ null(T k+m). √
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Null Spaces Stop Growing

Theorem (Null Spaces Stop Growing)
Suppose T ∈ L(V ), let n = dim(V ), then

null(T n) = null(T n+1) = · · ·

Proof (Null Spaces Stop Growing)
By Contradiction: If the theorem is false, then

{0} = null(T 0) ( null(T 1) ( · · · ( null(T n) ( null(T n+1)
The strict inclusions means

0 = dim(null(T 0)) < dim(null(T 1)) < · · ·
< dim(null(T n)) < dim(null(T n+1))

so that dim(null(T n+1)) ≥ (n + 1). But dim(V ) = n. √
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Direct Sums of null and range

It is generally true that V 6= null(T ) ⊕ range(T ); e.g. recall examples
where null(T ) = range(T ).

Theorem (V = null(T n) ⊕ range(T n); n = dim(V ))
Suppose T ∈ L(V ), n = dim(V ), then

V = null(T n) ⊕ range(T n)

Proof (V = null(T n) ⊕ range(T n); n = dim(V ))
(1) We show null(T n) ∩ range(T n) = {0}:

Let v ∈ null(T n) ∩ range(T n), then T n(v) = 0, and ∃u ∈ V :
v = T n(u). Then 0 = T n(v) = T 2n(u), using the previous result
null(T n) = null(T 2n), we must have T n(u) = 0, hence v = 0.
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Direct Sums of null and range

Proof (V = null(T n) ⊕ range(T n); n = dim(V ))
(2) Since null(T n) ∩ range(T n) = {0} by [Direct Sum of Two Sub-

spaces (Notes#1)] null(T n) + range(T n) is a direct sum; and
dim(null(T n) ⊕ range(T n)) 1= dim(null(T n)) + dim(range(T n))

2= dim(V )

1= [A Sum is a Direct Sum if and only if Dimensions Add
Up (Notes#3.2)]

2= [Fundamental Theorem of Linear Maps (Notes#3.1)]

Therefore V = null(T n) ⊕ range(T n). √
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Direct Sums of null and range

Example
Consider T ∈ L(F3) defined by

T (z1, z2, z3) = (4z2, 0, 5z3)
range(T ) = {(w1, 0,w2) : w1,w2 ∈ F}

null(T ) = {(w , 0, 0) : w ∈ F}

T 2(z1, z2, z3) = (0, 0, 25z3)
T 3(z1, z2, z3) = (0, 0, 125z3)

range(T {2,3}) = {(0, 0,w) : w ∈ F}
null(T {2,3}) = {(w1,w2, 0) : w1,w2 ∈ F}

Clearly F3 = range(T {2,3}) ⊕ null(T {2,3}) — the theorem guarantees the
result for n = 3, but here it happens sooner (n = 2).
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Generalized Eigenvectors

As we have seen, some operators do not have enough eigenvectors
to lead to a good description (diagonalization). We now introduce
a remedy — generalized eigenvectors, which will aid in the de-
scription of the structure of operators.

For C:normal T ∗T = TT ∗, and R:self-adjoint T = T ∗ operators
we are guaranteed eigenspace decompositions

V = E (λ1,T ) ⊕ · · · ⊕ E (λm,T )

thanks to the [C/R Spectral Theorems (Notes#7.1)].
[Schur’s Theorem (Notes#6)] allows for an upper triangular matrix
M(T ) for every operator; but does not give a direct-sum
decomposition of the space.
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Generalized Eigenvectors and Eigenspaces

Definition (Generalized Eigenvector)
Suppose T ∈ L(V ) and λ is an eigenvalue of T . A vector v ∈ V is called
a generalized eigenvector of T corresponding to λ if v 6= 0 and

(T − λI )k(v) = 0
for some k ≥ 1.

Definition (Generalized Eigenspace, G (λ,T ))
Suppose T ∈ L(V ) and λ is an eigenvalue of T . The generalized
eigenspace of T corresponding to λ, denoted G (λ,T ), is defined to be
the set of all generalized eigenvectors of T corresponding to λ, along
with the 0 vector.
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Generalized Eigenvectors and Eigenspaces

Since we get that standard eigenspace when k = 1, it is always
true that

E (λ,T ) ⊂ G (λ,T )

that is “eigenvectors are also generalized eigenvectors.”

The next result answers the question “what value of k should we
pick?”

Theorem (Description of Generalized Eigenspace)
Suppose T ∈ L(V ) and λ ∈ F is an eigenvalue of T . Then
G (λ,T ) = null((T − λI )dim(V )).
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Generalized Eigenvectors and Eigenspaces

Proof (Description of Generalized Eigenspace)
(1) Suppose v ∈ null((T − λI )dim(V )), then by definition v ∈ G (λ,T ),

so null((T − λI )dim(V )) ⊂ G (λ,T ).
(2) Suppose v ∈ G (λ,T ), then ∃k ≥ 0:

v ∈ null((T − λI )k)
Applying [Sequence of Increasing Null Spaces] and [Null Spaces Stop
Growing] to (T − λI ) shows v ∈ null((T − λI )dim(V )) so that
G (λ,T ) ⊂ null((T − λI )dim(V ))
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Generalized Eigenvectors and Eigenspaces

Example

We revisit the T ∈ L(F3) defined by
T (z1, z2, z3) = (4z2, 0, 5z3)

null(T ) = {(w , 0, 0) : w ∈ F} = E(0, T)
null(T 3) = {(w1,w2, 0) : w1,w2 ∈ F} = G(0, T)

Since dim(null(T )) > 0, λ = 0 is an eigenvalue; the other eigenvalue is λ = 5:
E(0, T) = {(w, 0, 0) : w ∈ F}, E(5, T) = {(0, 0, w) : w ∈ F}

and (T − 5I )(z1, z2, z3) = (4z2 − 5z1, −5z2, 0), so
(T − 5I )2(z1, z2, z3) = (25z1 − 40z2, 25z2, 0)
(T − 5I )3(z1, z2, z3) = (300z2 − 125z1, −125z2, 0)

null((T − 5I )3) = {(0, 0,w) : w ∈ F}
G(0, T) = {(w1, w2, 0) : w1, w2 ∈ F}, G(5, T) = {(0, 0, w) : w ∈ F}

F3 = G(0, T) ⊕ G(5, T)
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Linearly Independent Generalized Eigenvectors

Rewind (Linearly Independent Eigenvectors [Notes#5])
Let T ∈ L(V ). Suppose λ1, . . . , λm are distinct eigenvalues of T ,
and v1, . . . , vm are the corresponding eigenvectors; then v1, . . . , vm
is linearly independent.

Theorem (Linearly Independent Generalized Eigenvectors)
Let T ∈ L(V ). Suppose λ1, . . . , λm are distinct eigenvalues of T ,
and v1, . . . , vm are the corresponding generalized eigenvectors;
then v1, . . . , vm is linearly independent.
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Linearly Independent Generalized Eigenvectors

Proof (Linearly Independent Generalized Eigenvectors)
Suppose a1, . . . , am ∈ C, vi ∈ G (λi ,T ) such that

0 = a1v1 + · · · + amvm (i)
Let k be the largest non-negative integer such that (T − λ1I )kv1 6= 0,
and let w = (T − λ1I )kv1:

(T − λ1I )w = (T − λ1I )k+1v1 = 0
so T (w) = λ1w . Now, (T − λI )w = (λ1 − λ)w ∀λ ∈ F, and

(T − λI )nw = (λ1 − λ)nw (ii)
∀λ ∈ F, n = dim(V ).
We apply the operator (Note: the terms commute)

(T − λ1I )k(T − λ2I )n · · · (T − λmI )n

to (i).
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Linearly Independent Generalized Eigenvectors

Proof (Linearly Independent Generalized Eigenvectors)
We get

0 1= a1(T − λ1I )k(T − λ2I )n · · · (T − λmI )nv1
2= a1(T − λ2I )n · · · (T − λmI )nw
3= a1(λ1 − λ2)n · · · (λ1 − λm)nw

1= [Description of Generalized Eigenspaces]
2= w = (T − λ1I )kv1
3= (ii)
This forces a1 = 0. We can now repeat the argument and show that
a2 = a3 = · · · = am = 0, which shows that v1, . . . , vm is linearly
independent. √
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Nilpotent Operators

Definition (Nilpotent)
An operator N ∈ L(V ) is called nilpotent if Nk = 0 for some k .

Example (Some Nilpotent Operators)

Operators with null(N) = range(N), e.g. N ∈ L(F4)
N(z1, z2, z3, z4) = (z3, z4, 0, 0)
N2(z1, z2, z3, z4) = (0, 0, 0, 0)

Shift operators, e.g.
N(z1, . . . , zn) = (0, z1, . . . , zn−1)
N2(z1, . . . , zn) = (0, 0, z1, . . . , zn−2)
Nn(z1, . . . , zn) = (0, 0, . . . , 0)

D ∈ L(Pm(F)) defined by D(p) = p′, since Dm+1(p) = 0.
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Nilpotent Operators

Theorem (Nilpotent Operator Raised to Dimension of Domain is 0)

Suppose N ∈ L(V ) is nilpotent, then Ndim(V ) = 0.

Proof (Nilpotent Operator Raised to Dimension of Domain is 0)
Since N is nilpotent G (0,N) = V . [Description of Generalized
Eigenspace] implies Ndim(V ) = 0. √

Comment (Why Are We Here???)
Given T ∈ L(V ), we want to find a basis B(V ) of V such that
M(T ;B(V )) is as simple as possible, meaning that the matrix
contains many 0’s. Nilpotent operators will help us in this pursuit.
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Matrix of a Nilpotent Operator

Theorem (Matrix of a Nilpotent Operator)
Suppose N ∈ L(V ) is nilpotent, then ∃ a basis B(V ) so that

M(N;B(V )) =




0 ∗ . . . ∗
... . . . . . . ...
... . . . ∗
0 · · · · · · 0




that is M(N;B(V )) is strictly upper triangular
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Matrix of a Nilpotent Operator

Proof (Matrix of a Nilpotent Operator)
(1) Let B1(null(N)) be a basis for null(N).
(2) Let B2(null(N2)) be an extension of B1(null(N)) to a basis for

null(N2).
(k+1) Let Bk+1(null(Nk+1)) be an extension of Bk(null(Nk)) to a basis

for null(Nk+1).
STOP when Bk+1(null(Nk+1)) is a basis for V [Nilpotent Operator
Raised to Dimension of Domain is 0] guarantees this will happen.
Now, consider this basis B(V ) = v1, . . . , vn and the matrix M(N;B(V )):
(i) The first dim(null(N)) columns corresponding to B1(null(N)) are all

zeros (since they are a basis for null(N).
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Matrix of a Nilpotent Operator

Proof (Matrix of a Nilpotent Operator)
(ii) The next dim(null(N2)) − dim(null(N)) columns correspond to

the extension of B1(null(N)) to a basis for null(N2); any of these
vectors vℓ ∈ null(N2), so N(vℓ) ∈ null(N); this means

N(vℓ) = a1v1 + · · · + adim(null(N))vdim(null(N))

since ℓ > dim(null(N)) this means only entries strictly above the
diagonal are non-zero.

(k) As we process the columns dim(null(Nk+1)) − dim(null(Nk)) corre-
sponding to the extension of Bk(null(N)) to a basis for null(Nk+1);
any of vectors in that block vℓ ∈ null(Nk+1), so N(vℓ) ∈ null(Nk);
which like above forces all diagonal and sub-diagonal entries in M(N)
to be zeros.√
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Matrix of a Nilpotent Operator — Examples

Example (Revisited from [Slide 20])
• Given N(z1, z2, z3, z4) = (z3, z4, 0, 0), we have

M(N;Bstd.coord) =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




√

• N(z1, . . . , zn) = (0, z1, . . . , zn−1), we have

M(N;Bstd.coord) =




0 · · · · · · · · · 0

1 . . . ...

0 . . . . . . ...
... . . . . . . . . . ...
0 · · · 0 1 0




not quite what we want
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Matrix of a Nilpotent Operator — Examples

Example (Revisited from [Slide 20])
• N(z1, . . . , zn) = (0, z1, . . . , zn−1), we have

M(N;Bstd.coord.reverse.order) =




en en−1 en−2 · · · e1
en 0 1 0 · · · 0

en−1 0 0 1 . . . ...
...

... . . . . . . 0

e2
... . . . 1

e1 0 · · · · · · · · · 0




√
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Matrix of a Nilpotent Operator — Examples

Example (Revisited from [Slide 20])
• D ∈ L(Pm(F)) defined by D(p) = p′, we have

M(N;Bstd.poly) =




1 x x2 · · · xn

1 0 1 0 · · · 0

x
... . . . 2 . . . ...

...
... . . . . . . 0

xn−1 ... . . . n
xn 0 · · · · · · · · · 0




√

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Operators on Complex Vector Spaces — (27/99)

Generalized Eigenvectors and Nilpotent Operators
Decomposition of an Operator

Characteristic and Minimal Polynomials
Jordan Form

Null Spaces of Powers of an Operator
Generalized Eigenvectors
Nilpotent Operators

〈〈〈 Live Math 〉〉〉

e.g. 8A-{3, 4, 5}
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Live Math :: Covid-19 Version 8A-5

8A-5: Suppose T ∈ L(V ), m is a positive integer, and v ∈ V is such that
Tm−1(v) 6= 0 but Tm(v) = 0. Prove that

v ,T (v),T 2(v), . . . ,Tm−1(v)

is linearly independent.

> Step “0” >

Suppose a0, a1, . . . , am−1 ∈ F are such that

a0v + a1T (v) + a2T
2(v) + · · · + am−1T

m−1(v) = 0. (8A-5.i)

Since Tm−1(v) 6= 0, applying Tm−1 to (8A-5.i) we get a0Tm−1(v) = 0;
this implies a0 = 0.
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Live Math :: Covid-19 Version 8A-5

> Step “1” >

We now have a1, . . . , am−1 ∈ F such that

a1T (v) + a2T
2(v) + · · · + am−1T

m−1(v) = 0. (8A-5.ii)

Applying Tm−2 to (8A-5.ii) we get a1Tm−1(v) = 0; this implies a1 = 0.

> Step “k” >

Keep turning “the crank,” and we get a0 = a1 = · · · = am−1 = 0, which
means that

v ,T (v),T 2(v), . . . ,Tm−1(v)
is linearly independent.
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Invariance of The Null Space and Range of p(T )

We now put our new pieces together and show that every operator
on a finite-dimensional complex vector space has enough generalized
eigenvectors to provide a decomposition.

We need some “glue” for the proof of the main result:

Theorem (The Null Space and Range of p(T ) are Invariant Under T )
Suppose T ∈ L(V ) and p ∈ P(F), then null(p(T )) and
range(p(T )) are invariant under T .
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Invariance of The Null Space and Range of p(T )

Proof (The Null Space and Range of p(T ) are Invariant Under T )
Suppose v ∈ null(p(T )), then p(T )(v) = 0, hence

(p(T )(T (v)) = T (p(T )(v)) = T (0) = 0
→ T (v) ∈ null(p(T )). √

1

Suppose v ∈ range(p(T )). Then ∃u ∈ V : v = p(T )(u), hence
T (v) = T (p(T )(u)) = p(T )(T (u))

→ T (v) ∈ range(p(T )). √
2
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Description of Operators on Complex Vector Spaces

Theorem (Description of Operators on Complex Vector Spaces)
Suppose V is a complex vector space and T ∈ L(V ). Let λ1, . . . , λm be
the distinct eigenvalues of T . Then
(a) V = G (λ1,T ) ⊕ · · · ⊕ G (λm,T )
(b) each G (λk ,T ) is invariant under T
(c) each (T − λk I )|G(λk ,T ) is nilpotent.

If we “trade in” our eigenspaces E (λk ,T ) for generalized eigenspaces
G (λk ,T ), we can decompose all operators on a direct sum of invariant
subspaces!
This is a fairly big deal.
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Description of Operators on Complex Vector Spaces

Proof (Description of Operators on Complex Vector Spaces)
Let n = dim(V ).
(b,c) By [Description of Generalized Eigenspace] G (λk ,T ) = null((T −

λk I )n), applying [The Null Space and Range of p(T ) are Invariant
Under T ] with p(z) = (z − λk)n, we get (b)invariance.
(c)nilpotency follows directly from the definitions.

(a) [Induction–Base] If n = 1, (a) is trivially true.
Let n > 1, and assume:
[Induction–Hypothesis] (a) holds for all W : dim(W ) < n.
Since V is a complex vector space, T has an eigenvalue [Existence
of Eigenvalues (Notes#5)]. Applying [V = null(T n) ⊕ range(T n);
n = dim(V )] to (T − λ1I ) shows

V = G (λ1,T ) ⊕ U (a*)
where U = range((T − λ1I )n).
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Description of Operators on Complex Vector Spaces

Proof (Description of Operators on Complex Vector Spaces)
Using [The Null Space and Range of p(T ) are Invariant Under T ] with
p(z) = (z − λ1)n, we see that U is invariant under T

Since G (λ1,T ) 6= {0}, dim(U) < n, and we can apply the inductive
hypothesis to T |U .

All generalized eigenvectors corresponding to λ1 are in G (λ1,T ), hence
the eigenvalues of T |U ∈ {λ2, . . . , λm} 6∋ λ1. We can now write
U = G (λ2,T |U) ⊕ · · · ⊕ G (λm,T |U)

Showing that G (λk ,T |U) = G (λk ,T ) completes the proof.

For each k ∈ {2, . . . ,m}, the inclusion G (λk ,T |U) ⊂ G (λk ,T ) is clear;
to show the other direction, let v ∈ G (λk ,T ). By (a*) we can write
v = v1 + u where v1 ∈ G (λ1,T ), and u ∈ U. Need: v1 = 0, u ∈ G(λk , T |U )
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Description of Operators on Complex Vector Spaces

Proof (Description of Operators on Complex Vector Spaces)
By the inductive hypothesis, we can write u = v2 + · · · + vm, where each
vℓ ∈ G (λℓ,T |U) ⊂ G (λℓ,T ). We have

v = v1 + v2 + · · · + vm

Since generalized eigenvectors corresponding to distinct eigenvalues are
linearly independent [Linearly Independent Generalized Eigenvectors],
this expression forces vℓ = 0 ∀ℓ 6= k .
Since k ∈ {2, . . . ,m} we must have v1 = 0; thus v = u ∈ U and since
v ∈ U we can conclude v ∈ G (λk ,T |U). √
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A Basis of Generalized Eigenvectors

The following looks like an afterthought, but it completes the story
(so far)...

Theorem (A Basis of Generalized Eigenvectors)
Suppose V is a complex vector space and T ∈ L(V ). Then there
is a basis of V consisting of generalized eigenvectors of T .

Proof (A Basis of Generalized Eigenvectors)
Choose a basis of each G (λk ,T ) in [Description of Operators on
Complex Vector Spaces]. Put all these bases together to form a basis
of V consisting of generalized eigenvectors of T .
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Multiplicity

Definition (Multiplicity)
Suppose T ∈ L(V ). The multiplicity of an eigenvalue λ of T
is defined to be the dimension of the corresponding
generalized eigenspace G (λ,T )
the multiplicity of an eigenvalue λ of T equals
dim

(
null

(
(T − λI )dim(V )

))

Comment (Multiplicity Math 254 vs. Math 524)
Math 254 Math 524

“algebraic multiplicity” dim(null((T − λI )dim(V ))) = dim(G (λ,T ))
“geometric multiplicity” dim(null(T − λI )) = dim(E (λ,T ))
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Multiplicity

Example
Let T ∈ L(C3) be defined by

T (z1, z2, z3) = (6z1 + 3z2 + 4z3, 6z2 + 2z3, 7z3)
with respect to the standard basis:

M(T ) =




6 3 4
0 6 2
0 0 7


 , λ(T ) = {6, 7}.

E (6,T ) = span((1, 0, 0)), E (7,T ) = span((10, 2, 1)))
G (6,T ) = span((1, 0, 0), (0, 1, 0)), G (7,T ) = span((10, 2, 1))

C3 = G (6,T ) ⊕ G (7,T )
B = {(1, 0, 0), (0, 1, 0), (10, 2, 1)}

is a basis of C3 consisting of generalized eigenvectors of T .
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Sum of the Multiplicities Equals dim(V )

Theorem (Sum of the Multiplicities Equals dim(V ))
Suppose V is a complex vector space and T ∈ L(V ). Then the
sum of the multiplicities of all the eigenvalues of T equals dim(V ).

Proof (Sum of the Multiplicities Equals dim(V ))
[Description of Operators on Complex Vector Spaces] and [A Sum is a
Direct Sum if and only if Dimensions Add Up (Notes#3.2)]

Comment (Multiplicity Without Determinants)
It is worth noting that our definition of multiplicity does not
require determinants.
Also, we do not need two “types” of multiplicity.
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Block Diagonal Matrices

We introduce a bit more language for the discussion of matrix
forms:

Definition (Block Diagonal Matrix)
A Block Diagonal Matrix is a square matrix of the form

A =



A1 0

. . .
0 Am




where A1, . . . ,Am are square matrices along the diagonal; all other
entries are 0.
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Block Diagonal Matrix

Example (Block Diagonal Matrix)
Let

A1 =
[
4
]

, A2 =
[
2 1
0 2

]
, A3 =




1 1 0
0 1 1
0 0 1




then A = diag(A1,A2,A3) is a block diagonal matrix:

A =




4 0 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1




=




4
2 1

2
1 1 0

1 1
1
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Block Diagonal Matrix with Upper-Triangular Blocks

Theorem (Block Diagonal Matrix with Upper-Triangular Blocks)
Suppose V is a complex vector space and T ∈ L(V ). Let
λ1, . . . , λm be the distinct eigenvalues of T , with multiplicities
d1, . . . , dm.
Then there is a basis of V with respect to which T has a block
diagonal matrix of the form A = diag(A1, . . . ,Am), where each Ak

is a (dk × dk) upper-triangular matrix of the form

Ak =




λk ∗
. . .

0 λk
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Upper-Triangular Matrix vs. Block Diagonal Matrix with Upper-Triangular Blocks

Rewind (Schur’s Theorem [Notes#6])
Suppose V is a finite-dimensional complex vector space and
T ∈ L(V ). Then T has an upper-triangular matrix with respect to
some orthonormal basis of V .

Comment
Here, we are trading away the orthonormal basis; and we are
getting more zeros in the matrix.
This is useful for theoretical purposes, but not always a good idea
in practical computations.
For computational stability and accuracy [Math 543], orthonormal
bases are very desirable.
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Block Diagonal Matrix with Upper-Triangular Blocks

Proof (Block Diagonal Matrix with Upper-Triangular Blocks)
Each (T − λk I )|G(λk ,T ) is nilpotent [Description of Operators on Complex
Vector Spaces]. For each k, we select a basis Bk of G(λk ,T ) (which is a vector
space with dim(G(λk ,T )) = dk such that

M((T − λk I )|G(λk ,T );Bk )

is strictly upper triangular; thus
M(T |G(λk ,T );Bk) = M((T − λk I )|G(λk ,T ) + λk I |G(λk ,T ))

is upper triangular with λk repeated on the diagonal.
Collecting the bases Bk (G(λk ,T )), k = 1, . . . ,m gives a basis B(V ); and the
M(T ;B(V )) has the desired structure.

Note, the example matrix on [Slide 42] is in this form. For an operator T on a 6-
dimensional vectors space with M(T ) as in the example, the eigenvalues are {4, 2, 1}
with corresponding multiplicities {1, 2, 3}.
Additionally, the matrices on [Slides 25–27] are in this form.
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Block Diagonal Matrix with Upper-Triangular Blocks

Example (Revisited from [Slide 39])
Let T ∈ L(C3) be defined
byT (z1, z2, z3) = (6z1 + 3z2 + 4z3, 6z2 + 2z3, 7z3) with respect to the
standard basis the matrix is not in the desired form:

M(T ) =




6 3 4
0 6 2
0 0 7


 , λ(T ) = {6, 7}.

However, G (6,T ) = span((1, 0, 0), (0, 1, 0)), G (7,T ) = span((10, 2, 1)),
so that

B = {(1, 0, 0), (0, 1, 0), (10, 2, 1)},

and

M(T ;B) =




6 3
6

7
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Square Roots
Some, but not all operators have square roots. At this point, we know
that positive operators have positive square roots [Characterization of
Positive Operators (Notes#7.2)]. To that we add:

Theorem (Identity Plus Nilpotent has a Square Root)
Suppose N ∈ L(V ) is nilpotent, then (I + N) has a square root.

Proof (Identity Plus Nilpotent has a Square Root)
We use the Taylor series for

√
1 + x as motiviation:

√
1 + x = 1 + a1x + a2x

2 + · · · + ”a∞x∞”
for our purpose, the values of the coefficients are not (yet) important;
since N ∈ L(V ) is nilpotent Nm = 0 for some value of m, we seek a
square root of the form

√
I + N = I + a1N + a2N

2 + · · · + am−1N
m−1
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Square Roots

Proof (Identity Plus Nilpotent has a Square Root)
We select the coefficients a1, . . . , am−1 so that

I + N = (I + a1N + a2N
2 + · · · + am−1N

m−1)2

Given enough patience, we can figure out what the coefficient
values should be; but all we need is that they exist. √

We can now use this results to guarantee that all invertible
operators (over C) have square roots...
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Square Roots

Note that this result does not hold over R, e.g. T (x) = −x , x ∈ R does
not have a square root.

Theorem (Over C, Invertible Operators Have Square Roots)
Suppose V is a complex vector space and T ∈ L(V ) is invertible. Then
T has a square root.

Proof (Over C, Invertible Operators Have Square Roots)
Let λ1, . . . , λm be the distinct eigenvalues of T . For each k ∃ a nilpotent
Nk ∈ L(G (λk ,T )) such that such that T |G(λk ,T ) = λk I + Nk

[Description of Operators on Complex Vector Spaces]. Since T is
invertible λk 6= 0, we can write

T |G(λk ,T ) = λk

(
I + Nk

λk

)
, k = 1, . . . ,m

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Operators on Complex Vector Spaces — (49/99)

Generalized Eigenvectors and Nilpotent Operators
Decomposition of an Operator

Characteristic and Minimal Polynomials
Jordan Form

Description of Operators on Complex Vector Spaces
Multiplicity of an Eigenvalue
Block Diagonal Matrices
Square Roots

Square Roots

Proof (Over C, Invertible Operators Have Square Roots)
The scaled operator Nk/λk are nilpotent, each (I + Nk/λk) has a square
root [Identity Plus Nilpotent has a Square Root].
Rk =

√
λk

√
I + Nk/λk is the square root Rk of T |G(λk ,T ).

Any v ∈ V can be uniquely written in the form
v = u1 + · · · + um, uk ∈ G (λk ,T )

[Description of Operators on Complex Vector Spaces]. Now define
R ∈ L(V ) by

R(v) = R1(u1) + · · · + Rm(um),
since ∀uℓ ∈ G (λℓ,T ) Rℓ(uℓ) ∈ G (λℓ,T )

R2(v) = R2
1 (u1) + · · · + R2

m(um), = T |G(λ1,T )(u1) + · · · + T |G(λm,T )(um) = T (v)
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〈〈〈 Live Math 〉〉〉

e.g. 8B-{3, 4, 5}
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Live Math :: Covid-19 Version 8B-4

8B-4: Suppose T ∈ L(V ), dim(V ) = n, and null(T n−2) 6= null(T n−1).
Show that T has at most two distinct eigenvalues.

Since null(T n−2) 6= null(T n−1)
{0} = null(T 0) ( null(T 1) ( · · · ( null(T n−2) ( null(T n−1)

Therefore
dim(null(T n−1)) ≥ (n − 1) ⇔ dim(G (0,T )) ≥ (n − 1)

Also, we know (λj 6= 0)

V︸︷︷︸
dim(V )=n

= G (0,T )︸ ︷︷ ︸
dim(G(0,T ))≥(n−1)

⊕




W︷ ︸︸ ︷
G (λ1,T ) ⊕ · · · ⊕ G (λm,T )




︸ ︷︷ ︸
dim(W )≤1
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Characteristic Polynomial

Keep in mind: All the polynomial action here is over F = C.

Definition (Characteristic Polynomial)
Suppose V is a complex vector space and T ∈ L(V ). Let
λ1, . . . , λm denote the distinct eigenvalues of T , with multiplicities
d1, . . . , dm. The polynomial

pT (z) = (z − λ1)d1 · · · (z − λm)dm

is called the characteristic polynomial of T .

Comment
Again, we have defined something familiar from [Math 254] without
the use of the determinant.
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Characteristic Polynomial

Example (Characteristic Polynomials)
The characteristic polynomials associated with previous examples

[Slide 39]: p(z) = (z − 6)2(z − 7)1

[Slide 42]: p(z) = (z − 4)1(z − 2)2(z − 1)3

Theorem (Degree and Zeros of Characteristic Polynomial)
Suppose V is a complex vector space and T ∈ L(V ). Then
(a) the characteristic polynomial, pT (z) of T has degree dim(V )
(b) the zeros of pT (z) are the eigenvalues of T .

Proof (Degree and Zeros of Characteristic Polynomial)
(a) follows from [Sum of the Multiplicities Equals dim(V )], and
(b) from the definition of the characteristic polynomial.
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Cayley–Hamilton Theorem

Theorem (Cayley–Hamilton Theorem)
Suppose V is a complex vector space and T ∈ L(V ). Let pT (z)
denote the characteristic polynomial of T . Then pT (T ) = 0.

Comment (Cayley–Hamilton Theorem over R)
The Cayley–Hamilton Theorem also holds for real vector spaces.

Comment (Importance of the Cayley–Hamilton Theorem)
The Cayley–Hamilton Theorem is one of the key structural theorems in
linear algebra. For one thing it gives us the “license” to find eigenvalues
using the characteristic polynomial.
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Cayley–Hamilton Theorem

Proof (Cayley–Hamilton Theorem)
Let λ1, . . . , λm be the distinct eigenvalues of the operator T , and let
d1, . . . , dm be the dimensions of the corresponding generalized
eigenspaces G (λ1,T ), . . . ,G (λm,T ).
For each k = 1, . . . ,m, we know that (T − λk I )|G(λk ,T ) is nilpotent.
Thus we have (T − λk I )dk |G(λk ,T ) = 0 [Nilpotent Operator Raised to
Dimension of Domain is 0].
Every vector in V is a sum of vectors in G (λ1,T ), . . . ,G (λm,T )
[Description of Operators on Complex Vector Spaces]; i.e. ∀v ∈ V , and
∃vℓ ∈ G (λℓ,T ): v = v1 + · · · + vℓ.
To prove that pT (T ) = 0 (⇔ pT (T )v = 0 ∀v ∈ V ), we need only show
that pT (T )|G(λk ,T ) = 0, k = 1, . . . ,m.
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Cayley–Hamilton Theorem

Proof (Cayley–Hamilton Theorem)
Fix k ∈ {1, . . . ,m}. We have

pT (T ) = (T − λ1I )d1 · · · (T − λmI )dm .

The operators on the right side of the equation above all commute, so we
can move the factor (T − λk I )dk to be the last term in the expression on
the right.
Since (T − λk I )dk |G(λk ,T ) = 0, we conclude that pT (T )|G(λk ,T ) = 0. √
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Monic Polynomial

Here, we introduce an alternative polynomial which can be used to
identify eigenvalues.
First, we need some language and notation (us usual!)

Definition (Monic Polynomial)
A monic polynomial is a polynomial whose highest-degree
coefficient equals 1.

Example
Monic — p(z) = z407 − πz103 +

√
7

Not monic — q(z) = (1 + ǫ)z2 + 1, ǫ > 0

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Operators on Complex Vector Spaces — (58/99)

Generalized Eigenvectors and Nilpotent Operators
Decomposition of an Operator

Characteristic and Minimal Polynomials
Jordan Form

The Cayley–Hamilton Theorem
The Minimal Polynomial

Minimal Polynomial

Theorem (Minimal Polynomial)
Suppose T ∈ L(V ). Then there is a unique monic polynomial p of
smallest degree such that p(T ) = 0.

Proof (Minimal Polynomial)
Let n = dim(V ), then the list (of length

(
n2 + 1

)
)

I ,T ,T 2, . . . ,T n2

is not linearly independent in L(V ), since dim(L(V )) = n2. Let m be the
smallest positive integer such that the list

I ,T ,T 2, . . . ,Tm (i)
is linearly dependent. [Linear Dependence (Notes#2)] implies that one of
the operators in the list above is a linear combination of the previous
ones.

Peter Blomgren 〈blomgren@sdsu.edu〉 8. Operators on Complex Vector Spaces — (59/99)

Generalized Eigenvectors and Nilpotent Operators
Decomposition of an Operator

Characteristic and Minimal Polynomials
Jordan Form

The Cayley–Hamilton Theorem
The Minimal Polynomial

Minimal Polynomial

Proof (Minimal Polynomial)
The choice of m means that Tm is a linear combination of
I ,T ,T 2, . . . ,Tm−1; hence ∃a0, a1, . . . , am−1 ∈ F such that

a0I + a1T + a2T
2 + . . . am−1T

m−1 + Tm = 0 (ii)
We use the coefficients to define a monic polynomial p ∈ P(F) by:

p(z) = a0 + a1z + a2z
2 + . . . am−1z

m−1 + zm

By (ii) p(T ) = 0. That takes care of existence.
To show uniqueness, note that the choice of m implies that no monic
polynomial q ∈ P(F) with degree smaller than m can satisfy q(T ) = 0.
Suppose q ∈ P(F) with degree m and q(T ) = 0. Then (p − q)(T ) = 0
and deg(p − q) < m. The choice of m now implies that (p − q) is the
zero-polynomial ⇔ q = p, completing the proof.
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Minimal Polynomial of an Operator T

Definition (Minimal Polynomial (of an operator T ))
Suppose T ∈ L(V ). Then the minimal polynomial of T is the
unique monic polynomial p of smallest degree such that p(T ) = 0.

The proof of the last theorem shows that the degree of the minimal polyno-
mial of each operator on V is at most (dim(V ))2. The [Cayley–Hamilton
Theorem] tells us that if V is a complex vector space, then the minimal
polynomial of each operator on V has degree at most dim(V ).
This improvement (dim(V ))2 → dim(V ) also holds on real vector spaces.
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Finding the Minimal Polynomial Take#1

“Guaranteed”∗ to Work, Labor Intensive:

Given the matrix M(T ) (with respect to some basis) of an operator
T ∈ L(V ). The minimal polynomial of T can be identified as follows:
Consider the system of (dim(V )2 — each matrix entry) linear equations∗∗

a0M(I ) + a1M(T ) + · · · + am−1M(T )m−1 = −M(T )m (i)

for successive values of m = 1, . . . , dim(V )2; until there is a solution
a1, . . . , am−1; the minimal polynomial is then given by

p(z) = a0 + a1z + · · · + am−1z
m−1 + zm

∗ Requires an iPhone XIX with infinite precision processing capabilities.
∗∗ The linear systems are of the form A~x = ~b, where A ∈ Fdim(V )2×m, ~b ∈ Fdim(V )2 ,

and the solution vector ~x ∈ Fm = (a0, a1, . . . , am−1).
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Finding the Minimal Polynomial Take#2

Works “Almost Always”∗, Less Labor Intensive:

Given the matrix M(T ). The minimal polynomial of T can with
probability 1 be identified as follows: Pick a random vector v ∈ Fdim(V ),
and consider the system of (dim(V ) — each vector entry) linear equations

a0M(I )v + a1M(T )v + · · · + am−1M(T )m−1v = −M(T )mv (i)

for successive values of m = 1, . . . , dim(V ); until there is a solution
a1, . . . , am−1; the minimal polynomial is the given by

p(z) = a0 + a1z + · · · + am−1z
m−1 + zm

∗ The random v ∈ Fdim(V ) must be such that v = u1 + · · · + um, uℓ 6= 0; where
Fdim(V ) = G(λ1, M(T )) ⊕ · · · ⊕ G(λm, M(T )), and uℓ ∈ G(λℓ, M(T )), and still
requires an iPhone XIX with infinite precision processing capabilities.
See [Math 543] for discussion on finite precision computing.
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Finding the Minimal Polynomial Computation

Example
Let T ∈ L(C5), with M(T ) wrt the standard basis:

2

6

6

6

4

0 0 0 0 −3
1 0 0 0 6
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

3

7

7

7

5

Lets try the “random” vector v = (1, 1, 1, 1, 1), we construct A ∈ C5×6

by letting the kth column ak be M(T )k−1v :

A =

2

6

6

6

4

1 −3 −3 −3 −3 −21
1 7 3 3 3 39
1 1 7 3 3 3
1 1 1 7 3 3
1 1 1 1 7 3

3

7

7

7

5
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Finding the Minimal Polynomial Computation

Example
We are looking for a solution to a linear system; we put [Math 254] to
good use, and compute

rref(A) =

2

6

6

6

4

1 0 0 0 0 − 3
0 1 0 0 0 6
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

3

7

7

7

5

Since the 6th column is linearly dependent (it does not have a leading
one); we identify the linear relation:

−3a1 + 6a2 − a6 = 0

which yields the minimal polynomial p(z) = 3 − 6z + z5
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Finding the Minimal Polynomial Computation

Example
Finally, “we”∗ compute p(M(T )) = 3I − 6M(T ) + M(T )5:

3

2

6

6

6

4

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

3

7

7

7

5

− 6

2

6

6

6

4

0 0 0 0 −3
1 0 0 0 6
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

3

7

7

7

5

+

2

6

6

6

4

−3 0 0 0 −18
6 −3 0 0 36
0 6 −3 0 0
0 0 6 −3 0
0 0 0 6 −3

3

7

7

7

5

= 0

Which shows that we indeed have the minimal polynomial.

∗ We = I + my computer.
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Multiple of the Minimal Polynomial

Theorem (q(T ) = 0 ⇔ q is a Multiple of the Minimal Polynomial)
Suppose T ∈ L(V ) q ∈ P(F). Then q(T ) = 0 if and only if q is a
polynomial multiple of the minimal polynomial of T .

Proof (q(T ) = 0 ⇔ q is a Multiple of the Minimal Polynomial)
Let p be the minimal polynomial of T.
(⇐) Suppose q is a polynomial multiple of p. Thus ∃s ∈ P(F) such

that q = ps, and
q(T ) = p(T )s(T ) = 0s(T ) = 0
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Multiple of the Minimal Polynomial

Proof (q(T ) = 0 ⇔ q is a Multiple of the Minimal Polynomial)
(⇒) Suppose q(T ) = 0. By [Division Algorithm for Polynomi-

als (Notes#4)], ∃s, r ∈ P(F) such that
q = ps + r (i)

and deg(r) < deg(p), therefore
0 = q(T ) = p(T )︸ ︷︷ ︸

min.poly

s(T ) + r(T ) = r(T )

hence, r(T ) = 0 ⇒ r ≡ 0 ⇒ q = ps. √
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Characteristic Polynomial and Minimal Polynomial

Theorem (Characteristic Polynomial is a Multiple of Minimal Polynomial)
Suppose F = C and T ∈ L(V ). Then the characteristic polynomial of T
is a polynomial multiple of the minimal polynomial of T .

Note: We have not yet defined the characteristic polynomial when F =
R, but once we do, the above theorem will apply.

Proof (Characteristic Polynomial is a Multiple of Minimal Polynomial)
By [Cayley–Hamilton Theorem], pchar

T (T ) = 0; and [q(T ) = 0 ⇔ q is a
Multiple of the Minimal Polynomial] shows pchar

T (T ) = s(T )pmin
T (T ).
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The Minimal Polynomial → Eigenvalues

Theorem (Eigenvalues are the Zeros of the Minimal Polynomial)
Let T ∈ L(V ). Then the zeros of the minimal polynomial of T are the
eigenvalues of T .

Proof (Eigenvalues are the Zeros of the Minimal Polynomial)
Let

p(z) = a0 + a1z + · · · + am−1z
m−1 + zm

be the minimum polynomial of T .
Suppose λ ∈ F is a zero of p. Then p can be written in the form

p(z) = (z − λ)q(z)
where q is a monic polynomial with coefficients in F [Each Zero of a
Polynomial Corresponds to a Degree-1 Factor (Notes#4)],
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The Minimal Polynomial → Eigenvalues

Proof (Eigenvalues are the Zeros of the Minimal Polynomial)
Since p(T ) = 0, we have

0 = (T − λI )q(T )(v), ∀v ∈ V .

Since deg(q) < deg(p) ∃v ∈ V : q(T )(v) 6= 0; therefore λ must be an
eigenvalue of T .
Now, suppose λ ∈ F is an eigenvalue of T . ∃v ∈ V : v 6= 0,
T j(v) = λjv , j = 1, . . . . Now,

0 = p(T )(v) = (a0I + a1T + · · · + am−1Tm−1 + Tm)(v)
= (a0 + a1λ + · · · + am−1λm−1 + λm)v
= p(λ)v

⇒ p(λ) = 0. √
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The Minimal Polynomial ↔ Eigenvalues

Example (Re-revisited [Slides 39, 46])
Let T ∈ L(C3) be defined by
T (z1, z2, z3) = (6z1 + 3z2 + 4z3, 6z2 + 2z3, 7z3) wrt the standard basis:

M(T ) =




6 3 4
0 6 2
0 0 7


 , λ(T ) = {6, 7}.

G (6,T ) = span((1, 0, 0), (0, 1, 0)) dim(G (6,T )) = 2
G (7,T ) = span((10, 2, 1)) dim(G (7,T )) = 1

the characteristic polynomial is pT(z) = (z − 6)2(z − 7); the minimal
polynomial is either (z − 6)2(z − 7) or (z − 6)(z − 7). Since

(M(T ) − 6I )(M(T ) − 7I ) =

2

4

0 −3 6
0 0 0
0 0 0

3

5 , (M(T ) − 6I )2(M(T ) − 7I ) =

2

4

0 0 0
0 0 0
0 0 0

3

5

it follows that the minimal polynomial of T is pmin
T (z) = (z − 6)2(z − 7).
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Example (Modified)
Let T ∈ L(C3) be defined by T (z1, z2, z3) = (6z1, 6z2, 7z3) wrt the
standard basis:

M(T ) =




6 0 0
0 6 0
0 0 7


 , λ(T ) = {6, 7}.

G (6,T ) = span((1, 0, 0), (0, 1, 0)) dim(G (6,T )) = 2
G (7,T ) = span((0, 0, 1)) dim(G (7,T )) = 1

the characteristic polynomial is pT(z) = (z − 6)2(z − 7); the minimal
polynomial is either (z − 6)2(z − 7) or (z − 6)(z − 7). Since

(M(T ) − 6I )(M(T ) − 7I ) =

2

4

0 0 0
0 0 0
0 0 0

3

5

it follows that the minimal polynomial of T is pmin
T (z) = (z − 6)(z − 7).
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〈〈〈 Live Math 〉〉〉

e.g. 8C-{3, 4, 5}
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Live Math :: Covid-19 Version 8C-4

8C-4: Given an example T ∈ L(C4) whose characteristic polynomial is
p(z) = (z − 1)(z − 5)3, and minimal polynomial is q(z) = (z −
1)(z − 5)2.

Any T with M(T ) ∈ R4×4, upper triangular, with diagonal (1, 5, 5, 5)
will have p(z) = (z − 1)(z − 5)3.

> Diagonal M(T ) >

We try

M(T ) =

2

6

6

4

1
5

5
5

3

7

7

5

⇔ T (z1, z2, z3, z4) = (z1, 5z2, 5z3, 5z4)

q(z) ∈
�

(z − 1)(z − 5), (z − 1)(z − 5)2, (z − 1)(z − 5)3 	
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Live Math :: Covid-19 Version 8C-4

(M(T ) − I4)(M(T ) − 5I4) =

2

6

6

4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3

7

7

5

⇒ q(z) = (z − 1)(z − 5).

> Upper Triangular M(T ) >

M(T ) =

2

6

6

4

1
5 1

5
5

3

7

7

5

⇔ T (z1, z2, z3, z4) = (z1, 5z2 + z3, 5z3, 5z4)

(M(T ) − I4)(M(T ) − 5I4) =

2

6

6

4

0 0 0 0
0 0 4 0
0 0 0 0
0 0 0 0

3

7

7

5

⇒ q(z) 6= (z − 1)(z − 5).
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Live Math :: Covid-19 Version 8C-4

(M(T ) − I4)(M(T ) − 5I4)2 =

2

6

6

4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3

7

7

5

⇒ q(z) = (z − 1)(z − 5)2.
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At this point we know that if V is a complex vector space, then
∀T ∈ L(V ) there is a basis of V with respect to which T has
[Block Diagonal Matrix with Upper-Triangular Blocks (Slide 43)].

Now, we a chasing more zeros: the goal is a basis of V wrt which
the matrix of T contains 0’s everywhere except possibly on

the diagonal (the eigenvalues), and
the first super-diagonal (we allow 1’s or 0’s).

We use nilpotent operators to get us there...
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Example (Compare with [Slide 25–26])

Once again we consider a shift-operator in F4: N(z1, . . . , z4) = (0, z1, . . . , z3); its
action on v = (1, 0, 0, 0) generates a basis

B(F4) =
�

N3(v),N2(v),N(v), v
	

= {e4, e3, e2, e1} , and

M(N,B(F4)) =

2

6

6

6

4

e4 e3 e2 e1
e4 0 1 0 0
e3 0 0 1 0
e2 0 0 0 1
e1 0 0 0 0

3

7

7

7

5

Definition (Jordan Chain — Generator / Lead Vector; adopted from [Wikipedia])
Given an eigenvalue λ, its corresponding Jordan block gives rise to a Jordan chain.
The generator, or lead vector, vr of the chain is a generalized eigenvector such that
(A − λI )rvr = 0, where r is the size of the Jordan block. The vector
v1 = (A − λI )r−1vr is an eigenvector corresponding to λ.
In general, vi−1 = (A − λI )vi . The lead vector generates the chain via repeated
multiplication by (A − λI ). B = {v1, · · · , vr} is a basis for the Jordan block.
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Example

Let N ∈ L(F6): N(z1, . . . , z6) = (0, z1, z2, 0, z4, 0).
Here thinking of a space isomorphic to F6 helps: F6 ∼= F3 × F2 × F1.
On each space we have a right-shift operator: NF3 (z1, z2, z3) = (0, z1, z2),
NF2 (z1, z2) = (0, z1), NF1 (z1) = (0), and we can define the linear map
N× : F3 × F2 × F1 7→ F3 × F2 × F1 by

N×((z1, z2, z3), (z4, z5), z6) = (NF3 (z1, z2, z3),NF2 (z4, z5),NF1 (z6))
= ((0, z1, z2), (0, z4), (0)).

By the previous example, the lead vectors wF3,1 = (1, 0, 0), wF2,1 = (1, 0), and
wF1,1 = (1) will generate bases for B(F3), B(F2), and B(F1) so that

M
�

NF3 , B(F3)
�

=

2

4

0 1 0
0 0 1
0 0 0

3

5 , M
�

NF2 , B(F2)
�

=
�

0 1
0 0

�

, M
�

NF1 , B(F1)
�

=
�

0
�

.
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If we “translate” all that back to N ∈ L(F6): N(z1, . . . , z6) = (0, z1, z2, 0, z4, 0).
We have 3 lead vectors:

w3 = (1, 0, 0, 0, 0, 0), w2 = (0, 0, 0, 1, 0, 0), w1 = (0, 0, 0, 0, 0, 1).

B(F6) =
�

N2(w3),N(w3),w3,N(w2),w2,w1
	

, so that

B(F6) =

8

>

>

>

>

>

<

>

>

>

>

>

:

2

6

6

6

6

6

4

0
0
1
0
0
0

3

7

7

7

7

7

5

,

2

6

6

6

6

6

4

0
1
0
0
0
0

3

7

7

7

7

7

5

,

2

6

6

6

6

6

4

1
0
0
0
0
0

3

7

7

7

7

7

5

,

2

6

6

6

6

6

4

0
0
0
0
1
0

3

7

7

7

7

7

5

,

2

6

6

6

6

6

4

0
0
0
1
0
0

3

7

7

7

7

7

5

,

2

6

6

6

6

6

4

0
0
0
0
0
1

3

7

7

7

7

7

5

9

>

>

>

>

>

=

>

>

>

>

>

;

and

M(N,B(F6)) =

2

6

6

6

6

6

6

4

2

4

0 1 0
0 1

0

3

5

�

0 1
0

�

�

0
�

3

7

7

7

7

7

7

5
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Basis Corresponding to a Nilpotent Operator

This theorem formalizes what we have demonstrated in the examples:

Theorem (Basis Corresponding to a Nilpotent Operator)
Suppose N ∈ L(V ) is nilpotent. Then there exist vectors v1, . . . , vn ∈ V
and nonnegative integers m1, . . . ,mn such that
(a) Nm1(v1), . . . ,N(v1), v1, . . . ,Nmn(vn), . . . ,N(vn), vn is a basis of V ,
(b) Nm1+1(v1) = · · · = Nmn+1(vn) = 0.

Proof (Basis Corresponding to a Nilpotent Operator)
[Induction–Base] If dim(V ) = 1, the only nilpotent operator is 0, let v 6= 0,

and m1 = 0.
[Induction–Hypothesis] Assume n = dim(V ) > 1 and the theorem holds

on all spaces of smaller dimension.
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Proof (Basis Corresponding to a Nilpotent Operator)
Because N is nilpotent, N is not injective ⇒ not surjective [For L(V ):
Injectivity ⇔ Surjectivity in Finite Dimensions (Notes#3.2)] and hence
dim(range(N)) < dim(V ). Thus we can apply our inductive hypothesis
to N|range(N) ∈ L(range(N)).
By [Induction–Hypothesis] applied to N|range(N) there exist vectors
v1, . . . , vn ∈ range(N) nonnegative integers m1, . . . ,mn such that

Nm1(v1), . . . ,N(v1), v1, . . . ,Nmn(vn), . . . ,N(vn), vn (i)
is a basis of range(N), and Nm1+1(v1) = · · · = Nmn+1(vn) = 0
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Proof (Basis Corresponding to a Nilpotent Operator)
Since (∀ℓ) vℓ ∈ range(N) ∃uℓ ∈ V : vℓ = N(uℓ); thus Nk+1uℓ = Nkvℓ.
We use this to rewrite and augment (i):

Nm1+1(u1), . . . ,N(u1), u1, . . . ,Nmn+1(un), . . . ,N(un), un (ii)
We need to verify that this is a list of linearly independent vectors.
Assume some linear combination of the vectors in (ii) equals zero; apply
N to that linear combination; this yields a linear combination of the
vectors in (i) equal to zero. Since those vectors are linearly independent,
the coefficients multiplying the vectors in the set (i) must be zero.
What remains is a linear combination of

{
Nm1+1(u1), . . . ,Nmn+1(un)

}
= {Nm1(v1), . . . ,Nmn(vn)}

which is a subset of (i), and hence those coefficients are also zero. ⇒ the
list in (ii) is linearly independent.
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Proof (Basis Corresponding to a Nilpotent Operator)
Next, we extend (ii) to a basis of V [Linearly Independent List Extends
to a Basis (Notes#2)]: (we need coverage for null(N) ∩ range(N)⊥)

Nm1+1(u1), . . . ,N(u1), u1, . . . ,Nmn+1(un), . . . ,N(un), un,w1, . . . ,wp (iii)

Each N(wk) ∈ range(N) ⇒ N(wk) ∈ span(i) = span(N(ii))
We can find xℓ ∈ span(ii) so that N(wℓ) = N(xℓ); let
un+ℓ = wℓ − xℓ 6= 0. By construction N(un+ℓ) = 0, and

Nm1+1(u1), . . . ,N(u1), u1, . . . ,Nmn+1(un), . . . ,N(un), un, un+1, . . . , un+p (iv)

spans V , because its span contains each xℓ and each un+ℓ and hence
each wℓ and (iii) spans V .
(iv) has the same length as (iii), so we have a basis with the desired
properties.
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Definition (Jordan Basis)
Suppose T ∈ L(V ). A basis of V is called a Jordan basis, J(V ) for T if
wrt this basis T has a block diagonal matrix, where each block Ak is
upper-triangular with diagonal entries λk , and first super-diagonal entries
all ones:

M(T ; J (V )) =



A1 0

. . .
0 Ap


 , Ak =




λk 1 0
. . . . . .

. . . 1
0 λk




Theorem (Jordan Form)
Suppose V is a complex vector space. If T ∈ L(V ), then there is a basis
of V that is a Jordan basis for T .
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Proof (Jordan Form)
First consider a nilpotent operator N ∈ L(V ), and the vectors
v1, . . . , vn ∈ V given by [Basis Corresponding to a Nilpotent Operator].
For each k , N sends the first vector in the list Nmk (vk), . . . ,N(vk), vk to
0, and “left-shifts” the other vectors in the list. That is, [Basis
Corresponding to a Nilpotent Operator] gives a basis of V wrt which N
has a block diagonal matrix, where each matrix on the diagonal has the
form 



0 1 0
. . . . . .

. . . 1
0 0




Thus the theorem holds for nilpotent operators...
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Proof (Jordan Form)
Now suppose T ∈ L(V ). Let λ1, . . . , λm be the distinct eigenvalues of
T . We have the generalized eigenspace decomposition

V = G (λ1,T ) ⊕ · · · ⊕ G (λm,T ),
where each (T − λk I )|G(λk ,T ) is nilpotent [Description of Operators on
Complex Vector Spaces]. Thus some basis of each G (λk ,T ) is a Jordan
basis for (T − λk I )|G(λk ,T ). Put these bases together to get a basis of V
that is a Jordan basis for T . √
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Example (Jordan Form)
Consider

A =

2

6

6

6

4

177 548 271 −548 −356
19 63 14 −79 −23
8 24 17 −20 −20

42 132 55 −141 −76
56 176 80 −184 −105

3

7

7

7

5

We try to find the minimal polynomial; we “randomly” select v = (1, 0, 0, 0, 0), and
form B =

�

v Av A2v A3v A4v A5v
�

:

B =

2

6

6

6

4

1 177 957 4245 16761 62457
0 19 66 273 996 3567
0 8 48 216 864 3240
0 42 204 894 3480 12882
0 56 288 1272 4992 18552

3

7

7

7

5

We need to find the first column which is linearly dependent on the previous; hence,
we row-reduce:
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Example (Jordan Form)

rref(B) =

2

6

6

6

4

1 0 0 − 9 −45 −198
0 1 0 −3 −24 −111
0 0 1 5 22 86
0 0 0 0 0 0
0 0 0 0 0 0

3

7

7

7

5

Hence, −9v − 3Av + 5A2v = A3v ; and we have a candidate
for the minimal polynomial: p(z) = z3 − 5z2 + 3z + 9 =
(z + 1)(z − 3)2.
The way we have done it – using a “random” vector to start
the problem, we are NOT guaranteed that this is the minimal
polynomial. However, applying the polynomial to the full
original matrix will give us the answer; in this case, indeed
A3 − 5A2 + 3A + 9I5 = 0.

If the test had failed: p(z) would have been one of the factors in the polynomial (so the work would not have been
completely wasted). Another “random” guess (not a linear combination of the vectors in B) would be needed to
identify more factors.
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Example (Jordan Form)
First we compute the eigenspaces

E(−1,A) = null(A + 1I5) = span((2, 1, 0, 1, 1)),
E(3,A) = null(A − 3I5) = span ((−19, 14, −6, 5, 0)), ((24, −7, 4, 0, 4)) .

Clearly, these 3 vector cannot span C5, we need genereralized eigenspaces...
null

�

(A + 1I5)2� = null(A + 1I5) ⇒ G(−1,A) = E(−1,A)

null
�

(A − 3I5)2� = span

0

B

B

B

@

2

6

6

6

4

−8
3
0
0
0

3

7

7

7

5

,

2

6

6

6

4

0
0
1
0
0

3

7

7

7

5

,

2

6

6

6

4

11
0
0
3
0

3

7

7

7

5

,

2

6

6

6

4

4
0
0
0
3

3

7

7

7

5

1

C

C

C

A

Whereas, technically G(3,A) = null
�

(A − 3I5)5�, there can be no growth beyond this
point (including G(−1,A) we already have 5 vectors).
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Jordan Form

Example (Jordan Form)

The null-space dimension of nilpotent “M(((T − λℓI )k )|G(λℓ,T ))” matrix-blocks equal
to k; hence the differences
• dim(null

�

(A − 3I5)2�) − dim(null
�

(A − 3I5)1�) = 4 − 2 = 2
tells us that we have 2 blocks of size 2 or larger; and

• dim(null
�

(A − 3I5)3�) − dim(null
�

(A − 3I5)2�) = 4 − 4 = 0
tells us that we have 0 blocks of size 3 or larger.

At this point we know the Jordan Form of A:
2

6

6

6

6

4

−1
3 1

3
3 1

3

3

7

7

7

7

5

What remains is figuring out the basis B(V ) which gets us there.
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Example (Jordan Form)

We apply (A − 3I5)k , k = 0, . . . to each vector in G(3,A) to form 4 Jordan Chains:

8

>

>

>

<

>

>

>

:

2

6

6

6

4

252
28
8

60
80

3

7

7

7

5

,

2

6

6

6

4

−8
3
0
0
0

3

7

7

7

5

9

>

>

>

=

>

>

>

;

,

8

>

>

>

<

>

>

>

:

2

6

6

6

4

271
14
14
55
80

3

7

7

7

5

,

2

6

6

6

4

0
0
1
0
0

3

7

7

7

5

9

>

>

>

=

>

>

>

;

,

8

>

>

>

<

>

>

>

:

2

6

6

6

4

270
−28

28
30
64

3

7

7

7

5

,

2

6

6

6

4

11
0
0
3
0

3

7

7

7

5

9

>

>

>

=

>

>

>

;

,

8

>

>

>

<

>

>

>

:

2

6

6

6

4

372
7

−28
−60

−100

3

7

7

7

5

,

2

6

6

6

4

4
0
0
0
3

3

7

7

7

5

9

>

>

>

=

>

>

>

;

.

We form a basis using the vectors from 2 of the chains, and E(−1,A), e.g

B(V ) = span

0

B

B

B

@

2

6

6

6

4

2
1
0
1
1

3

7

7

7

5

,

2

6

6

6

4

252
28
8

60
80

3

7

7

7

5

,

2

6

6

6

4

−8
3
0
0
0

3

7

7

7

5

,

2

6

6

6

4

271
14
14
55
80

3

7

7

7

5

,

2

6

6

6

4

0
0
1
0
0

3

7

7

7

5

1

C

C

C

A
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... and we arrive:

A =

2

6

6

6

4

177 548 271 −548 −356
19 63 14 −79 −23
8 24 17 −20 −20

42 132 55 −141 −76
56 176 80 −184 −105

3

7

7

7

5

B(V ) = span

0

B

B

B

@

2

6

6

6

4

2
1
0
1
1

3

7

7

7

5

,

2

6

6

6

4

252
28
8

60
80

3

7

7

7

5

,

2

6

6

6

4

−8
3
0
0
0

3

7

7

7

5

2

6

6

6

4

271
14
14
55
80

3

7

7

7

5

,

2

6

6

6

4

0
0
1
0
0

3

7

7

7

5

1

C

C

C

A

M(A,B(V )) =

2

6

6

6

6

4

−1
3 1

3
3 1

3

3

7

7

7

7

5
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〈〈〈 Live Math 〉〉〉

e.g. 8D-{3, 4, 5}
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Suggested Problems
Assigned Homework
Supplements

Suggested Problems

8.A—1, 2, 3, 4, 5

8.B—1, 2, 3, 4, 5

8.C—1, 2, 3, 4, 5

8.D—1, 2, 3, 4, 5
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Suggested Problems
Assigned Homework
Supplements

Assigned Homework HW#8, Not Due

Strongly Suggested Problems

8.A—1, 2

8.B—1, 2

8.C—1, 2

8.D—1, 2

Expect variants on the take-home and in-class finals.
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Suggested Problems
Assigned Homework
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Explicit References to Previous Theorems or Definitions (with count)

1

2 3-1 3-2 4

5

67-17-28

1

2 1 3
2

4
2

1

1
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Suggested Problems
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Explicit References to Previous Theorems or Definitions

1

2 3-1 3-2 4

5

67-17-28
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