# <span id="page-0-0"></span>Math 524: Linear Algebra Notes #8 — Operators on Complex Vector Spaces

Peter Blomgren  $\langle$ blomgren@sdsu.edu $\rangle$ 

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

**<http://terminus.sdsu.edu/>**

Fall 2021 (Revised: December 7, 2021)



### **Outline**

- **1** [Student Learning Targets, and Objectives](#page-2-0)
	- **[SLOs: Operators on Complex Vector Spaces](#page-2-0)**
	- **2** [Generalized Eigenvectors and Nilpotent Operators](#page-4-0)
	- **[Null Spaces of Powers of an Operator](#page-5-0)**
	- **O** [Generalized Eigenvectors](#page-11-0)
	- **[Nilpotent Operators](#page-19-0)**
- 

#### **3** [Decomposition of an Operator](#page-30-0)

- **O** [Description of Operators on Complex Vector Spaces](#page-30-0)
- **[Multiplicity of an Eigenvalue](#page-37-0)**
- [Block Diagonal Matrices](#page-40-0)
- **[Square Roots](#page-46-0)**



#### **4** [Characteristic and Minimal Polynomials](#page-52-0)

- The Cayley-Hamilton Theorem
- **[The Minimal Polynomial](#page-57-0)**

#### **5** [Jordan Form](#page-77-0)

- [Jordan "Normal" / "Canonical" Form](#page-77-0)
- **[Problems, Homework, and Supplements](#page-95-0)** 
	- **•** [Suggested Problems](#page-95-0)
	- **[Assigned Homework](#page-96-0)**
	- **•** [Supplements](#page-97-0)



### <span id="page-2-0"></span>Student Learning Targets, and Objectives 1 and 2 and 2

Target Generalized Eigenvectors and Nilpotent Operators

- Objective Be able to identify generalized eigenspaces  $G(\lambda, T)$ Objective Be able to identify a Nilpotent Operator, N, by the dimension of its Generalized Eigenspace G(0*,* N)
- Objective Be able to construct an orthonormal basis so that the matrix of a Nilpotent Operator is upper trianguler with respect to the basis
- Target Decomposition of an Operator
	- Objective Be able to Decompose all operators on complex vector spaces V onto direct sums of invariant generalized eigenspaces Objective Be able to identify a Block Diagonal Matrix



#### Student Learning Targets, and Objectives 2 of 2

Target Characteristic Polynomial and the Cayley–Hamilton Theorem Objective Be able to state the properties of the Characteristic Polynomial and its relation to the Eigenvalues of an Operator Objective Be able to state the properties of the Minimal Polynomial and its relation to the Eigenvalues of an Operator Objective Be able to derive the Characteristic and Minimal Polynomials for an Operator.

Target Jordan Form

Objective Be able to identify the Jordan Chains, and use them to construct a Jordan Basis for an Operator

Objective Be able to identify the Jordan Normal Form for an Operator



<span id="page-4-0"></span>

### **Introduction**

We return to the issue of describing an operator in terms of its eigenspaces. In particular, we address the issue of non-Diagonalizability.

#### Rewind (Sum of Eigenspaces is a Direct Sum  $[N$ OTES $#5$ ])

Suppose V is finite-dimensional and  $T \in \mathcal{L}(V)$ . Suppose also that  $\lambda_1, \ldots, \lambda_m$  are distinct eigenvalues of T. Then  $E(\lambda_1, T) + \cdots + E(\lambda_m, T)$  is a direct sum. Furthermore, dim  $(E(\lambda_1, T)) + \cdots + \dim(E(\lambda_m, T)) \leq \dim(V)$ 

#### Rewind (Conditions Equivalent to Diagonalizability  $[NOTES#5]$ )

Suppose V is finite-dimensional and  $T \in \mathcal{L}(V)$ . Let  $\lambda_1, \ldots, \lambda_m$  denote the distinct eigenvalues of  $T$ . Then the following are equivalent:

- (a)  $T$  is diagonalizable.
- (b)  $V$  has a basis consisting of eigenvectors of  $T$
- (c) ∃ 1-D subspaces  $U_1, \ldots, U_n$  of  $V$ , each invariant under  $T$ , such that  $V = U_1 \oplus \cdots \oplus U_n$ . There may be more than one  $U_*$  per eigenvalue!
- (d)  $V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$
- (e) dim(V) = dim( $E(\lambda_1, T)$ ) + · · · + dim( $E(\lambda_m, T)$ )



**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

# <span id="page-5-0"></span>null(  $\mathcal{T}^k$

"Building the Toolbox"

We (temporarily) "discard" our inner products, and return to the simplicity of Vector Spaces. We look at the behavior of powers of operators  $\, T^k \, ; \,$  first we look at the associated null-spaces

 $\rightsquigarrow \rightsquigarrow$  (Generalized) Eigenspaces

### Theorem (Sequence of Increasing Null Spaces)

Suppose  $T \in \mathcal{L}(V)$ , then

 ${0} = \text{null}(T^0) \subset \text{null}(T^1) \subset \cdots \subset \text{null}(T^k) \subset \text{null}(T^{k+1}) \subset \cdots$ 

#### Proof (Sequence of Increasing Null Spaces)

Suppose 
$$
T \in \mathcal{L}(V)
$$
, let  $k \ge 0$  and  $v \in null(T^k)$ . Then  $T^k(v) = 0$ , and  $T^{k+1}(v) = T(T^k(v)) = T(0) = 0$ , so that  $v \in null(T^{k+1})$ ; thus  $null(T^k) \subset null(T^{k+1})$ .  $\sqrt{}$ 



**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

> Ĥ **SAN DIEGO STAT**

# Equality in the Sequence of Null Spaces

Theorem (Equality in the Sequence of Null Spaces)

Suppose  $T \in \mathcal{L}(V)$ , let  $m \geq 0$  such that  $\operatorname{null}(T^m) = \operatorname{null}(T^{m+1})$ , then

$$
\operatorname{null}(\mathcal{T}^m) = \operatorname{null}(\mathcal{T}^{m+1}) = \operatorname{null}(\mathcal{T}^{m+2}) = \cdots
$$

#### Proof (Equality in the Sequence of Null Spaces)

Let  $m, k > 0$ . From the previous result we already have null $(T^{k+m}) \subset \text{null}(T^{k+m+1})$ , to show equality we need to show  $\operatorname{null}(\mathcal{T}^{k+m+1}) \subset \operatorname{null}(\mathcal{T}^{k+m})$ : Let  $v \in \operatorname{null}(\mathcal{T}^{k+m+1})$ , then  $T^{m+1}(T^k(v)) = T^{k+m+1}(v) = 0$ thus  $T^k(v) \in \text{null}(T^{m+1}) = \text{null}(T^m) \Rightarrow T^{m+k}(v) = T^m(T^k(v)) = 0$  $\Rightarrow$   $v \in \text{null}(T^{k+m})$ .  $\sqrt{ }$ 

**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

# Null Spaces Stop Growing

Theorem (Null Spaces Stop Growing)

Suppose 
$$
T \in \mathcal{L}(V)
$$
, let  $n = \dim(V)$ , then

$$
\operatorname{null}(\mathcal{T}^n) = \operatorname{null}(\mathcal{T}^{n+1}) = \cdots
$$

### Proof (Null Spaces Stop Growing)

**By Contradiction:** If the theorem is false, then

$$
\{0\} = \text{null}(T^0) \subsetneq \text{null}(T^1) \subsetneq \cdots \subsetneq \text{null}(T^n) \subsetneq \text{null}(T^{n+1})
$$

The strict inclusions means

$$
0 = \dim(\operatorname{null}(\mathcal{T}^0)) < \dim(\operatorname{null}(\mathcal{T}^1)) < \cdots
$$

 $\langle$  dim(null( $T^n$ ))  $\langle$  dim(null( $T^{n+1}$ ))

so that  $\dim(\mathrm{null}(T^{n+1})) \ge (n+1)$ . But  $\dim(V) = n$ .



ĥ

**[Generalized Eigenvectors and Nilpotent Operators](#page-4-0) [Decomposition of an Operator](#page-30-0) [Characteristic and Minimal Polynomials](#page-52-0) [Jordan Form](#page-77-0) [Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

#### Direct Sums of null and range

It is generally true that  $V \neq \text{null}(T) \oplus \text{range}(T)$ ; e.g. recall examples where null( $T$ ) = range( $T$ ).

Theorem  $(V = \text{null}(T^n) \oplus \text{range}(T^n); n = \dim(V))$ 

Suppose  $T \in \mathcal{L}(V)$ ,  $n = \dim(V)$ , then

 $V = \text{null}(T^n) \oplus \text{range}(T^n)$ 

# Proof  $(V = null(T^n) \oplus \text{range}(T^n); n = \dim(V))$

**(1)** We show  $\text{null}(T^n) \cap \text{range}(T^n) = \{0\}$ : Let  $v \in \text{null}(T^n) \cap \text{range}(T^n)$ , then  $T^n(v) = 0$ , and  $\exists u \in V$ :  $v = T^{n}(u)$ . Then  $0 = T^{n}(v) = T^{2n}(u)$ , using the previous result  $\operatorname{null}(T^n) = \operatorname{null}(T^{2n})$ , we must have  $T^n(u) = 0$ , hence  $v = 0.1$ 

SAN DIRGO STATE<br>UNIVERSITY

**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

# Direct Sums of null and range

# Proof  $(V = null(T^n) \oplus \text{range}(T^n); n = \dim(V))$

- **(2)** Since  $\text{null}(T^n) \cap \text{range}(T^n) = \{0\}$  by [DIRECT SUM OF TWO SUB- $_{\text{spACES (NOTES\#1)]} \text{ null}(\textit{$\mathcal{T}^n$}) + \text{range}(\textit{$\mathcal{T}^n$})$  is a direct sum; and  $\mathrm{dim}(\mathrm{null}(\mathcal{T}^n) \oplus \mathrm{range}(\mathcal{T}^n)) \quad \overset{1}{=} \quad \mathrm{dim}(\mathrm{null}(\mathcal{T}^n)) + \mathrm{dim}(\mathrm{range}(\mathcal{T}^n))$  $\frac{2}{\pi}$  dim(V)
	- $\frac{1}{\equiv}$  [A SUM IS A DIRECT SUM IF AND ONLY IF DIMENSIONS ADD Up  $(N$ OTES $\#3.2$ )
	- $\stackrel{2}{=}$  [FUNDAMENTAL THEOREM OF LINEAR MAPS (NOTES#3.1)]

Therefore  $V = \text{null}(T^n) \oplus \text{range}(T^n)$ .  $\sqrt{ }$ 



**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

#### Direct Sums of null and range

#### Example

Consider  $\mathcal{T} \in \mathcal{L}(\mathbb{F}^3)$  defined by  $T(z_1, z_2, z_3) = (4z_2, 0, 5z_3)$ range(T) = { $(w_1, 0, w_2) : w_1, w_2 \in \mathbb{F}$ } null(T) = { $(w, 0, 0) : w \in \mathbb{F}$ }  $T^2(z_1, z_2, z_3) = (0, 0, 25z_3)$  $T^3(z_1, z_2, z_3) = (0, 0, 125z_3)$  $\text{range}(\mathcal{T}^{\{2,3\}}) = \{(0,0,w) : w \in \mathbb{F}\}\$ null( $\mathcal{T}^{\{2,3\}}$ ) = {( $w_1, w_2, 0$ ) :  $w_1, w_2 \in \mathbb{F}$ }

Clearly  $\mathbb{F}^3 = \text{range}(\mathcal{T}^{\{2,3\}}) \oplus \text{null}(\mathcal{T}^{\{2,3\}})$  — the theorem guarantees the result for  $n = 3$ , but here it happens sooner  $(n = 2)$ .



Ĥ

**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

#### <span id="page-11-0"></span>Generalized Eigenvectors

As we have seen, some operators do not have enough eigenvectors to lead to a good description (diagonalization). We now introduce a remedy — **generalized eigenvectors**, which will aid in the description of the structure of operators.

For  $\mathbb C$ :normal  $T^*T = TT^*$ , and  $\mathbb R$ :self-adjoint  $T = T^*$  operators we are guaranteed eigenspace decompositions

$$
V=E(\lambda_1,T)\oplus\cdots\oplus E(\lambda_m,T)
$$

thanks to the  $[CC/RC$  SPECTRAL THEOREMS (NOTES#7.1)].

 $[SchUR'S THEOREM (NOTES#6)]$  allows for an upper triangular matrix  $\mathcal{M}(T)$  for every operator; but does not give a direct-sum decomposition of the space.



**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

# Generalized Eigenvectors and Eigenspaces

#### Definition (Generalized Eigenvector)

Suppose  $T \in \mathcal{L}(V)$  and  $\lambda$  is an eigenvalue of T. A vector  $v \in V$  is called a **generalized eigenvector** of T corresponding to  $\lambda$  if  $v \neq 0$  and

$$
(\mathcal{T} - \lambda I)^k(v) = 0
$$

for some  $k > 1$ .

#### Definition (Generalized Eigenspace, G(*λ,*T))

Suppose  $T \in \mathcal{L}(V)$  and  $\lambda$  is an eigenvalue of T. The **generalized eigenspace** of T corresponding to  $\lambda$ , denoted  $G(\lambda, T)$ , is defined to be the set of all generalized eigenvectors of T corresponding to  $\lambda$ , along with the 0 vector.



**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

# Generalized Eigenvectors and Eigenspaces

Since we get that standard eigenspace when  $k = 1$ , it is always true that

$$
E(\lambda,T)\subset G(\lambda,T)
$$

that is "eigenvectors are also generalized eigenvectors."

The next result answers the question "what value of k should we pick?"

Theorem (Description of Generalized Eigenspace)

Suppose  $T \in \mathcal{L}(V)$  and  $\lambda \in \mathbb{F}$  is an eigenvalue of T. Then  $G(\lambda, T) = \text{null}((T - \lambda I)^{\dim(V)}).$ 



**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

# Generalized Eigenvectors and Eigenspaces

#### Proof (Description of Generalized Eigenspace)

- **(1)** Suppose  $v \in null((T \lambda I)^{\dim(V)})$ , then by definition  $v \in G(\lambda, T)$ , so null $((T - \lambda I)^{\dim(V)}) \subset G(\lambda, T)$ .
- **(2)** Suppose  $v \in G(\lambda, T)$ , then  $\exists k \geq 0$ :  $v \in \text{null}((T - \lambda I)^k)$

Applying [SEQUENCE OF INCREASING NULL SPACES] and [NULL SPACES STOP GROWING] to  $(T - \lambda I)$  shows  $v \in null((T - \lambda I)^{\dim(V)})$  so that  $G(\lambda, T) \subset \text{null}((T - \lambda I)^{\dim(V)})$ 



**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

### Generalized Eigenvectors and Eigenspaces

#### Example

We revisit the  $\mathcal{T} \in \mathcal{L}(\mathbb{F}^{3})$  defined by  $T(z_1, z_2, z_3) = (4z_2, 0, 5z_3)$ null(T) = { $(w, 0, 0) : w \in \mathbb{F}$ } = **E**(0, **T**)  $\text{null}(T^3) = \{(w_1, w_2, 0) : w_1, w_2 \in \mathbb{F}\} = \mathsf{G}(0, \mathsf{T})$ 

Since  $\dim(\text{null}(T)) > 0$ ,  $\lambda = 0$  is an eigenvalue; the other eigenvalue is  $\lambda = 5$ : **E**(**0**, **T**) = {(**w**, **0**, **0**) : **w**  $\in$  **F**}, **E(5**, **T**) = {(**0**, **0**, **w**) : **w**  $\in$  **F**}

and  $(T - 5I)(z_1, z_2, z_3) = (4z_2 - 5z_1, -5z_2, 0)$ , so  $(T - 5I)^2(z_1, z_2, z_3) = (25z_1 - 40z_2, 25z_2, 0)$  $(T-5I)^3(z_1, z_2, z_3) = (300z_2 - 125z_1, -125z_2, 0)$ null $((T - 5I)^3)$  =  ${(0, 0, w) : w ∈ F}$  $G(0, T) = \{(w_1, w_2, 0) : w_1, w_2 \in \mathbb{F}\}, G(5, T) = \{(0, 0, w) : w \in \mathbb{F}\}\$  $\mathbb{F}^3 = \mathsf{G}(\mathsf{0},\mathsf{T}) \oplus \mathsf{G}(\mathsf{5},\mathsf{T})$ 



**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

# Linearly Independent Generalized Eigenvectors

Rewind (Linearly Independent Eigenvectors  $[N$ OTES $#5]$ )

Let  $T \in \mathcal{L}(V)$ . Suppose  $\lambda_1, \ldots, \lambda_m$  are distinct eigenvalues of T, and  $v_1, \ldots, v_m$  are the corresponding eigenvectors; then  $v_1, \ldots, v_m$ is linearly independent.

# Theorem (Linearly Independent Generalized Eigenvectors)

Let  $T \in \mathcal{L}(V)$ . Suppose  $\lambda_1, \ldots, \lambda_m$  are distinct eigenvalues of T, and  $v_1, \ldots, v_m$  are the corresponding **generalized** eigenvectors; then  $v_1, \ldots, v_m$  is linearly independent.



**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

# Linearly Independent Generalized Eigenvectors

Proof (Linearly Independent Generalized Eigenvectors)

Suppose  $a_1, \ldots, a_m \in \mathbb{C}$ ,  $v_i \in G(\lambda_i, T)$  such that

<span id="page-17-0"></span>
$$
0 = a_1v_1 + \cdots + a_mv_m \qquad (i)
$$

Let k be the largest non-negative integer such that  $(T - \lambda_1 I)^k v_1 \neq 0$ , and let  $w = (T - \lambda_1 I)^k v_1$ :

<span id="page-17-1"></span>
$$
(T - \lambda_1 I)w = (T - \lambda_1 I)^{k+1}v_1 = 0
$$

so  $T(w) = \lambda_1 w$ . Now,  $(T - \lambda I)w = (\lambda_1 - \lambda)w \,\forall \lambda \in \mathbb{F}$ , and  $(T - \lambda I)^n w = (\lambda_1 - \lambda)$  $n_{W}$  (ii)

 $\forall \lambda \in \mathbb{F}$ ,  $n = \dim(V)$ . We apply the operator (Note: the terms commute)  $(T - \lambda_1 I)^k (T - \lambda_2 I)^n \cdots (T - \lambda_m I)^n$ 

to [\(i\)](#page-17-0).

ĥ

**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

Ĥ

# Linearly Independent Generalized Eigenvectors

Proof (Linearly Independent Generalized Eigenvectors)

We get

$$
0 = a_1 (T - \lambda_1 I)^k (T - \lambda_2 I)^n \cdots (T - \lambda_m I)^n v_1
$$
  
\n
$$
\stackrel{2}{=} a_1 (T - \lambda_2 I)^n \cdots (T - \lambda_m I)^n w
$$
  
\n
$$
\stackrel{3}{=} a_1 (\lambda_1 - \lambda_2)^n \cdots (\lambda_1 - \lambda_m)^n w
$$

 $\frac{1}{2}$  [Description of Generalized Eigenspaces]

$$
\stackrel{2}{=} w = (T - \lambda_1 I)^k v_1
$$
  

$$
\stackrel{3}{=} (ii)
$$

This forces  $a_1 = 0$ . We can now repeat the argument and show that  $a_2 = a_3 = \cdots = a_m = 0$ , which shows that  $v_1, \ldots, v_m$  is linearly independent. √

**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

# <span id="page-19-0"></span>Nilpotent Operators

### <span id="page-19-1"></span>Definition (Nilpotent)

An operator  $N \in \mathcal{L}(V)$  is called **nilpotent** if  $N^k = 0$  for some k.

#### Example (Some Nilpotent Operators)

- Operators with  $\mathrm{null}(N) = \mathrm{range}(N)$ , e.g.  $N \in \mathcal{L}(\mathbb{F}^4)$  $N(z_1, z_2, z_3, z_4) = (z_3, z_4, 0, 0)$  $N^2(z_1, z_2, z_3, z_4) = (0, 0, 0, 0)$
- $\bullet$  Shift operators, e.g.

$$
N(z_1,...,z_n) = (0, z_1,...,z_{n-1})
$$
  
\n
$$
N^2(z_1,...,z_n) = (0, 0, z_1,...,z_{n-2})
$$
  
\n
$$
N^n(z_1,...,z_n) = (0, 0,...,0)
$$

 $D \in \mathcal{L}(\mathcal{P}_m(\mathbb{F}))$  defined by  $D(p) = p'$ , since  $D^{m+1}(p) = 0$ .



**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

# Nilpotent Operators

Theorem (Nilpotent Operator Raised to Dimension of Domain is 0)

Suppose  $N \in \mathcal{L}(V)$  is nilpotent, then  $N^{\dim(V)} = 0$ .

Proof (Nilpotent Operator Raised to Dimension of Domain is 0)

Since N is nilpotent  $G(0, N) = V$ . [DESCRIPTION OF GENERALIZED EIGENSPACE] implies  $N^{\dim(V)} = 0.$   $\sqrt{1}$ 

#### Comment (Why Are We Here???)

Given  $T \in \mathcal{L}(V)$ , we want to find a basis  $\mathfrak{B}(V)$  of V such that  $\mathcal{M}(\mathcal{T}; \mathfrak{B}(V))$  is as simple as possible, meaning that the matrix contains many 0's. Nilpotent operators will help us in this pursuit.



**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

### Matrix of a Nilpotent Operator

## Theorem (Matrix of a Nilpotent Operator)

Suppose  $N \in \mathcal{L}(V)$  is nilpotent, then  $\exists$  a basis  $\mathfrak{B}(V)$  so that

$$
\mathcal{M}(N; \mathfrak{B}(V)) = \begin{bmatrix} 0 & * & \cdots & * \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & * \\ 0 & \cdots & \cdots & 0 \end{bmatrix}
$$

that is  $\mathcal{M}(N; \mathfrak{B}(V))$  is strictly upper triangular



**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

# Matrix of a Nilpotent Operator

#### Proof (Matrix of a Nilpotent Operator)

- **(1)** Let  $\mathfrak{B}_1(\text{null}(N))$  be a basis for  $\text{null}(N)$ .
- **(2)** Let  $\mathfrak{B}_2(\text{null}(N^2))$  be an extension of  $\mathfrak{B}_1(\text{null}(N))$  to a basis for null $(N^2)$ .
- $(\mathsf{k}{+}1)$   $\;$  Let  $\mathfrak{B}_{k+1}(\mathrm{null}(N^{k+1}))$  be an extension of  $\mathfrak{B}_k(\mathrm{null}(N^{k}))$  to a basis for  $null(N^{k+1})$ .

**STOP when**  $\mathfrak{B}_{k+1}(\mathrm{null}(N^{k+1}))$  is a basis for V [NILPOTENT OPERATOR RAISED TO DIMENSION OF DOMAIN IS 0 guarantees this will happen.

Now, consider this basis  $\mathfrak{B}(V) = v_1, \ldots, v_n$  and the matrix  $\mathcal{M}(N; \mathfrak{B}(V))$ :

(i) The first  $\dim(\text{null}(N))$  columns corresponding to  $\mathfrak{B}_1(\text{null}(N))$  are all zeros (since they are a basis for  $null(N)$ .



**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

## Matrix of a Nilpotent Operator

#### Proof (Matrix of a Nilpotent Operator)

(ii) The next  $\dim(\text{null}(N^2)) - \dim(\text{null}(N))$  columns correspond to the extension of  $\mathfrak{B}_{1}\!\left(\textrm{null}(N)\right)$  to a basis for  $\mathrm{null}(N^{2});$  any of these  $\mathsf{v} \in \mathrm{null}(N^2)$ , so  $\mathcal{N}(\mathsf{v}_\ell) \in \mathrm{null}(N)$ ; this means

 $N(v_\ell) = a_1v_1 + \cdots + a_{\dim(\mathrm{null}(N))}v_{\dim(\mathrm{null}(N))}$ 

since  $\ell > \dim(\text{null}(N))$  this means only entries strictly above the diagonal are non-zero.

(k) As we process the columns  $\dim(\text{null}(N^{k+1})) - \dim(\text{null}(N^k))$  corresponding to the extension of  $\mathfrak{B}_k(\mathrm{null}(N))$  to a basis for  $\mathrm{null}(N^{k+1});$ any of vectors in that block  $v_{\ell} \in \text{null}(N^{k+1})$ , so  $N(v_{\ell}) \in \text{null}(N^{k})$ ; which like above forces all diagonal and sub-diagonal entries in  $M(N)$ to be zeros. √

**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

> Ĥ **DIEGO STAT**

# Matrix of a Nilpotent Operator — Examples

Example (Revisited from [SLIDE [20\]](#page-19-1))

• Given 
$$
N(z_1, z_2, z_3, z_4) = (z_3, z_4, 0, 0)
$$
, we have  
\n
$$
\mathcal{M}(N; \mathfrak{B}_{\text{std.coord}}) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -0 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \sqrt{\phantom{0}}
$$

• 
$$
N(z_1,..., z_n) = (0, z_1,..., z_{n-1})
$$
, we have

$$
\mathcal{M}(N; \mathfrak{B}_{\text{std.coord}}) = \left[\begin{array}{cccc}0 & \cdots & \cdots & \cdots & 0\\1 & \ddots & & & \vdots\\0 & \ddots & \ddots & & \vdots\\ \vdots & \ddots & \ddots & \ddots & \vdots\\0 & \cdots & 0 & 1 & 0\end{array}\right] \text{ not quite what we want}
$$

**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

## Matrix of a Nilpotent Operator - Examples

#### Example (Revisited from  $[SLIDE 20]$  $[SLIDE 20]$ )

• 
$$
N(z_1,..., z_n) = (0, z_1,..., z_{n-1})
$$
, we have

$$
\mathcal{M}(N; \mathfrak{B}_{std.cord. reverse. order}) = \begin{bmatrix} e_n & e_{n-1} & e_{n-2} & \cdots & e_1 \\ e_n & 0 & 1 & 0 & \cdots & 0 \\ e_{n-1} & 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ e_2 & \vdots & \vdots & \ddots & 1 \\ e_1 & 0 & \cdots & \cdots & 0 \end{bmatrix} \quad \sqrt{\quad}
$$



**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

### Matrix of a Nilpotent Operator — Examples

#### Example (Revisited from  $[SLIDE 20]$  $[SLIDE 20]$ )

•  $D \in \mathcal{L}(\mathcal{P}_m(\mathbb{F}))$  defined by  $D(\rho) = \rho'$ , we have





#### **[Generalized Eigenvectors and Nilpotent Operators](#page-4-0)**

**[Decomposition of an Operator](#page-30-0) [Characteristic and Minimal Polynomials](#page-52-0) [Jordan Form](#page-77-0)**

**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

# $\langle\langle\langle$  Live Math  $\rangle\rangle\rangle$

e.g. 8A-{3, 4, **5**}



**[Null Spaces of Powers of an Operator](#page-5-0) [Generalized Eigenvectors](#page-11-0) [Nilpotent Operators](#page-19-0)**

#### Live Math :: Covid-19 Version 8A-5

**8A-5:** Suppose  $T \in \mathcal{L}(V)$ , m is a positive integer, and  $v \in V$  is such that

 $T^{m-1}(v) \neq 0$  but  $T^m(v) = 0$ . Prove that

$$
v, T(v), T^2(v), \ldots, T^{m-1}(v)
$$

is linearly independent.

### $\begin{array}{ccccc} \ast & \ast & \ast & \ast \end{array}$

Suppose  $a_0, a_1, \ldots, a_{m-1} \in \mathbb{F}$  are such that

<span id="page-28-0"></span> $a_0v + a_1 \, \mathcal{T}(v) + a_2 \, \mathcal{T}^2(v) + \cdots + a_{m-1} \, \mathcal{T}^{m-1}(v) = 0.$  (8A-5.i)

Since  $T^{m-1}(v) \neq 0$ , applying  $T^{m-1}$  to [\(8A-5.i\)](#page-28-0) we get  $a_0 T^{m-1}(v) = 0$ ; this implies  $a_0 = 0$ .



#### Live Math :: Covid-19 Version 8A-5



We now have  $a_1, \ldots, a_{m-1} \in \mathbb{F}$  such that

<span id="page-29-0"></span>
$$
a_1 T(v) + a_2 T^2(v) + \cdots + a_{m-1} T^{m-1}(v) = 0.
$$
 (8A-5.ii)

Applying  $\mathcal{T}^{m-2}$  to  $(8A-5.ii)$  we get  $a_1 \mathcal{T}^{m-1}(\nu) = 0$ ; this implies  $a_1 = 0$ .



Keep turning "the crank," and we get  $a_0 = a_1 = \cdots = a_{m-1} = 0$ , which means that

$$
v, T(v), T^2(v), \ldots, T^{m-1}(v)
$$

is linearly independent.



**[Description of Operators on Complex Vector Spaces](#page-30-0) [Multiplicity of an Eigenvalue](#page-37-0) [Block Diagonal Matrices](#page-40-0) [Square Roots](#page-46-0)**

# <span id="page-30-0"></span>Invariance of The Null Space and Range of  $p(T)$

We now put our new pieces together and show that every operator on a finite-dimensional complex vector space has enough generalized eigenvectors to provide a decomposition.

We need some "glue" for the proof of the main result:

Theorem (The Null Space and Range of  $p(T)$  are Invariant Under  $T$ )

Suppose  $T \in \mathcal{L}(V)$  and  $p \in \mathcal{P}(\mathbb{F})$ , then  $\text{null}(p(T))$  and range( $p(T)$ ) are invariant under T.



**[Description of Operators on Complex Vector Spaces](#page-30-0) [Multiplicity of an Eigenvalue](#page-37-0) [Block Diagonal Matrices](#page-40-0) [Square Roots](#page-46-0)**

Invariance of The Null Space and Range of  $p(T)$ 

Proof (The Null Space and Range of  $p(T)$  are Invariant Under T)

Suppose  $v \in null(p(T))$ , then  $p(T)(v) = 0$ , hence

$$
(p(T)(T(v)) = T(p(T)(v)) = T(0) = 0
$$

 $\rightarrow \tau(v) \in \text{null}(p(\tau))$ .  $\sqrt{1}$ 

Suppose  $v \in \text{range}(p(T))$ . Then  $\exists u \in V: v = p(T)(u)$ , hence  $T(v) = T(p(T)(u)) = p(T)(T(u))$ 

 $\rightarrow \tau(v) \in \text{range}(p(T))$ .  $\sqrt{2}$ 



**[Generalized Eigenvectors and Nilpotent Operators](#page-4-0) [Decomposition of an Operator](#page-30-0) [Characteristic and Minimal Polynomials](#page-52-0) [Jordan Form](#page-77-0) [Description of Operators on Complex Vector Spaces](#page-30-0) [Multiplicity of an Eigenvalue](#page-37-0) [Block Diagonal Matrices](#page-40-0) [Square Roots](#page-46-0)**

# Description of Operators on Complex Vector Spaces

#### Theorem (Description of Operators on Complex Vector Spaces)

Suppose V is a complex vector space and  $T \in \mathcal{L}(V)$ . Let  $\lambda_1, \ldots, \lambda_m$  be the distinct eigenvalues of T. Then

- (a)  $V = G(\lambda_1, T) \oplus \cdots \oplus G(\lambda_m, T)$
- (b) each  $G(\lambda_k, T)$  is invariant under T
- $(c)$  each  $(T \lambda_k I)|_{G(\lambda_k, T)}$  is nilpotent.

If we "trade in" our eigenspaces  $E(\lambda_k, T)$  for generalized eigenspaces  $G(\lambda_k, T)$ , we can decompose all operators on a direct sum of invariant subspaces!

This is a fairly big deal.

**SAN DIEGO STATE** 

**[Description of Operators on Complex Vector Spaces](#page-30-0) [Multiplicity of an Eigenvalue](#page-37-0) [Block Diagonal Matrices](#page-40-0) [Square Roots](#page-46-0)**

# **Description of Operators on Complex Vector Spaces**

Proof (Description of Operators on Complex Vector Spaces)

Let  $n = \dim(V)$ .

**(b,c)** By [DESCRIPTION OF GENERALIZED EIGENSPACE]  $G(\lambda_k, T) = \text{null}((T \lambda_k$ *I*)"), applying [The Null Space and Range of  $p(T)$  are Invariant UNDER T] with  $p(z) = (z - \lambda_k)^n$ , we get (b)<sup>invariance</sup>. (c)nilpotency follows directly from the definitions.

(a) [INDUCTION–BASE] If  $n = 1$ , (a) is trivially true.

Let  $n > 1$ , and assume:

[INDUCTION–HYPOTHESIS] (a) holds for all  $W:$  dim( $W$ )  $<$  n.

Since V is a complex vector space, T has an eigenvalue  $\epsilon$  Existence OF EIGENVALUES (NOTES#5)]. Applying  $[V = null(T^n) \oplus range(T^n);$  $n = \dim(V)$ ] to  $(T - \lambda_1 I)$  shows

<span id="page-33-0"></span>
$$
V = G(\lambda_1, T) \oplus U \qquad (a^*)
$$

 $\frac{1}{\sqrt{2}}$ 

where  $U = \text{range}((T - \lambda_1 I)^n)$ .

**[Description of Operators on Complex Vector Spaces](#page-30-0) [Multiplicity of an Eigenvalue](#page-37-0) [Block Diagonal Matrices](#page-40-0) [Square Roots](#page-46-0)**

# **Description of Operators on Complex Vector Spaces**

#### Proof (Description of Operators on Complex Vector Spaces)

Using [THE NULL SPACE AND RANGE OF  $p(T)$  are Invariant Under T] with  $p(z) = (z - \lambda_1)^n$ , we see that U is invariant under T

Since  $G(\lambda_1, T) \neq \{0\}$ ,  $\dim(U) < n$ , and we can apply the inductive hypothesis to  $T|_U$ .

All generalized eigenvectors corresponding to  $\lambda_1$  are in  $G(\lambda_1, T)$ , hence the eigenvalues of  $T|_U \in {\lambda_2, \ldots, \lambda_m} \neq \lambda_1$ . We can now write  $U = G(\lambda_2, T|_{U}) \oplus \cdots \oplus G(\lambda_m, T|_{U})$ 

Showing that  $G(\lambda_k, T|_U) = G(\lambda_k, T)$  completes the proof.

For each  $k \in \{2, \ldots, m\}$ , the inclusion  $G(\lambda_k, T|_U) \subset G(\lambda_k, T)$  is clear; to show the other direction, let  $v \in G(\lambda_k, T)$ . By (a<sup>\*</sup>) we can write  $v = v_1 + u$  where  $v_1 \in G(\lambda_1, T)$ , and  $u \in U$ . Need:  $v_1 = 0, u \in G(\lambda_k, T|_U)$ 





**[Description of Operators on Complex Vector Spaces](#page-30-0) [Multiplicity of an Eigenvalue](#page-37-0) [Block Diagonal Matrices](#page-40-0) [Square Roots](#page-46-0)**

# Description of Operators on Complex Vector Spaces

#### Proof (Description of Operators on Complex Vector Spaces)

By the inductive hypothesis, we can write  $u = v_2 + \cdots + v_m$ , where each  $v_{\ell} \in G(\lambda_{\ell}, T|_{U}) \subset G(\lambda_{\ell}, T)$ . We have

$$
v=v_1+v_2+\cdots+v_m
$$

Since generalized eigenvectors corresponding to distinct eigenvalues are linearly independent [LINEARLY INDEPENDENT GENERALIZED EIGENVECTORS], this expression forces  $v_{\ell} = 0 \ \forall \ell \neq k$ .

Since  $k \in \{2, \ldots, m\}$  we must have  $v_1 = 0$ ; thus  $v = u \in U$  and since  $v \in U$  we can conclude  $v \in G(\lambda_k, T|_U)$ .  $\sqrt{}$ 


**[Description of Operators on Complex Vector Spaces](#page-30-0) [Multiplicity of an Eigenvalue](#page-37-0) [Block Diagonal Matrices](#page-40-0) [Square Roots](#page-46-0)**

# A Basis of Generalized Eigenvectors

The following looks like an afterthought, but it completes the story  $($ so far $).$ ...

#### Theorem (A Basis of Generalized Eigenvectors)

Suppose V is a complex vector space and  $T \in \mathcal{L}(V)$ . Then there is a basis of V consisting of generalized eigenvectors of  $T$ .

### Proof (A Basis of Generalized Eigenvectors)

Choose a basis of each  $G(\lambda_k, T)$  in [DESCRIPTION OF OPERATORS ON COMPLEX VECTOR SPACES]. Put all these bases together to form a basis of V consisting of generalized eigenvectors of  $T$ .



**[Description of Operators on Complex Vector Spaces](#page-30-0) [Multiplicity of an Eigenvalue](#page-37-0) [Block Diagonal Matrices](#page-40-0) [Square Roots](#page-46-0)**

> AN DIREO STA **TISTUTE CIT**

# <span id="page-37-0"></span>**Multiplicity**

# Definition (Multiplicity)

- Suppose  $T \in \mathcal{L}(V)$ . The multiplicity of an eigenvalue  $\lambda$  of T is defined to be the dimension of the corresponding generalized eigenspace  $G(\lambda, T)$
- the multiplicity of an eigenvalue  $\lambda$  of T equals  $\dim \left( \operatorname{null}\left( \left( \mathcal{T} - \lambda I\right)^{\dim \left( V\right)} \right) \right)$



# **Multiplicity**

#### <span id="page-38-0"></span>Example

Let  $\mathcal{T} \in \mathcal{L}(\mathbb{C}^3)$  be defined by

$$
T(z_1, z_2, z_3) = (6z_1 + 3z_2 + 4z_3, 6z_2 + 2z_3, 7z_3)
$$

with respect to the standard basis:

$$
\mathcal{M}(\mathcal{T}) = \begin{bmatrix} 6 & 3 & 4 \\ 0 & 6 & 2 \\ 0 & 0 & 7 \end{bmatrix}, \quad \lambda(\mathcal{T}) = \{6, 7\}.
$$

 $E(6, T) = \text{span}((1, 0, 0)), \quad E(7, T) = \text{span}((10, 2, 1)))$ 

 $G(6, 7) = \text{span}((1, 0, 0), (0, 1, 0)), G(7, 7) = \text{span}((10, 2, 1))$  $\mathbb{C}^3 = G(6, T) \oplus G(7, T)$ 

$$
\mathfrak{B}=\{(1,0,0),(0,1,0),(10,2,1)\}
$$

is a basis of  $\mathbb{C}^3$  consisting of generalized eigenvectors of  $T.$ 



Ĥ

# Sum of the Multiplicities Equals  $\dim(V)$

# Theorem (Sum of the Multiplicities Equals  $\dim(V)$ )

Suppose V is a complex vector space and  $T \in \mathcal{L}(V)$ . Then the sum of the multiplicities of all the eigenvalues of  $T$  equals  $\dim(V)$ .

# Proof (Sum of the Multiplicities Equals  $\dim(V)$ )

[Description of Operators on Complex Vector Spaces] and [A Sum is a

DIRECT SUM IF AND ONLY IF DIMENSIONS ADD UP (NOTES#3.2)]

#### Comment (Multiplicity Without Determinants)

It is worth noting that our definition of multiplicity does not require determinants.

Also, we do not need two "types" of multiplicity.



### <span id="page-40-0"></span>Block Diagonal Matrices

We introduce a bit more language for the discussion of matrix forms:





### Block Diagonal Matrix

#### <span id="page-41-0"></span>Example (Block Diagonal Matrix)

Let

$$
A_1 = \begin{bmatrix} 4 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}
$$

then  $A = diag(A_1, A_2, A_3)$  is a block diagonal matrix:

$$
A = \begin{bmatrix} 4 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}
$$

**SAN DIRGO STAT** 

# Block Diagonal Matrix with Upper-Triangular Blocks

Theorem (Block Diagonal Matrix with Upper-Triangular Blocks)

Suppose V is a complex vector space and  $T \in \mathcal{L}(V)$ . Let  $\lambda_1, \ldots, \lambda_m$  be the distinct eigenvalues of T, with multiplicities d1*, . . . ,* dm.

Then there is a basis of V with respect to which  $T$  has a block diagonal matrix of the form  $A = diag(A_1, ..., A_m)$ , where each  $A_k$ is a  $(d_k \times d_k)$  upper-triangular matrix of the form



Upper-Triangular Matrix vs. Block Diagonal Matrix with Upper-Triangular Blocks

# Rewind (Schur's Theorem [NOTES#6])

Suppose V is a finite-dimensional complex vector space and  $T \in \mathcal{L}(V)$ . Then T has an upper-triangular matrix with respect to some **orthonormal basis** of V.

#### Comment

Here, we are trading away the orthonormal basis; and we are getting more zeros in the matrix.

This is useful for theoretical purposes, but not always a good idea in practical computations.

For computational stability and accuracy  $[MATH 543]$ , orthonormal bases are very desirable.



# Block Diagonal Matrix with Upper-Triangular Blocks

#### Proof (Block Diagonal Matrix with Upper-Triangular Blocks)

Each  $(T - \lambda_k I)|_{G(\lambda_k, T)}$  is nilpotent [DESCRIPTION OF OPERATORS ON COMPLEX VECTOR SPACES]. For each k, we select a basis  $\mathfrak{B}_k$  of  $G(\lambda_k, T)$  (which is a vector space with dim( $G(\lambda_k, T)$ ) =  $d_k$  such that

$$
\mathcal{M}((\mathcal{T}-\lambda_k I)|_{G(\lambda_k,\mathcal{T})};\mathfrak{B}_k)
$$

is strictly upper triangular; thus

$$
\mathcal{M}(T|_{G(\lambda_k,T)};\mathfrak{B}_k)=\mathcal{M}((T-\lambda_k I)|_{G(\lambda_k,T)}+\lambda_k I|_{G(\lambda_k,T)})
$$

is upper triangular with  $\lambda_k$  repeated on the diagonal.

Collecting the bases  $\mathfrak{B}_k(G(\lambda_k, T))$ ,  $k = 1, \ldots, m$  gives a basis  $\mathfrak{B}(V)$ ; and the  $\mathcal{M}(\mathcal{T}; \mathfrak{B}(V))$  has the desired structure.

Note, the example matrix on  $[\text{SLIDE 42}]$  is in this form. For an operator T on a 6dimensional vectors space with  $\mathcal{M}(T)$  as in the example, the eigenvalues are  $\{4, 2, 1\}$ with corresponding multiplicities {1*,* 2*,* 3}. Additionally, the matrices on  $[SLIDES 25-27]$  $[SLIDES 25-27]$  $[SLIDES 25-27]$  are in this form.



# Block Diagonal Matrix with Upper-Triangular Blocks

#### <span id="page-45-0"></span>Example (Revisited from [SLIDE [39\]](#page-38-0))

Let  $\mathcal{T} \in \mathcal{L}(\mathbb{C}^3)$  be defined by  $T(z_1, z_2, z_3) = (6z_1 + 3z_2 + 4z_3, 6z_2 + 2z_3, 7z_3)$  with respect to the standard basis the matrix is not in the desired form:

$$
\mathcal{M}(\mathcal{T}) = \begin{bmatrix} 6 & 3 & 4 \\ 0 & 6 & 2 \\ 0 & 0 & 7 \end{bmatrix}, \quad \lambda(\mathcal{T}) = \{6, 7\}.
$$

However,  $G(6, T) = \text{span}((1, 0, 0), (0, 1, 0)), G(7, T) = \text{span}((10, 2, 1)),$ so that

$$
\mathfrak{B}=\{(1,0,0),(0,1,0),(10,2,1)\},
$$

and

$$
\mathcal{M}(\mathcal{T};\mathfrak{B})=\left[\begin{array}{cc} 6 & 3 \\ -6 & 6 \\ - & -\frac{7}{7} \end{array}\right]
$$

Ĥ

# <span id="page-46-0"></span>Square Roots

Some, but not all operators have square roots. At this point, we know that positive operators have positive square roots [CHARACTERIZATION OF POSITIVE OPERATORS (NOTES $#7.2$ ). To that we add:

Theorem (Identity Plus Nilpotent has a Square Root)

Suppose  $N \in \mathcal{L}(V)$  is nilpotent, then  $(I + N)$  has a square root.

#### Proof (Identity Plus Nilpotent has a Square Root)

We use the Taylor series for  $\sqrt{1 + x}$  as motiviation:

$$
\sqrt{1+x}=1+a_1x+a_2x^2+\cdots+{''}a_{\infty}x^{\infty}"
$$

for our purpose, the values of the coefficients are not (yet) important; since  $N \in \mathcal{L}(V)$  is nilpotent  $N^m = 0$  for some value of m, we seek a square root of the form

$$
\sqrt{I+N}=I+a_1N+a_2N^2+\cdots+a_{m-1}N^{m-1}
$$





# Square Roots

### Proof (Identity Plus Nilpotent has a Square Root)

We select the coefficients  $a_1, \ldots, a_{m-1}$  so that

$$
I + N = (I + a_1N + a_2N^2 + \cdots + a_{m-1}N^{m-1})^2
$$

Given enough patience, we can figure out what the coefficient values should be; but all we need is that they exist.  $\sqrt{}$ 

We can now use this results to guarantee that all invertible operators (over  $\mathbb{C}$ ) have square roots...





### Square Roots

Note that this result does not hold over R, e.g.  $T(x) = -x, x \in \mathbb{R}$  does not have a square root.

#### Theorem (Over C, Invertible Operators Have Square Roots)

Suppose V is a complex vector space and  $T \in \mathcal{L}(V)$  is invertible. Then T has a square root.

#### Proof (Over C, Invertible Operators Have Square Roots)

Let  $\lambda_1, \ldots, \lambda_m$  be the distinct eigenvalues of T. For each  $k \exists$  a nilpotent  $N_k \in \mathcal{L}(G(\lambda_k, T))$  such that such that  $T|_{G(\lambda_k, T)} = \lambda_k I + N_k$ [DESCRIPTION OF OPERATORS ON COMPLEX VECTOR SPACES]. Since  $T$  is invertible  $\lambda_k \neq 0$ , we can write

$$
T|_{G(\lambda_k,T)} = \lambda_k \left( I + \frac{N_k}{\lambda_k} \right), \quad k = 1, \ldots, m
$$



# Square Roots

#### Proof (Over C, Invertible Operators Have Square Roots)

The scaled operator  $N_k/\lambda_k$  are nilpotent, each  $(I + N_k/\lambda_k)$  has a square root [Identity Plus Nilpotent has a Square Root].  $R_k = \sqrt{\lambda_k} \sqrt{I + N_k/\lambda_k}$  is the square root  $R_k$  of  $T|_{G(\lambda_k, T)}$ .

Any  $v \in V$  can be uniquely written in the form

$$
v = u_1 + \cdots + u_m, \ u_k \in G(\lambda_k, T)
$$

[Description of Operators on Complex Vector Spaces]. Now define  $R \in \mathcal{L}(V)$  by

$$
R(v)=R_1(u_1)+\cdots+R_m(u_m),
$$

since  $\forall u \in G(\lambda_{\ell}, T)$   $R_{\ell}(u_{\ell}) \in G(\lambda_{\ell}, T)$ 

$$
R^{2}(v) = R_{1}^{2}(u_{1}) + \cdots + R_{m}^{2}(u_{m}), = T|_{G(\lambda_{1}, T)}(u_{1}) + \cdots + T|_{G(\lambda_{m}, T)}(u_{m}) = T(v)
$$





# $\langle\langle\langle$  Live Math  $\rangle\rangle\rangle$

e.g. 8B-{3, **4**, 5}



#### Live Math  $\therefore$  Covid-19 Version

$$
8B-4
$$

**8B-4:** Suppose  $T \in \mathcal{L}(V)$ ,  $\dim(V) = n$ , and  $\text{null}(T^{n-2}) \neq \text{null}(T^{n-1})$ . Show that  $T$  has at most two distinct eigenvalues.

Since null
$$
(T^{n-2}) \neq \text{null}(T^{n-1})
$$
  
\n $\{0\} = \text{null}(T^0) \subsetneq \text{null}(T^1) \subsetneq \cdots \subsetneq \text{null}(T^{n-2}) \subsetneq \text{null}(T^{n-1})$ 

Therefore

$$
\dim(\mathrm{null}(T^{n-1})) \ge (n-1) \Leftrightarrow \dim(G(0,T)) \ge (n-1)
$$

Also, we know  $(\lambda_i \neq 0)$ 

$$
\underbrace{V}_{\dim(V)=n} = \underbrace{G(0,T)}_{\dim(G(0,T))\geq (n-1)} \oplus \underbrace{\left[\overbrace{G(\lambda_1,T)\oplus \cdots \oplus G(\lambda_m,T)}^{W}\right]}_{\dim(W)\leq 1}
$$

**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

#### <span id="page-52-0"></span>Characteristic Polynomial

Keep in mind: All the polynomial action here is over  $\mathbb{F} = \mathbb{C}$ .

# Definition (Characteristic Polynomial)

Suppose V is a complex vector space and  $T \in \mathcal{L}(V)$ . Let  $\lambda_1, \ldots, \lambda_m$  denote the distinct eigenvalues of T, with multiplicities  $d_1, \ldots, d_m$ . The polynomial

$$
p_{\mathcal{T}}(z)=(z-\lambda_1)^{d_1}\cdots(z-\lambda_m)^{d_m}
$$

is called the **characteristic polynomial** of T.

#### Comment

Again, we have defined something familiar from  $[MATH 254]$  without the use of the determinant.



**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

#### Characteristic Polynomial

#### Example (Characteristic Polynomials)

The characteristic polynomials associated with previous examples

- [SLIDE [39\]](#page-38-0):  $p(z) = (z 6)^2(z 7)^1$
- [SLIDE [42\]](#page-41-0):  $p(z) = (z-4)^{1}(z-2)^{2}(z-1)^{3}$

#### Theorem (Degree and Zeros of Characteristic Polynomial)

Suppose V is a complex vector space and  $T \in \mathcal{L}(V)$ . Then (a) the characteristic polynomial,  $p_T(z)$  of T has degree  $\dim(V)$ 

(b) the zeros of  $p_T(z)$  are the eigenvalues of T.

#### Proof (Degree and Zeros of Characteristic Polynomial)

(a) follows from [Sum of the Multiplicities Equals dim(V)], and (b) from the definition of the characteristic polynomial.



ĥ

**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

# Cayley–Hamilton Theorem **Contract of the Contract of T**

Theorem (Cayley–Hamilton Theorem)

Suppose V is a complex vector space and  $T \in \mathcal{L}(V)$ . Let  $p_T(z)$ denote the characteristic polynomial of T. Then  $p_T(T) = 0$ .

Comment (Cayley-Hamilton Theorem over  $\mathbb R$ )

The Cayley–Hamilton Theorem also holds for real vector spaces.

Comment (Importance of the Cayley–Hamilton Theorem)

The Cayley–Hamilton Theorem is one of the key structural theorems in linear algebra. For one thing it gives us the "license" to find eigenvalues using the characteristic polynomial.

**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

SAN DIEGO STAT

# Cayley–Hamilton Theorem

#### Proof (Cayley–Hamilton Theorem)

Let  $\lambda_1, \ldots, \lambda_m$  be the distinct eigenvalues of the operator T, and let  $d_1, \ldots, d_m$  be the dimensions of the corresponding generalized eigenspaces  $G(\lambda_1, T), \ldots, G(\lambda_m, T)$ .

For each  $k = 1, ..., m$ , we know that  $(T - \lambda_k I)|_{G(\lambda_k, T)}$  is nilpotent. Thus we have  $(T - \lambda_k I)^{d_k}|_{G(\lambda_k, T)} = 0$  [Nilpotent Operator Raised to Dimension of Domain is 0].

Every vector in V is a sum of vectors in  $G(\lambda_1, T), \ldots, G(\lambda_m, T)$ [DESCRIPTION OF OPERATORS ON COMPLEX VECTOR SPACES]; i.e.  $\forall v \in V$ , and  $\exists v_{\ell} \in G(\lambda_{\ell}, T)$ :  $v = v_1 + \cdots + v_{\ell}$ .

To prove that  $p_{\mathcal{T}}(T) = 0 \ (\Leftrightarrow p_{\mathcal{T}}(T)v = 0 \ \forall v \in V)$ , we need only show that  $p_T(T)|_{G(\lambda_k, T)} = 0, k = 1, ..., m$ .



**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

# Cayley–Hamilton Theorem

#### Proof (Cayley–Hamilton Theorem)

Fix  $k \in \{1, \ldots, m\}$ . We have

$$
p_{\mathcal{T}}(T)=(T-\lambda_1 I)^{d_1}\cdots(T-\lambda_m I)^{d_m}.
$$

The operators on the right side of the equation above all commute, so we can move the factor  $(T - \lambda_k I)^{d_k}$  to be the last term in the expression on the right.

Since 
$$
(T - \lambda_k I)^{d_k}|_{G(\lambda_k, T)} = 0
$$
, we conclude that  $p_T(T)|_{G(\lambda_k, T)} = 0$ .



**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

#### <span id="page-57-0"></span>Monic Polynomial

Here, we introduce an alternative polynomial which can be used to identify eigenvalues.

First, we need some language and notation (us usual!)

#### Definition (Monic Polynomial)

A monic polynomial is a polynomial whose highest-degree coefficient equals 1.

#### Example

- Monic  $p(z) = z^{407} \pi z^{103} + \sqrt{7}$
- Not monic  $q(z) = (1 + \epsilon)z^2 + 1, \, \epsilon > 0$

**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

# Minimal Polynomial

#### Theorem (Minimal Polynomial)

Suppose  $T \in \mathcal{L}(V)$ . Then there is a unique monic polynomial p of smallest degree such that  $p(T) = 0$ .

#### Proof (Minimal Polynomial)

Let 
$$
n = \dim(V)
$$
, then the list (of length  $(n^2 + 1)$ )  

$$
I, T, T^2, ..., T^{n^2}
$$

is not linearly independent in  $\mathcal{L}(V)$ , since  $\dim(\mathcal{L}(V)) = n^2$ . Let m be the smallest positive integer such that the list

$$
I, T, T^2, \ldots, T^m \tag{i}
$$

is linearly dependent. [LINEAR DEPENDENCE (NOTES#2)] implies that one of the operators in the list above is a linear combination of the previous ones.



Ĥ

**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

# Minimal Polynomial

#### Proof (Minimal Polynomial)

The choice of  $m$  means that  $T^m$  is a linear combination of  $I, T, T^2, \ldots, T^{m-1}$ ; hence  $\exists a_0, a_1, \ldots, a_{m-1} \in \mathbb{F}$  such that  $a_0 I + a_1 T + a_2 T^2 + \dots a_{m-1} T^{m-1} + T^m = 0$  (ii)

$$
(\mathsf{ii})
$$

We use the coefficients to define a monic polynomial  $p \in \mathcal{P}(\mathbb{F})$  by:

<span id="page-59-0"></span>
$$
p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_{m-1} z^{m-1} + z^m
$$

By [\(ii\)](#page-59-0)  $p(T) = 0$ . That takes care of existence.

To show uniqueness, note that the choice of  $m$  implies that no monic polynomial  $q \in \mathcal{P}(\mathbb{F})$  with degree smaller than m can satisfy  $q(T) = 0$ . Suppose  $q \in \mathcal{P}(\mathbb{F})$  with degree m and  $q(T) = 0$ . Then  $(p - q)(T) = 0$ and  $\deg(p - q) < m$ . The choice of m now implies that  $(p - q)$  is the zero-polynomial  $\Leftrightarrow q = p$ , completing the proof.



**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

# Minimal Polynomial of an Operator T

### Definition (Minimal Polynomial (of an operator  $T$ ))

Suppose  $T \in \mathcal{L}(V)$ . Then the minimal polynomial of T is the unique monic polynomial p of smallest degree such that  $p(T) = 0$ .

The proof of the last theorem shows that the degree of the minimal polynomial of each operator on V is at most  $(\dim(V))^2$ . The [CAYLEY-HAMILTON THEOREM] tells us that if  $V$  is a complex vector space, then the minimal polynomial of each operator on V has degree at most  $\dim(V)$ .

This improvement  $(\dim(V))^2 \to \dim(V)$  also holds on real vector spaces.



**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

# Finding the Minimal Polynomial

$$
\mathsf{Take} \# 1
$$

# **"Guaranteed"**<sup>∗</sup> **to Work, Labor Intensive:**

Given the matrix  $\mathcal{M}(T)$  (with respect to some basis) of an operator  $T \in \mathcal{L}(V)$ . The minimal polynomial of T can be identified as follows: Consider the system of  $(\dim(V)^2$  — each matrix entry) linear equations<sup>\*\*</sup>

$$
a_0\mathcal{M}(I) + a_1\mathcal{M}(T) + \cdots + a_{m-1}\mathcal{M}(T)^{m-1} = -\mathcal{M}(T)^m
$$
 (i)

for successive values of  $m=1,\ldots,\dim(V)^2;$  until there is a solution a<sub>1</sub>, . . . , a<sub>m−1</sub>; the minimal polynomial is then given by

$$
p(z) = a_0 + a_1 z + \cdots + a_{m-1} z^{m-1} + z^m
$$

- Requires an iPhone XIX with infinite precision processing capabilities.
- $^{\ast\ast}$  The linear systems are of the form  $A\vec{x}=\vec{b}$ , where  $A\in\mathbb{F}^{\dim(V)^2\times m}$ ,  $\vec{b}\in\mathbb{F}^{\dim(V)^2}$ , and the solution vector  $\vec{x} \in \mathbb{F}^m = (a_0, a_1, \ldots, a_{m-1}).$



**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

# Finding the Minimal Polynomial Take Take Take  $\#2$



# **Works "Almost Always"**<sup>∗</sup> **, Less Labor Intensive:**

Given the matrix  $\mathcal{M}(T)$ . The minimal polynomial of T can with probability 1 be identified as follows: Pick a random vector  $v \in \mathbb{F}^{\dim(V)}$ , and consider the system of  $(\dim(V)$  — each vector entry) linear equations

$$
a_0\mathcal{M}(I)v + a_1\mathcal{M}(T)v + \cdots + a_{m-1}\mathcal{M}(T)^{m-1}v = -\mathcal{M}(T)^{m}v \quad (i)
$$

for successive values of  $m = 1, \ldots, \dim(V)$ ; until there is a solution a<sub>1</sub>, . . . , a<sub>m−1</sub>; the minimal polynomial is the given by

$$
p(z) = a_0 + a_1 z + \cdots + a_{m-1} z^{m-1} + z^m
$$

\* The random  $v \in \mathbb{F}^{\dim(V)}$  must be such that  $v = u_1 + \cdots + u_m$ ,  $u_\ell \neq 0$ ; where  $\mathbb{F}^{\dim(V)}=\textsf{G}(\lambda_1,\mathcal{M}(T))\oplus\cdots\oplus\textsf{G}(\lambda_m,\mathcal{M}(T)),$  and  $u_\ell\in\textsf{G}(\lambda_\ell,\mathcal{M}(T)),$  and still requires an iPhone XIX with infinite precision processing capabilities. See [MATH 543] for discussion on finite precision computing.



**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

#### Finding the Minimal Polynomial Computation

#### Example

Let  $T \in \mathcal{L}(\mathbb{C}^5)$ , with  $\mathcal{M}(T)$  wrt the standard basis:



Lets try the "random" vector  $v = (1, 1, 1, 1, 1)$ , we construct  $A \in \mathbb{C}^{5 \times 6}$ by letting the *k*th column  $a_k$  be  $\mathcal{M}(T)^{k-1}v$ :

$$
A = \left[\begin{array}{ccccccc} 1 & -3 & -3 & -3 & -3 & -21 \\ 1 & 7 & 3 & 3 & 3 & 39 \\ 1 & 1 & 7 & 3 & 3 & 3 \\ 1 & 1 & 1 & 7 & 3 & 3 \\ 1 & 1 & 1 & 7 & 3 & 3 \end{array}\right]
$$



**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

# Finding the Minimal Polynomial Computation

#### Example

We are looking for a solution to a linear system; we put  $[MATH 254]$  to good use, and compute

Since the 6th column is linearly dependent (it does not have a leading one); we identify the linear relation:

$$
-3a_1 + 6a_2 - a_6 = 0
$$

which yields the minimal polynomial  $p(z) = 3 - 6z + z^5$ 



#### $rref(A) =$ 2  $\vert$  $\left[\begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & -3 \ 0 & 1 & 0 & 0 & 0 & 6 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \end{array}\right]$  $\overline{a}$  $\vert$









 $*$  We =  $1 +$  my computer.





# Computation



**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

# Multiple of the Minimal Polynomial

Theorem  $(q(T) = 0 \Leftrightarrow q$  is a Multiple of the Minimal Polynomial)

Suppose  $T \in \mathcal{L}(V)$   $q \in \mathcal{P}(\mathbb{F})$ . Then  $q(T) = 0$  if and only if q is a polynomial multiple of the minimal polynomial of T.

#### Proof  $(q(T) = 0 \Leftrightarrow q$  is a Multiple of the Minimal Polynomial)

Let  $p$  be the minimal polynomial of T.

**(** $\Leftarrow$ ) Suppose q is a polynomial multiple of p. Thus  $\exists s \in \mathcal{P}(\mathbb{F})$  such that  $q = ps$ , and

$$
q(T) = p(T)s(T) = 0s(T) = 0
$$



**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

# Multiple of the Minimal Polynomial

#### Proof  $(q(T) = 0 \Leftrightarrow q$  is a Multiple of the Minimal Polynomial)

$$
(\Rightarrow)
$$

(⇒) Suppose 
$$
q(T) = 0
$$
. By [DIVISION ALGORITHM FOR POLYNOMI-  
ALS (NOTES#4)],  $\exists s, r \in \mathcal{P}(\mathbb{F})$  such that

$$
q = ps + r \tag{i}
$$

and deg(
$$
r
$$
) < deg( $p$ ), therefore  
\n
$$
0 = q(T) = p(T) s(T) + r(T) = r(T)
$$

min.poly

hence,  $r(T) = 0 \Rightarrow r \equiv 0 \Rightarrow q = ps. \sqrt{ }$ 



**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

# Characteristic Polynomial and Minimal Polynomial

Theorem (Characteristic Polynomial is a Multiple of Minimal Polynomial)

Suppose  $\mathbb{F} = \mathbb{C}$  and  $T \in \mathcal{L}(V)$ . Then the characteristic polynomial of T is a polynomial multiple of the minimal polynomial of T.

**Note:** We have not yet defined the characteristic polynomial when  $\mathbb{F} =$  $\mathbb R$ , but once we do, the above theorem will apply.

#### Proof (Characteristic Polynomial is a Multiple of Minimal Polynomial)

By [CAYLEY–HAMILTON THEOREM],  $p_T^{\text{char}}(T) = 0$ ; and  $[q(T) = 0 \Leftrightarrow q$  is a Multiple of the Minimal Polynomial] shows  $p_T^{\text{char}}(\mathcal{T}) = s(\mathcal{T})p_T^{\min}(\mathcal{T}).$ 



**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

Ĥ

# The Minimal Polynomial  $\rightarrow$  Eigenvalues

Theorem (Eigenvalues are the Zeros of the Minimal Polynomial)

Let  $T \in \mathcal{L}(V)$ . Then the zeros of the minimal polynomial of T are the eigenvalues of T.

#### Proof (Eigenvalues are the Zeros of the Minimal Polynomial)

Let

$$
p(z) = a_0 + a_1 z + \cdots + a_{m-1} z^{m-1} + z^m
$$

be the minimum polynomial of T.

Suppose  $\lambda \in \mathbb{F}$  is a zero of p. Then p can be written in the form

$$
p(z)=(z-\lambda)q(z)
$$

where q is a monic polynomial with coefficients in  $\mathbb F$  [EACH ZERO OF A POLYNOMIAL CORRESPONDS TO A DEGREE-1 FACTOR (NOTES#4)],

**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

# The Minimal Polynomial  $\rightarrow$  Eigenvalues

Proof (Eigenvalues are the Zeros of the Minimal Polynomial)

Since  $p(T) = 0$ , we have  $0 = (T - \lambda I)q(T)(v), \forall v \in V.$ 

Since  $\deg(q) < \deg(p) \exists v \in V : q(T)(v) \neq 0$ ; therefore  $\lambda$  must be an eigenvalue of T.

Now, suppose  $\lambda \in \mathbb{F}$  is an eigenvalue of T.  $\exists v \in V : v \neq 0$ ,  $T^{j}(v) = \lambda^{j}v$ ,  $j = 1, \ldots$  Now,

$$
0 = p(T)(v) = (a_0I + a_1T + \dots + a_{m-1}T^{m-1} + T^m)(v)
$$
  
=  $(a_0 + a_1\lambda + \dots + a_{m-1}\lambda^{m-1} + \lambda^m)v$   
=  $p(\lambda)v$ 

 $\Rightarrow$   $p(\lambda) = 0.$   $\sqrt{\lambda}$ 



**SAN DIEGO STAT** 

**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

# The Minimal Polynomial  $\leftrightarrow$  Eigenvalues

#### Example (Re-revisited [SLIDES [39,](#page-38-0)  $46$ ])

Let  $T \in \mathcal{L}(\mathbb{C}^3)$  be defined by  $T(z_1, z_2, z_3) = (6z_1 + 3z_2 + 4z_3, 6z_2 + 2z_3, 7z_3)$  wrt the standard basis:  $\mathcal{M}(\mathcal{T}) =$  $\lceil$  $\overline{\phantom{a}}$ 6 3 4 0 6 2 0 0 7 1  $\lambda(T) = \{6, 7\}.$  $G(6, T) = \text{span}((1, 0, 0), (0, 1, 0)) \dim(G(6, T)) = 2$  $G(7, T) = \text{span}((10, 2, 1))$   $\dim(G(7, T)) = 1$ 

the characteristic polynomial is  $\mathbf{p}_{\mathsf{T}}(z) = (z - 6)^2(z - 7)$ ; the minimal polynomial is either  $(z-6)^2(z-7)$  or  $(z-6)(z-7)$ . Since

$$
(\mathcal{M}(T) - 6I)(\mathcal{M}(T) - 7I) = \begin{bmatrix} 0 & -3 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad (\mathcal{M}(T) - 6I)^2(\mathcal{M}(T) - 7I) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

it follows that the minimal polynomial of T is  $p_T^{\min}(z) = (z - 6)^2(z - 7)$ .


**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

ĥ

# The Minimal Polynomial  $\leftrightarrow$  Eigenvalues

#### Example (Modified)

Let  $T \in \mathcal{L}(\mathbb{C}^3)$  be defined by  $T(z_1, z_2, z_3) = (6z_1, 6z_2, 7z_3)$  wrt the standard basis:

$$
\mathcal{M}(T) = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 7 \end{bmatrix}, \quad \lambda(T) = \{6, 7\}.
$$
  

$$
G(6, T) = \text{span}((1, 0, 0), (0, 1, 0)) \quad \dim(G(6, T)) = 2
$$
  

$$
G(7, T) = \text{span}((0, 0, 1)) \qquad \dim(G(7, T)) = 1
$$

the characteristic polynomial is  $\mathbf{p}_T(z) = (z - \mathbf{6})^2(z - 7)$ ; the minimal polynomial is either  $(z-6)^2(z-7)$  or  $(z-6)(z-7)$ . Since  $(\mathcal{M}(T) - 6I)(\mathcal{M}(T) - 7I) =$ 2  $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$  $\overline{a}$  $\mathbf{I}$ 

it follows that the minimal polynomial of T is  $\mathbf{p}_T^{\min}(\mathbf{z}) = (\mathbf{z} - \mathbf{6})(\mathbf{z} - \mathbf{7}).$ 

**[The Minimal Polynomial](#page-57-0)**

# $\langle\langle\langle$  Live Math  $\rangle\rangle\rangle$

e.g. 8C-{3, **4**, 5}



**[The Cayley–Hamilton Theorem](#page-52-0) [The Minimal Polynomial](#page-57-0)**

#### Live Math :: Covid-19 Version 8C-4

**8C-4:** Given an example  $T \in \mathcal{L}(\mathbb{C}^4)$  whose characteristic polynomial is  $p(z) = (z - 1)(z - 5)^3$ , and minimal polynomial is  $q(z) = (z - 1)(z - 5)^3$  $1)(z-5)^2$ .

Any  $T$  with  $\mathcal{M}(T) \in \mathbb{R}^{4 \times 4}$ , upper triangular, with diagonal  $(1, 5, 5, 5)$ will have  $p(z) = (z - 1)(z - 5)^3$ .

#### $\frac{1}{2}$   $\frac{1}{2}$

We try

$$
\mathcal{M}(T) = \begin{bmatrix} 1 & & & \\ & 5 & & \\ & & 5 & \\ & & & 5 \end{bmatrix} \Leftrightarrow T(z_1, z_2, z_3, z_4) = (z_1, 5z_2, 5z_3, 5z_4)
$$

$$
q(z) \in \left\{ (z - 1)(z - 5), (z - 1)(z - 5)^2, (z - 1)(z - 5)^3 \right\}
$$

**Peter Blomgren** (blomgren@sdsu.edu) **[8. Operators on Complex Vector Spaces](#page-0-0)** — (75/99)

**[The Minimal Polynomial](#page-57-0)**

## Live Math :: Covid-19 Version 8C-4

 $\mathbf{r}$ 

$$
(\mathcal{M}(T) - I_4)(\mathcal{M}(T) - 5I_4) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow q(z) = (z - 1)(z - 5).
$$

$$
\quad \ \ * \qquad \qquad \text{Upper Triangular } \mathcal{M}(T) \qquad \qquad \ \ * \qquad \qquad \ \ \, *
$$

3

$$
\mathcal{M}(\mathcal{T}) = \begin{bmatrix} 1 & & & \\ & 5 & 1 & \\ & & 5 & \\ & & & 5 \end{bmatrix} \quad \Leftrightarrow \quad \mathcal{T}(z_1, z_2, z_3, z_4) = (z_1, 5z_2 + z_3, 5z_3, 5z_4)
$$

$$
(\mathcal{M}(T) - I_4)(\mathcal{M}(T) - 5I_4) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow q(z) \neq (z - 1)(z - 5).
$$



**[The Minimal Polynomial](#page-57-0)**

## Live Math :: Covid-19 Version 8C-4

$$
(\mathcal{M}(T) - I_4)(\mathcal{M}(T) - 5I_4)^2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \frac{(q(z) = (z-1)(z-5)^2)}{q(z) = (z-1)(z-5)^2}.
$$

$$
f_{\rm{max}}
$$



**[Jordan "Normal" / "Canonical" Form](#page-77-0)**

# <span id="page-77-0"></span>Jordan "Normal" / "Canonical" Form

At this point we know that if  $V$  is a complex vector space, then  $\forall T \in \mathcal{L}(V)$  there is a basis of V with respect to which T has [Block Diagonal Matrix with Upper-Triangular Blocks (Slide [43\)](#page-42-0)].

Now, we a chasing more zeros: the goal is a basis of  $V$  wrt which the matrix of  $T$  contains 0's everywhere except possibly on

- the diagonal *(the eigenvalues)*, and
- $\bullet$  the first super-diagonal (we allow 1's or 0's).

We use nilpotent operators to get us there...

**[Jordan "Normal" / "Canonical" Form](#page-77-0)**

## **Examples**

#### Example (Compare with  $[SLIDE 25-26]$  $[SLIDE 25-26]$ )

Once again we consider a shift-operator in  $\mathbb{F}^4$ :  $N(z_1,\ldots,z_4)=(0,z_1,\ldots,z_3)$ ; its

action on 
$$
v = (1, 0, 0, 0)
$$
 generates a basis  
\n
$$
\mathfrak{B}(\mathbb{F}^4) = \{N^3(v), N^2(v), N(v), v\} = \{e_4, e_3, e_2, e_1\}, \text{ and}
$$



#### Definition (Jordan Chain - Generator / Lead Vector; adopted from [WIKIPEDIA])

Given an eigenvalue *λ*, its corresponding Jordan block gives rise to a **Jordan chain**. The **generator**, or lead vector,  $v_r$  of the chain is a generalized eigenvector such that  $(A - \lambda I)^r v_r = 0$ , where r is the size of the Jordan block. The vector  $v_1 = (A - \lambda I)^{r-1} v_r$  is an eigenvector corresponding to  $\lambda$ . In general, v<sub>i−1</sub> =  $(A - λI)v_i$ . The lead vector generates the chain via repeated multiplication by  $(A - \lambda I)$ .  $\mathfrak{B} = \{v_1, \dots, v_r\}$  is a basis for the Jordan block.



Ĥ

**[Jordan "Normal" / "Canonical" Form](#page-77-0)**

#### **Examples**

#### Example

Let 
$$
N \in \mathcal{L}(\mathbb{F}^6)
$$
:  $N(z_1, ..., z_6) = (0, z_1, z_2, 0, z_4, 0)$ .

Here thinking of a space isomorphic to  $\mathbb{F}^6$  helps:  $\mathbb{F}^6 \cong \mathbb{F}^3 \times \mathbb{F}^2 \times \mathbb{F}^1$ .

On each space we have a right-shift operator:  $N_{\mathbb{F}_3}(z_1, z_2, z_3) = (0, z_1, z_2)$ ,  $N_{\mathbb{F}_2}(z_1, z_2) = (0, z_1), N_{\mathbb{F}_1}(z_1) = (0),$  and we can define the linear map  $\mathcal{N}_{\times} : \mathbb{F}^3 \times \mathbb{F}^2 \times \mathbb{F}^1 \mapsto \mathbb{F}^3 \times \mathbb{F}^2 \times \mathbb{F}^1$  by

$$
N_{\times}((z_1, z_2, z_3), (z_4, z_5), z_6) = (N_{\mathbb{F}^3}(z_1, z_2, z_3), N_{\mathbb{F}^2}(z_4, z_5), N_{\mathbb{F}^1}(z_6))
$$
  
= ((0, z\_1, z\_2), (0, z\_4), (0)).

By the previous example, the lead vectors  $w_{\mathbb{F}^3,1} = (1,0,0)$ ,  $w_{\mathbb{F}^2,1} = (1,0)$ , and  $w_{\mathbb{F}^1,1}=(1)$  will generate bases for  $\mathfrak{B}(\mathbb{F}^3),$   $\mathfrak{B}(\mathbb{F}^2),$  and  $\mathfrak{B}(\mathbb{F}^1)$  so that

$$
\mathcal{M}\left(N_{\mathbb{F}^3},\,\mathfrak{B}(\mathbb{F}^3)\right)=\left[\begin{array}{ccc}0&1&0\\0&0&1\\0&0&0\end{array}\right],\quad \mathcal{M}\left(N_{\mathbb{F}^2},\,\mathfrak{B}(\mathbb{F}^2)\right)=\left[\begin{array}{ccc}0&1\\0&0\end{array}\right],\quad \mathcal{M}\left(N_{\mathbb{F}^1},\,\mathfrak{B}(\mathbb{F}^1)\right)=\left[\begin{array}{ccc}0&1\end{array}\right].
$$



Ĥ

**[Jordan "Normal" / "Canonical" Form](#page-77-0)**

 $\overline{a}$ 

ĥ

## **Examples**

and

#### Example

If we "translate" all that back to  $N \in \mathcal{L}(\mathbb{F}^6)$ :  $N(z_1, \ldots, z_6) = (0, z_1, z_2, 0, z_4, 0)$ . We have 3 lead vectors:

 $w_3 = (1, 0, 0, 0, 0, 0)$ ,  $w_2 = (0, 0, 0, 1, 0, 0)$ ,  $w_1 = (0, 0, 0, 0, 0, 1)$ .

 $\mathfrak{B}(\mathbb{F}^6) = \left\{ N^2(w_3), N(w_3), w_3, N(w_2), w_2, w_1 \right\}$  $\ddot{\phantom{a}}$ , so that  $\overline{a}$  $\overline{a}$  $\overline{a}$   $\overline{a}$  $\overline{a}$  $\overline{a}$ 

$$
\mathfrak{B}(\mathbb{F}^{6}) = \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\}
$$

$$
\mathcal{M}(N, \mathfrak{B}(\mathbb{F}^{6})) = \left[ \begin{bmatrix} 0 & 1 & 0 \\ & 0 & 1 \\ & & 0 & 1 \\ \cdots & & & 0 \end{bmatrix} \right] \qquad \qquad \left[ \begin{bmatrix} 0 & 1 \\ & 0 \\ & 0 \\ & & 0 \end{bmatrix} \right]
$$

**[Jordan "Normal" / "Canonical" Form](#page-77-0)**

# Basis Corresponding to a Nilpotent Operator

This theorem formalizes what we have demonstrated in the examples:

#### Theorem (Basis Corresponding to a Nilpotent Operator)

Suppose  $N \in \mathcal{L}(V)$  is nilpotent. Then there exist vectors  $v_1, \ldots, v_n \in V$ and nonnegative integers  $m_1, \ldots, m_n$  such that

(a) 
$$
N^{m_1}(v_1), \ldots, N(v_1), v_1, \ldots, N^{m_n}(v_n), \ldots, N(v_n), v_n
$$
 is a basis of V,

(b) 
$$
N^{m_1+1}(v_1) = \cdots = N^{m_n+1}(v_n) = 0.
$$

## Proof (Basis Corresponding to a Nilpotent Operator)

[INDUCTION–BASE] If  $\dim(V) = 1$ , the only nilpotent operator is 0, let  $v \neq 0$ , and  $m_1 = 0$ .

[INDUCTION–HYPOTHESIS] Assume  $n = \dim(V) > 1$  and the theorem holds on all spaces of smaller dimension.



**[Jordan "Normal" / "Canonical" Form](#page-77-0)**

# Basis Corresponding to a Nilpotent Operator

#### **Proof (Basis Corresponding to a Nilpotent Operator)**

Because N is nilpotent, N is not injective  $\Rightarrow$  not surjective [For  $\mathcal{L}(V)$ : INJECTIVITY  $\Leftrightarrow$  SURJECTIVITY IN FINITE DIMENSIONS (NOTES#3.2)] and hence  $\dim(\text{range}(N)) < \dim(V)$ . Thus we can apply our inductive hypothesis to  $N|_{\text{range}(N)} \in \mathcal{L}(\text{range}(N)).$ 

By [INDUCTION-HYPOTHESIS] applied to  $N|_{\text{range}(N)}$  there exist vectors  $v_1, \ldots, v_n \in \text{range}(N)$  nonnegative integers  $m_1, \ldots, m_n$  such that

<span id="page-82-0"></span>
$$
N^{m_1}(v_1), \ldots, N(v_1), v_1, \ldots, N^{m_n}(v_n), \ldots, N(v_n), v_n
$$
 (i)

is a basis of  $\mathrm{range}(N)$ , and  $N^{m_1+1}(v_1) = \cdots = N^{m_n+1}(v_n) = 0$ 



**[Jordan "Normal" / "Canonical" Form](#page-77-0)**

# Basis Corresponding to a Nilpotent Operator

#### Proof (Basis Corresponding to a Nilpotent Operator)

Since  $(\forall \ell)$   $v_{\ell} \in \text{range}(N)$   $\exists u_{\ell} \in V : v_{\ell} = N(u_{\ell});$  thus  $N^{k+1}u_{\ell} = N^k v_{\ell}.$ We use this to rewrite and augment [\(i\)](#page-82-0):

<span id="page-83-0"></span>
$$
N^{m_1+1}(u_1),\ldots,N(u_1),u_1,\ldots,N^{m_n+1}(u_n),\ldots,N(u_n),u_n \qquad (ii)
$$

We need to verify that this is a list of linearly independent vectors.

Assume some linear combination of the vectors in [\(ii\)](#page-83-0) equals zero; apply N to that linear combination; this yields a linear combination of the vectors in [\(i\)](#page-82-0) equal to zero. Since those vectors are linearly independent, the coefficients multiplying the vectors in the set [\(i\)](#page-82-0) must be zero.

What remains is a linear combination of

$$
\{N^{m_1+1}(u_1),\ldots,N^{m_n+1}(u_n)\}=\{N^{m_1}(v_1),\ldots,N^{m_n}(v_n)\}\
$$

which is a subset of [\(i\)](#page-82-0), and hence those coefficients are also zero.  $\Rightarrow$  the list in [\(ii\)](#page-83-0) is linearly independent.

**[Jordan "Normal" / "Canonical" Form](#page-77-0)**

# Basis Corresponding to a Nilpotent Operator

#### **Proof (Basis Corresponding to a Nilpotent Operator)**

<span id="page-84-0"></span>Next, we extend [\(ii\)](#page-83-0) to a basis of  $V$  [LINEARLY INDEPENDENT LIST EXTENDS TO A BASIS (NOTES#2)]: (we need coverage for null(N) ∩ range(N)<sup>⊥</sup>)  $N^{m_1+1}(u_1), \ldots, N(u_1), u_1, \ldots, N^{m_n+1}(u_n), \ldots, N(u_n), u_n, w_1, \ldots, w_p$  (iii) Each  $N(w_k) \in \text{range}(N) \Rightarrow N(w_k) \in \text{span}(i) = \text{span}(N(ii))$  $N(w_k) \in \text{range}(N) \Rightarrow N(w_k) \in \text{span}(i) = \text{span}(N(ii))$  $N(w_k) \in \text{range}(N) \Rightarrow N(w_k) \in \text{span}(i) = \text{span}(N(ii))$  $N(w_k) \in \text{range}(N) \Rightarrow N(w_k) \in \text{span}(i) = \text{span}(N(ii))$  $N(w_k) \in \text{range}(N) \Rightarrow N(w_k) \in \text{span}(i) = \text{span}(N(ii))$ We can find  $x_\ell \in \text{span}(ii)$  $x_\ell \in \text{span}(ii)$  $x_\ell \in \text{span}(ii)$  so that  $N(w_\ell) = N(x_\ell)$ ; let  $u_{n+\ell} = w_{\ell} - x_{\ell} \neq 0$ . By construction  $N(u_{n+\ell}) = 0$ , and  $N^{m_1+1}(u_1), \ldots, N(u_1), u_1, \ldots, N^{m_n+1}(u_n), \ldots, N(u_n), u_n, u_{n+1}, \ldots, u_{n+p}$  (iv) spans V, because its span contains each  $x_{\ell}$  and each  $u_{n+\ell}$  and hence each w*<sup>ℓ</sup>* and [\(iii\)](#page-84-0) spans V.

<span id="page-84-1"></span>[\(iv\)](#page-84-1) has the same length as [\(iii\)](#page-84-0), so we have a basis with the desired properties.



Ĥ

**[Jordan "Normal" / "Canonical" Form](#page-77-0)**

п

## Jordan Basis  $\rightsquigarrow$  Jordan Form

#### Definition (Jordan Basis)

Suppose  $T \in \mathcal{L}(V)$ . A basis of V is called a **Jordan basis**,  $\mathfrak{J}(V)$  for T if wrt this basis T has a block diagonal matrix, where each block  $A_k$  is upper-triangular with diagonal entries  $\lambda_k$ , and first super-diagonal entries all ones:

$$
\mathcal{M}(\mathcal{T};\mathcal{J}(V)) = \begin{bmatrix} A_1 & & 0 \\ & \ddots & \\ 0 & & A_p \end{bmatrix}, \quad A_k = \begin{bmatrix} \lambda_k & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & \\ 0 & & & \lambda_k \end{bmatrix}
$$

### Theorem (Jordan Form)

Suppose V is a complex vector space. If  $T \in \mathcal{L}(V)$ , then there is a basis of V that is a Jordan basis for T.

**[Jordan "Normal" / "Canonical" Form](#page-77-0)**

## Jordan Basis  $\rightsquigarrow$  Jordan Form

#### Proof (Jordan Form)

First consider a nilpotent operator  $N \in \mathcal{L}(V)$ , and the vectors  $v_1, \ldots, v_n \in V$  given by [BASIS CORRESPONDING TO A NILPOTENT OPERATOR]. For each k, N sends the first vector in the list  $N^{m_k}(v_k), \ldots, N(v_k), v_k$  to 0, and "left-shifts" the other vectors in the list. That is, [Basis CORRESPONDING TO A NILPOTENT OPERATOR] gives a basis of  $V$  wrt which  $N$ has a block diagonal matrix, where each matrix on the diagonal has the form



Thus the theorem holds for nilpotent operators...



**[Jordan "Normal" / "Canonical" Form](#page-77-0)**

## Jordan Basis  $\rightsquigarrow$  Jordan Form

#### Proof (Jordan Form)

Now suppose  $T \in \mathcal{L}(V)$ . Let  $\lambda_1, \ldots, \lambda_m$  be the distinct eigenvalues of T. We have the generalized eigenspace decomposition

$$
V=G(\lambda_1,T)\oplus\cdots\oplus G(\lambda_m,T),
$$

where each  $(T - \lambda_k I)|_{G(\lambda_k, T)}$  is nilpotent [DESCRIPTION OF OPERATORS ON COMPLEX VECTOR SPACES]. Thus some basis of each  $G(\lambda_k, T)$  is a Jordan basis for  $(T - \lambda_k I)|_{G(\lambda_k, T)}$ . Put these bases together to get a basis of *V* that is a Jordan basis for  $T \cdot \sqrt{ }$ 



**[Jordan "Normal" / "Canonical" Form](#page-77-0)**

### Jordan Basis  $\rightsquigarrow$  Jordan Form

Example (Jordan Form)

Consider



We try to find the minimal polynomial; we "randomly" select  $v=(1,0,0,0,0)$ , and form  $B = [v \, Av \, A^2 v \, A^3 v \, A^4 v \, A^5 v]$ :



We need to find the first column which is linearly dependent on the previous; hence, we row-reduce:

**[Jordan "Normal" / "Canonical" Form](#page-77-0)**

#### Jordan Basis  $\rightsquigarrow$  Jordan Form

#### Example (Jordan Form)



Hence,  $-9v - 3Av + 5A^2v = A^3v$ ; and we have a candidate for the minimal polynomial:  $p(z) = z^3 - 5z^2 + 3z + 9 = 0$  $(z+1)(z-3)^2$ .

The way we have done it  $-$  using a "random" vector to start the problem, we are NOT guaranteed that this is the minimal polynomial. However, applying the polynomial to the full original matrix will give us the answer; in this case, indeed  $A^3 - 5A^2 + 3A + 9I_5 = 0.$ 



**If the test had failed**: p(z) would have been one of the factors in the polynomial (so the work would not have been completely wasted). Another "random" guess (not a linear combination of the vectors in  $B$ ) would be needed to identify more factors.



Jordan Form

#### Example (Jordan Form)

First we compute the eigenspaces

$$
E(-1, A) = null(A + 1/5) = span((2, 1, 0, 1, 1)),
$$
  
\n
$$
E(3, A) = null(A - 3/5) = span((-19, 14, -6, 5, 0)), ((24, -7, 4, 0, 4)).
$$

Clearly, these 3 vector cannot span  $\mathbb{C}^5$ , we need genereralized eigenspaces...<br>null  $((A + 1/\epsilon)^2)$  = null  $(A + 1/\epsilon)$   $\Rightarrow$   $G(-1, A) = E(-1, A)$ 

null 
$$
((A + 1I_5)^2)
$$
 = null $(A + 1I_5)$   $\Rightarrow G(-1, A) = E(-1, A)$   
null  $((A - 3I_5)^2)$  = span  $\begin{pmatrix} -8 \\ 3 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 11 \\ 0 \\ 0 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \\ 0 \\ 0 \\ 3 \end{bmatrix}$ 

Whereas, technically  $G(3, A) = \text{null} \left( (A - 3I_5)^5 \right)$ , there can be no growth beyond this point (including  $G(-1, A)$  we already have 5 vectors).



**[Jordan "Normal" / "Canonical" Form](#page-77-0)**

Jordan Form

#### Example (Jordan Form)

The null-space dimension of nilpotent  $``\mathcal{M}(((T-\lambda_{\ell}I)^k)|_{G(\lambda_{\ell},T)})"$  matrix-blocks equal to  $k$ ; hence the differences

- dim(null  $((A 3I_5)^2)$ ) dim(null  $((A 3I_5)^1)$  $) = 4 - 2 = 2$ tells us that we have 2 blocks of size 2 or larger; and
- dim(null  $((A 3/5)^3)$ ) dim(null  $((A 3/5)^2)$  $) = 4 - 4 = 0$ tells us that we have 0 blocks of size 3 or larger.

At this point we know the Jordan Form of A:



What remains is figuring out the basis  $\mathfrak{B}(V)$  which gets us there.



**[Jordan "Normal" / "Canonical" Form](#page-77-0)**

**SAN DIEGO STATE**<br>UNIVERSITY

## Jordan Form

#### Example (Jordan Form)

We apply  $(A-3l_5)^k$ ,  $k=0,\ldots$  to each vector in  $G(3,A)$  to form 4 Jordan Chains:

$$
\left\{\begin{bmatrix} 252\\28\\8\\60\\80\end{bmatrix},\begin{bmatrix}-8\\3\\0\\0\\0\end{bmatrix}\right\},\ \left\{\begin{bmatrix} 271\\14\\14\\55\\80\end{bmatrix},\begin{bmatrix}0\\1\\1\\0\\0\end{bmatrix}\right\},\ \left\{\begin{bmatrix} 270\\-28\\28\\30\\64\end{bmatrix},\begin{bmatrix}11\\0\\0\\3\\3\end{bmatrix}\right\},\ \left\{\begin{bmatrix} 372\\7\\-28\\-60\\-100\end{bmatrix},\begin{bmatrix}4\\0\\0\\0\\3\end{bmatrix}\right\}.
$$

We form a basis using the vectors from 2 of the chains, and E(−1*,* A), e.g

$$
\mathfrak{B}(V) = \mathrm{span}\left( \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 252 \\ 28 \\ 8 \\ 80 \end{bmatrix}, \begin{bmatrix} -8 \\ 3 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 271 \\ 14 \\ 14 \\ 55 \\ 80 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right)
$$

**[Jordan "Normal" / "Canonical" Form](#page-77-0)**

## Jordan Form

#### Example (Jordan Form)

and we arrive:

$$
A = \begin{bmatrix} 177 & 548 & 271 & -548 & -356 \\ 19 & 63 & 14 & -79 & -23 \\ 8 & 24 & 17 & -20 & -20 \\ 42 & 132 & 55 & -141 & -76 \\ 56 & 176 & 80 & -184 & -105 \end{bmatrix}
$$

$$
\mathfrak{B}(V) = \text{span}\left(\begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 252 \\ 28 \\ 8 \\ 60 \\ 60 \end{bmatrix}, \begin{bmatrix} -8 \\ 3 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 271 \\ 14 \\ 14 \\ 55 \\ 80 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right)
$$

$$
\mathcal{M}(A, \mathfrak{B}(V)) = \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix} \mathfrak{F}^{-1} \mathfrak{F}
$$



 $\frac{1}{\sum_{\text{DIFGO} \text{SITAT}}$ 

**[Jordan "Normal" / "Canonical" Form](#page-77-0)**

# $\langle\langle\langle$  Live Math  $\rangle\rangle\rangle$

e.g. 8D-{3, 4, 5}



**[Suggested Problems](#page-95-0) [Assigned Homework](#page-96-0) [Supplements](#page-97-0)**

# <span id="page-95-0"></span>Suggested Problems

**8.A—**1, 2, 3, 4, 5 **8.B—**1, 2, 3, 4, 5 **8.C—**1, 2, 3, 4, 5 **8.D—**1, 2, 3, 4, 5



# <span id="page-96-0"></span>**Strongly Suggested Problems**

- **8.A—**1, 2
- **8.B—**1, 2
- **8.C—**1, 2
- **8.D—**1, 2

Expect variants on the take-home and in-class finals.





**[Assigned Homework](#page-96-0) [Supplements](#page-97-0)**

## <span id="page-97-0"></span>Explicit References to Previous Theorems or Definitions (with count)





**[Assigned Homework](#page-96-0) [Supplements](#page-97-0)**

## Explicit References to Previous Theorems or Definitions



