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Oscillations... Runge vs. Weierstrass

Polynomials, Polynomials, Polynomials Everywhere!

We have spent quite a bit of time dealing with polynomials:

Computation

Horner’s Method
Neville’s Method

Representation

Monomials ak x
k

Lagrange Coefficients f (xk) Ln,k(x)

Newton’s Divided Differences f [x0, . . . , xn]
∏n−1

m=0(x − xm)

Applications

Osculating Polynomials
Cubic Splines
Numerical Differentiation
Numerical Integration
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Polynomials and Oscillations

From experience, and vigorous hand-waving we “know” that high
order polynomials tend to have large oscillations.

We are not the first ones to notice this phenomenon... In 1901
Runge discovered that oscillations near the end points of an
interval tended to grow with the order of the polynomial in certain
cases; the effect is now known as Runge’s phenomenon.
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Runge vs. Weierstrass???

Runge’s Phenomenon seems to contradict Weierstrass
approximation theorem, which for f ∈ C [a, b]:

lim
n→∞

(
max
x∈[a,b]

|f (x)− Pn(x)|
)

= 0.

Figure: Runge vs. Weierstrass...
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Bringing Some Clarity to the Issue...

Runge looked at interpolating the function

f (x) =
1

(1 + x2)
, x ∈ [−5, 5]

using equally spaced points; we start out by looking that the
equivalent problem

f (x) =
1

(1 + 25 x2)
, x ∈ [−1, 1],

and then

f (x) =
1

(1 + 4 x2)
, x ∈ [−1, 1].
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P7(x) Polynomial Interpolation of Runge’s Function f (x) = 1
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Convergence / Non-Convergence

We get exponential convergence in the middle of the interval, but
exponential divergence near the ends. [Trefethen, 2013]
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Lebesgue Function and Lebesgue Constant

The basic Lagrange formula for polynomial interpolation is given by

pn(x) =
n∑

k=0

fkLn,k(x).

We use this representation on the interval [−1, 1] and see how
large |pn(x)| can get for a function with |fk | ≤ 1; this defines the
Lebesgue Function

λ(x) =
n∑

k=0

|Ln,k(x)|,

its maximal value
Λ = max

x∈[−1,1]
λ(x)

is known as the Lebesgue Constant.
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More Equi-Spaced Points ⇒ It Tends to Get Worse Examples
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More Points ⇒ It Tends to Get Worse Theory

It is known that for equispaced points

Λn >
2n−2

n2
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Figure: The lower bound
for the worst-case scenario
behavior of Λ. Notice that di-
vergence for Runge’s function
followed this “shape,” but
didn’t blow up as quickly.
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Convergence / Non-Convergence

Are we converging or diverging?
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Convergence / Non-Convergence A Few More Cases...
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Explaining “Why” and “When” Oscillations Happen

We have seen examples of what can happen, and have the tools
and language to quantify what is going on. However, we have not
addressed “why?!” (under what circumstances) this (oscillations)
happens...

... and is there some way to minimize / reduce the amount of
oscillations???

In order to explain what is going on, we have to look beyond the
scope of this class (we’ll take a peek at it anyway, just for “fun!”)
and say something about potential theory in the complex plane.
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ℓ(x)

Let ℓn(x) be the polynomial with roots in the interpolation nodes
{xk}nk=0:

ℓn(x) =
n∏

j=0

(x − xj).

We notice (after some head-scratching) that we can express the
Lagrange coefficients using ℓn(x):

Ln,k(x) =
ℓn(x)

ℓ′n(xk)(x − xk)
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Level Curves of |ℓn(z)|

Level curves; 8 equispaced points
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Level curves; 32 equispaced points
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The level curves of |ℓn(z)| in the complex plane matter; in
particular, the level curve which wraps around the interval of
interest [−1, 1] as the number of interpolation points n ր ∞ is
important. For convergence, we need that the function we are
interpolating is analytic (its Taylor series converges) everywhere
inside that level curve — not only on the real interval [−1, 1].
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0.5255i

Level curves; ∞ equispaced points
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The critical level curve of |ℓ∞(z)| crosses the imaginary axis at
≈ ±0.5255i .
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Runge’s Functions: Redux

We saw that interpolation of 1
1+25x2

was quite disastrous; now we
understand why: the denominator has roots at ±0.2 i , which
means that the function has simple poles in those locations [and
the Taylor expansion does not converge there].

For 1
1+4x2

the picture was not as clear, but now we can say with
certainty that the interpolation will diverge as n → ∞, since the
function has poles at ±0.5 i , just inside the critical level curve.

Function 1
1+3 x2

1
1+4 x2

1
1+25 x2

1
1+100 x2

Poles ± 1√
3
i ≈ ±0.577 i ±0.5 i ±0.2 i ±0.1 i

Location Outside Inside Inside Inside
Behavior Convergence Growing Growing Growing

Oscillations Oscillations Oscillations
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Looking Ahead

Now, Weierstrass promises that we can find excellent polynomial
approximations to any function on any interval.

But! Clearly, equi-spaced interpolation can run into huge issues
even for fairly nice-looking functions.

In the integration case, where we moved points around (Gaussian
Quadrature) to optimize (maximize) the accuracy of the schemes...
We can do something similar in the interpolation case: move the
points so that we optimize (minimize) the onset of oscillations.

That’s our next destination.
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