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Trigonometric Polynomials: A Very Brief History Fourier Series: First Observations
o0 [e.e]
P(x) = b, si o :
(x) Zo ap cos(nx) + Zo nsin(nx) For each positive integer n, the set of functions
n= n=
{Cbo, (bl, ceey ¢2n—1}: where
1750s Jean Le Rond d'Alembert used finite sums of sin(nx) and 1
cos(nx) to study vibrations of a string. do(x) = 5
. . b = cos(kx), k=1,...,
17xx  Use adopted by Leonhard Euler (leading mathematician at ® kg; _ sin((k;:)) K1 :_ 1
the time = validation for the approach). ntk a ’ Ty
17xx  Daniel Bernoulli advocates use of infinite (as above) sums 1S an Orthogonal set on the interval [, 7] with respect to the
of sin and cos weight function w(x) = 1.
18xx  Jean Baptiste Joseph Fourier used these infinite series
to study heat flow. Developed theory.
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Orthogonality

The Fourier Series, S(x)

Orthogonality follows from the fact that integrals over [—m, 7] of

cos(kx) and sin(kx) are zero (except cos(0)), and products can be

rewritten as sums:

( cos(f1 — 602) — cos(01 + 6)

sin 01 sin (92 = >

cos(f1 — 62) + cos(61 + 62)

cosficosbr, = 5

sin(91 — (92) —+ sin((91 + (92)

sinfycosfr, = 5

Let 7, be the set of all linear combinations of the functions
{®g, P1,...,P2,-1}; this is the set of trigonometric

polynomials of degree < n.

For f € C[—m, m], we seek the continuous least squares
approximation by functions in 7, of the form

n—1
Sn(x) = % + ap cos(nx) + Z (ak cos(kx) + by sin(kx)) ,
k=1

where, thanks to orthogonality
1 [7 1 [7 X
ay = / f(x) cos(kx) dx, bk = / f(x) sin(kx) dx.
T™J-xn —7

Definition (Fourier Series)

The limit
S(x) = lim Sp(x)

n—o0

is called the Fourier Series of f.
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Example: Approximating f(x) = |x| on [, 7] 1of2 Example: Approximating f(x) = |x| on [—7, 7] 2 of 2
First we note that f(x) and cos(kx) are even functions on [—, 7] T 2N (—1)k—1
and sin(kx) are odd functions on [—m, w]. Hence, We can write down Sp(x) = >t Z T cos(kx)
1 m 2 ™ T k=1
ap = / |X\dx:/ xdx = . * ‘ ‘ ‘ ‘ ‘
) . T Jo | — ]
=—a S0(x)
1 s 2 g — S1(x)
a = / |x| cos(kx) dx = / x cos(kx) dx 3 — 39
™ J)_n ™ Jo —> S5(x)
2 sin(k)|" 2 [T : — T :
= —x—2 —/ 1 - sin(kx) dx
T k |y kmJo oL _
0
= 2 foos(hkm) — cos(0)] = —o [(-1)* 1 | |
= lcos(km) —cos(0)] = — . i |
1 (/7 ) L A
by = / |x|sin(kx)  dx =0.
TJom S~ 1 1 1 |
even x odd = odd. 0 2 0 2
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The Discrete Fourier Transform: Introduction "Borrowed” Images Brain Diffusion Tensor Imaging

The discrete Fourier transform, a.k.a. the finite Fourier transform,
is a transform on samples of a function.

It, and its “cousins,” are the most widely used mathematical
transforms; applications include:

@ Signal Processing

o Image Processing

o Audio Processing
Figure: The fornix runs up from the hip-  Figure: Brain connectivity — the aver-

@ Data compression pocampus (an area important in mem-  age connections of a group of people;

A | f 3l diff i3l . ory formation) and ends in the hypotha-  our brains have largely the same under-

° tool tor partial ditferential equations lamus (an area important in hunger and  lying connections. Credit: Owen Philips

@ etc sleep regulation). Credit: Owen Philips  (Google+, 3 April 2012).
(Google+, 18 April 2012).
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The Discrete Fourier Transform Orthogonality of the Basis Functions?
We know that the basis functions
Suppose we have 2m data points, (x;, f;), where 1

q)o(X) = 5

Jm . ®y(x) = cos(kx), k=1,...,n
= +2% and = f(x), j=0.1,....2m—1. : SRR
% T m Nl (), J P b el &, k(x) = sin(kx), k=1,...,n—1

The discrete least squares fit of a trigonometric polynomial are orthogonal with respect to integration over the interval.

Sn(x) € Tn minimizes ) ) _ .
The Big Question: Are they orthogonal in the discrete case? Is

the following true:

2m—1
E(Sn) = Z [Sn(x}) — ’5‘]2- 2m—1
Jj=0 Z q)k(XJ)q)/(XJ) = akékJ 777

j=0
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Orthogonality of the Basis Functions! (A Lemma)...

Proof of Lemma 1of3

Lemma
If the integer r is not a multiple of 2m, then

Recalling long-forgotten (or quite possible never seen) facts from
Complex Analysis — Euler’s Formula:

e’ = cos() + isin(6).

2m—1 2m-1 Thus,
Z cos(rxj) = Z sin(rx;) = 0. 2m—1 2m—1 2m—1 2m—1
j=0 j=0 Z cos(rxj) + i Z sin(rx;) = Z [cos(rx;) + isin(rx;)] = Z e,
J=0 j=0 j=0 j=0
Moreover, if r is not a multiple of m, then
Since
2m—1 2m-1 irxi __ qir(—m+jm/m) _ —irm jijm/m
™ =e =e e
Z [cos(rx))]* = Z [sin(rx;)]? = m. ’
- - we get
j=0 Jj=0 2m—1 2m—1 2m—1
Z cos(rxj) + i Z sin(rx;) = e="™ Z eim/m,
j=0 Jj=0
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Proof of Lemma 2 of 3 Proof of Lemma 30of3
Since ZJ?ZO_I ei™/M is a geometric series with first term 1, and
ratio e™/™ £ 1, we get If r is not a multiple of m, then
2m—1 ; 2m—1 2m—1 2m—1
m— i /m ( lr7r/m)2m B 1— eerTr m - m 1 +COS(2I’XJ‘) B m 1 B
Z © 1 —elrt/m 1 _ eirn/m’ Z [Cos(rxj)] = Z s = Z 5= m.
j=0 j=0 j=0
This is zero since Similarly (use cos? 6 + sin® 6 = 1)
1—e?™=1—cos(2rr) —isin(2rr)=1—-1—i-0=0. o1
Z [sin(rx;)]* = m.
This shows the first part of the lemma: =0
2m—1 2m—1 This proves the second part of the lemma.
Z cos(rx;) = Z sin(rx;) = 0. We are now ready to show that the basis functions are orthogonal.
j=0 Jj=0
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Showing Orthogonality of the Basis Functions

Finally: The Trigonometric Least Squares Solution

Recall Using
- . cos(01 — ) — cos(01 + o) [1] Our standard frz.amewo.rk f(?r deri\./ing the least squares solution
sinfysinfy, = 5 — set the partial derivatives with respect to all parameters
equal to zero.
cosficosf, = cos(01 — 0) —; cos(01 + 02) [2] The orthogonality of the basis functions.
. in(61 — 05) + sin(6; + 62) We find the coefficients in the summation
sinfycosfr, = 5 . o1
dao .
S,(x) = — 4+ ap cos(nx) + ay cos(kx) + by sin(kx)) :
Thus for any pair k # | () 2 n cos(nx) ;(k (ko) + by sin(lex))
2m—1
O (x)P1(x;) 1 2m-1 1 2m-1
jz:% ! ! W= Z fcos(kx;), bk = p Z f sin(kx;).
j=0 j=0
is a zero-sum of sin or cos, and when k =/, the sum is m.
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Example: Discrete Least Squares Approximation 1of 3 Example: Discrete Least Squares Approximation 20of 3
We get the following coefficients:
_ 3 2
Let f(x) = x> —2x" + x4 1/(x — 4) for x € [~m, 7]. ag = —20.837, a3 =15.1322, a2, =—9.0819, a3 =7.9803
Let x; = —m + jn/5, j=0,1,...,9. ie by = 8.8661, by = —7.8193, b3 = 4.4910.
- 20— : : : : : :
J X fi
0 | -3.14159 | -54.02710 - fs(l"()x)
1| -2.51327 | -31.17511 ol [+ s809 |
2 | -1.88495 | -15.85835 i
3] -1.25663 | -6.58954
4 | -0.62831 | -1.88199 -20
5 0 -0.25
6 | 0.62831 -0.20978
7| 1.25663 -0.28175 -40
8 | 1.88495 1.00339
9 | 251327 5.08277
-60
1 L 1 L 1
-2 0 2
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Example: Discrete Least Squares Approximation 30f3 Example #1, with Periodic Extension 1of2
Notes:
Mirrored (Extended) Function on [- 1,31 Rescaled to [- T,
[1] The approximation gets better as n — ooc. ‘ ‘ ‘ ‘ .
[2] Since all the S,(x) are 2m-periodic, we will always have a eemees X
problem when f(—m) # f(m). [Fix: Periodic extension.] On B
the following two slides we see the performance for a 27-
periodic f.
[3] It seems like we need O(m?) operations to compute & and
b — m sums, with m additions and multiplications. There
is however a fast O(mlog,(m)) algorithm that finds these PR
coefficients. We will talk about this Fast Fourier Transform
next time.
Trig. Polynomial Approx. — (21/25) Trig. Polynomial Approx. — (22/25)
Example #1, with Periodic Extension 2 of 2 Example(2): Discrete Least Squares Approximation 1of 2
Let f(x) = 2x? + cos(3x) + sin(2x), x € [, 7].
Ss(x) reconstruction on [~ T, Sm(x) reconstruction on [~ T
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Let xj = —w + jn/5, j=0,1,...,9. ie

J X; fi
0 | -3.14159 | 18.7392
1| -251327 | 13.8932
2| -1.88495 | 8.5029
3| -1.25663 | 17615
4 | -0.62831 | -0.4705
5 0| 1.0000
6 | 062831 | 14316
7| 1.25663 | 2.9370
8| 1.88495 | 7.3273
9 | 251327 | 11.9911
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Example(2): Discrete Least Squares Approximation

2 of 2

We get the following coefficients:

a1 = 2.2853, a, = —0.2064,

ap = —8.2685,

20

by =0,

by =1, by=0.

a3 = 0.8729

15—

10+~

A

— (¥
+— s1(x)
o—e S3(x)
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