Numerical Analysis and Computing

Lecture Notes #14
— Approximation Theory —
Trigonometric Polynomial Approximation

Peter Blomgren, \(\text{blomgren.peter@gmail.com} \)

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720
http://terminus.sdsu.edu/

Fall 2014

Outline

- Trigonometric Polynomial Approximation
 - Introduction
 - Fourier Series
- 2 The Discrete Fourier Transform
 - Introduction
 - Discrete Orthogonality of the Basis Functions
- Trigonometric Least Squares Solution
 - Expressions
 - Examples

Trigonometric Polynomials: A Very Brief History

$$P(x) = \sum_{n=0}^{\infty} a_n \cos(nx) + \sum_{n=0}^{\infty} b_n \sin(nx)$$

- 1750s Jean Le Rond d'Alembert used finite sums of sin(nx) and cos(nx) to study vibrations of a string.
- 17xx Use adopted by Leonhard Euler (leading mathematician at the time \Rightarrow validation for the approach).
- 17xx Daniel Bernoulli advocates use of **infinite** (as above) sums of sin and cos.
- 18xx **Jean Baptiste Joseph Fourier** used these infinite series to study heat flow. Developed theory.

Fourier Series: First Observations

For each positive integer n, the set of functions $\{\Phi_0, \Phi_1, \dots, \Phi_{2n-1}\}$, where

$$\begin{cases} \Phi_0(x) = \frac{1}{2} \\ \Phi_k(x) = \cos(kx), & k = 1, ..., n \\ \Phi_{n+k}(x) = \sin(kx), & k = 1, ..., n - 1 \end{cases}$$

is an **Orthogonal set** on the interval $[-\pi, \pi]$ with respect to the weight function w(x) = 1.

Orthogonality follows from the fact that integrals over $[-\pi, \pi]$ of $\cos(kx)$ and $\sin(kx)$ are zero (except $\cos(0)$), and products can be rewritten as sums:

$$\begin{cases} \sin \theta_1 \sin \theta_2 &=& \frac{\cos(\theta_1 - \theta_2) - \cos(\theta_1 + \theta_2)}{2} \\ \cos \theta_1 \cos \theta_2 &=& \frac{\cos(\theta_1 - \theta_2) + \cos(\theta_1 + \theta_2)}{2} \\ \sin \theta_1 \cos \theta_2 &=& \frac{\sin(\theta_1 - \theta_2) + \sin(\theta_1 + \theta_2)}{2} \end{cases}$$

Let \mathcal{T}_n be the set of all linear combinations of the functions $\{\Phi_0, \Phi_1, \dots, \Phi_{2n-1}\}$; this is the **set of trigonometric polynomials** of degree $\leq n$.

The Fourier Series, S(x)

For $f \in C[-\pi, \pi]$, we seek the **continuous least squares** approximation by functions in \mathcal{T}_n of the form

$$S_n(x) = \frac{a_0}{2} + a_n \cos(nx) + \sum_{k=1}^{n-1} (a_k \cos(kx) + b_k \sin(kx)),$$

where, thanks to orthogonality

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx, \quad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx.$$

Definition (Fourier Series)

The limit

$$S(x) = \lim_{n \to \infty} S_n(x)$$

is called the **Fourier Series** of f.

First we note that f(x) and $\cos(kx)$ are even functions on $[-\pi, \pi]$ and $\sin(kx)$ are odd functions on $[-\pi, \pi]$. Hence,

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \, dx = \pi.$$

$$a_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \cos(kx) \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos(kx) \, dx$$

$$= \underbrace{\frac{2}{\pi} x \frac{\sin(kx)}{k} \Big|_{0}^{\pi}}_{0} - \frac{2}{k\pi} \int_{0}^{\pi} 1 \cdot \sin(kx) \, dx$$

$$= \underbrace{\frac{2}{\pi} k^{2}}_{0} \left[\cos(k\pi) - \cos(0) \right] = \frac{2}{\pi k^{2}} \left[(-1)^{k} - 1 \right].$$

$$b_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} \underbrace{|x| \sin(kx)}_{0} \, dx = 0.$$

even \times odd = odd

Trig. Polynomial Approx.

We can write down $S_n(x) = \frac{\pi}{2} + \frac{2}{\pi} \sum_{k=1}^n \frac{(-1)^k - 1}{k^2} \cos(kx)$

Trig. Polynomial Approx.

The Discrete Fourier Transform: Introduction

The discrete Fourier transform, a.k.a. the finite Fourier transform, is a transform on samples of a function.

It, and its "cousins," are the most widely used mathematical transforms; applications include:

- Signal Processing
 - Image Processing
 - Audio Processing
- Data compression
- A tool for partial differential equations
- etc...

Figure: The fornix runs up from the hippocampus (an area important in memory formation) and ends in the hypothalamus (an area important in hunger and sleep regulation). Credit: Owen Philips (Google+, 18 April 2012).

Figure: Brain connectivity — the average connections of a group of people; our brains have largely the same underlying connections. **Credit:** Owen Philips (Google+, 3 April 2012).

The Discrete Fourier Transform

Suppose we have 2m data points, (x_j, f_j) , where

$$x_j = -\pi + \frac{j\pi}{m}$$
, and $f_j = f(x_j)$, $j = 0, 1, \dots, 2m - 1$.

The discrete least squares fit of a trigonometric polynomial $S_n(x) \in \mathcal{T}_n$ minimizes

$$E(S_n) = \sum_{i=0}^{2m-1} [S_n(x_i) - f_j]^2.$$

Orthogonality of the Basis Functions?

We know that the basis functions

$$\begin{cases} \Phi_0(x) = \frac{1}{2} \\ \Phi_k(x) = \cos(kx), & k = 1, ..., n \\ \Phi_{n+k}(x) = \sin(kx), & k = 1, ..., n - 1 \end{cases}$$

are orthogonal with respect to integration over the interval.

The Big Question: Are they orthogonal in the discrete case? Is the following true:

$$\sum_{i=0}^{2m-1} \Phi_k(x_j) \Phi_l(x_j) = \alpha_k \delta_{k,l} \quad ???$$

Orthogonality of the Basis Functions! (A Lemma)...

Lemma

If the integer r is not a multiple of 2m, then

$$\sum_{j=0}^{2m-1} \cos(rx_j) = \sum_{j=0}^{2m-1} \sin(rx_j) = 0.$$

Moreover, if r is not a multiple of m, then

$$\sum_{j=0}^{2m-1} [\cos(rx_j)]^2 = \sum_{j=0}^{2m-1} [\sin(rx_j)]^2 = m.$$

Recalling long-forgotten (or quite possible never seen) facts from **Complex Analysis** — **Euler's Formula**:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$
.

Thus,

$$\sum_{j=0}^{2m-1} \cos(rx_j) + i \sum_{j=0}^{2m-1} \sin(rx_j) = \sum_{j=0}^{2m-1} [\cos(rx_j) + i \sin(rx_j)] = \sum_{j=0}^{2m-1} e^{irx_j}.$$

Since

$$e^{irx_j} = e^{ir(-\pi+j\pi/m)} = e^{-ir\pi}e^{irj\pi/m}$$

we get

$$\sum_{j=0}^{2m-1} \cos(rx_j) + i \sum_{j=0}^{2m-1} \sin(rx_j) = e^{-ir\pi} \sum_{j=0}^{2m-1} e^{irj\pi/m}.$$

Since $\sum_{j=0}^{2m-1} e^{irj\pi/m}$ is a **geometric series** with first term 1, and ratio $e^{ir\pi/m} \neq 1$, we get

$$\sum_{i=0}^{2m-1} e^{irj\pi/m} = \frac{1 - (e^{ir\pi/m})^{2m}}{1 - e^{ir\pi/m}} = \frac{1 - e^{2ir\pi}}{1 - e^{ir\pi/m}}.$$

This is zero since

$$1 - e^{2ir\pi} = 1 - \cos(2r\pi) - i\sin(2r\pi) = 1 - 1 - i \cdot 0 = 0.$$

This shows the first part of the lemma:

$$\sum_{i=0}^{2m-1} \cos(rx_j) = \sum_{i=0}^{2m-1} \sin(rx_j) = 0.$$

If r is not a multiple of m, then

$$\sum_{j=0}^{2m-1} [\cos(rx_j)]^2 = \sum_{j=0}^{2m-1} \frac{1 + \cos(2rx_j)}{2} = \sum_{j=0}^{2m-1} \frac{1}{2} = m.$$

Similarly (use $\cos^2 \theta + \sin^2 \theta = 1$)

$$\sum_{j=0}^{2m-1} [\sin(rx_j)]^2 = m.$$

This proves the second part of the lemma.

We are now ready to show that the basis functions are orthogonal.

Showing Orthogonality of the Basis Functions

Recall

$$\begin{cases} \sin \theta_1 \sin \theta_2 &=& \frac{\cos(\theta_1 - \theta_2) - \cos(\theta_1 + \theta_2)}{2} \\ \cos \theta_1 \cos \theta_2 &=& \frac{\cos(\theta_1 - \theta_2) + \cos(\theta_1 + \theta_2)}{2} \\ \sin \theta_1 \cos \theta_2 &=& \frac{\sin(\theta_1 - \theta_2) + \sin(\theta_1 + \theta_2)}{2} \end{cases}$$

Thus for any pair $k \neq I$

$$\sum_{j=0}^{2m-1} \Phi_k(x_j) \Phi_l(x_j)$$

is a zero-sum of sin or cos, and when k = I, the sum is m.

Finally: The Trigonometric Least Squares Solution

Using

- [1] Our standard framework for deriving the least squares solution set the partial derivatives with respect to all parameters equal to zero.
- [2] The orthogonality of the basis functions.

We find the coefficients in the summation

$$S_n(x) = \frac{a_0}{2} + a_n \cos(nx) + \sum_{k=1}^{n-1} (a_k \cos(kx) + b_k \sin(kx))$$
:

$$a_k = \frac{1}{m} \sum_{i=0}^{2m-1} f_j \cos(kx_j), \quad b_k = \frac{1}{m} \sum_{i=0}^{2m-1} f_j \sin(kx_j).$$

Let
$$f(x) = x^3 - 2x^2 + x + 1/(x - 4)$$
 for $x \in [-\pi, \pi]$.
Let $x_j = -\pi + j\pi/5$, $j = 0, 1, \dots, 9$., *i.e.*

j	Xj	f_j
0	-3.14159	-54.02710
1	-2.51327	-31.17511
2	-1.88495	-15.85835
3	-1.25663	-6.58954
4	-0.62831	-1.88199
5	0	-0.25
6	0.62831	-0.20978
7	1.25663	-0.28175
8	1.88495	1.00339
9	2.51327	5.08277

We get the following coefficients:

$$a_0 = -20.837$$
, $a_1 = 15.1322$, $a_2 = -9.0819$, $a_3 = 7.9803$
 $b_1 = 8.8661$, $b_2 = -7.8193$, $b_3 = 4.4910$.

Trig. Polynomial Approx.

-(20/25)

Notes:

- [1] The approximation gets better as $n \to \infty$.
- [2] Since all the $S_n(x)$ are 2π -periodic, we will always have a problem when $f(-\pi) \neq f(\pi)$. [Fix: Periodic extension.] On the following two slides we see the performance for a 2π -periodic f.
- [3] It seems like we need $\mathcal{O}(m^2)$ operations to compute $\tilde{\mathbf{a}}$ and $\tilde{\mathbf{b}}$ m sums, with m additions and multiplications. There is however a fast $\mathcal{O}(m\log_2(m))$ algorithm that finds these coefficients. We will talk about this **Fast Fourier Transform** next time.

Let
$$f(x) = 2x^2 + \cos(3x) + \sin(2x)$$
, $x \in [-\pi, \pi]$.
Let $x_j = -\pi + j\pi/5$, $j = 0, 1, \dots, 9$., *i.e.*

j	Xj	f_j
0	-3.14159	18.7392
1	-2.51327	13.8932
2	-1.88495	8.5029
3	-1.25663	1.7615
4	-0.62831	-0.4705
5	0	1.0000
6	0.62831	1.4316
7	1.25663	2.9370
8	1.88495	7.3273
9	2.51327	11.9911

We get the following coefficients:

$$a_0 = -8.2685$$
, $a_1 = 2.2853$, $a_2 = -0.2064$, $a_3 = 0.8729$
 $b_1 = 0$, $b_2 = 1$, $b_3 = 0$.

— (25/25)