
Math 541, Study Guide
— a set of topic you should be aware of, and questions which you should be able to answer at the end of the course.

$Id: studyguide.tex,v 1.9 2011/12/05 22:02:40 blomgren Exp $

All these questions have been actual midterm/final questions at some point in history.

1. Numerical Approximation: Let x̃ be an approximation to x (x 6= 0).

(a) What is the absolute error?

(b) What is the relative error?

2. Fixed Point Iteration: Consider the function g(x) = 1 − 2x2, the fixed point equation x = g(x),
and the fixed point iteration pn+1 = g(pn), p0 ∈ [−1, 1].

(a) Does the fixed point equation have any solution(s)? Is so, what are they?

(b) If we start the fixed point iteration at p0 = 0.1, is it likely it will converge to any of these
solution(s)? Why? / Why not?

3. Taylor Expansion, Newton’s Method: Consider the function f(x) = ex− cosx−x on the interval
[0, 1].

(a) Write the Taylor polynomial of degree 2, P2(x), and the remainder term, R2(x). [Hint: You can
Taylor expand around any point, but x0 = 0 makes life easier. d

dxe
x = ex, d

dx cos(x) = − sin(x),
d
dx sin(x) = cos(x) ]

(b) Use the remainder term to get an upper bound on the error in the above approximation (in the
given interval).

(c) Now consider g(x) = (f(x))2 = (ex − cosx− x)2. What is the rate of convergence for lim
h↘0

g(h)?

[Hint: If you did part (a), this problem is easier than you fear!]

(d) Write down Newton’s method for f(x) = 0 (for the function f):

(e) For this particular function f , what do you expect the rate of convergence to be (circle one):
Slower than quadratic / Quadratic / Better than quadratic?

(f) Why?

(g) Write down a scheme which converges faster than the one you wrote down in (d). What is the
convergence rate of this scheme?

4. Newton’s Method: Numerical solution of f(x) = 0.

(a) Write down Newton’s Method.

(b) Derive Newton’s method using either a (i) geometric argument; (ii) Taylor series argument; or
(iii) fixed-point argument. Clearly explain any approximations, and/or theorems that you use.
Choose exactly one (1) approach!!!

(c) Assume f(x∗) = 0, and we have an initial approximation x0 which is “close enough” to x∗. What
is the convergence rate for Newton’s method:

i. If f ′(x∗) 6= 0 ?
ii. If f ′(x∗) = 0 ?

(d) How can we reclaim the quadratic convergence rate in the case where Newton’s method for
f(x) = 0 slows down? Explain carefully.

(e) Assume f ∈ C2[a, b], and x∗ ∈ (a, b), so that f(x∗) = 0. Now view the Newton iteration as a fixed
point iteration xn+1 = g(xn).
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i. What condition on g(x) is necessary for convergence of the fixed point iteration?
ii. What condition on g′(x) is necessary for convergence of the fixed point iteration?
iii. Translate the condition on g′(x) to a condition for the Newton iteration. (Note: this is the

expression which quantifies the neighborhood where x0 is “close enough” to x∗.)

5. Root Finding: For each of the following methods, write down (i) the definition, (ii) What kind of
point(s) we need to start the scheme? (iii) How fast does the scheme converge?

(a) The Bisection Method
i. Definition:
ii. Starting Points:
iii. Speed (in absolute terms):

(b) The Secant Method
i. Definition:
ii. Starting Points:
iii. Speed (compared with the other schemes):

(c) Newton’s Method
i. Definition:
ii. Starting Points:
iii. Speed (in absolute terms):

(d) Regula Falsi
i. Definition:
ii. Starting Points:
iii. Speed (compared with the other schemes):
iv. Impact of stopping criteria, for convex/concave functions.

6. Multiplicity of zeros: Know what it means, including impact on the derivatives, and how it effects
(some) methods.

7. Aitken’s ∆2-method: Given an already computed linearly convergent sequence {pn}∞n=1, how can
we manufacture a sequence which converges faster?

8. Steffensen’s Method: In general fixed-point iteration gives linear convergence (if it converges, that
is) — recall the conditions for convergence of fixed point; when does it converge faster? With the help
of Aitken’s ∆2-method: we can generate a quadratically converging method which does not require
computation of the derivative — how? Both Newton’s and Steffensen’s methods are quadratically con-
vergent, so it seems like Steffensen would be our prime choice; why is it not? (That is, what additional
restrictions (beyond what is needed for Newton) is needed for Steffensen’s method to converge?

9. Polynomials, Horner’s Method: Given the polynomial P (x) = x4 − x3 + x2 + x− 1, use Horner’s
method (synthetic division) to compute P (5) and P ′(5).

10. Deflation, with Improvement: The method for extracting all real roots of a polynomial.

11. Müller’s Method: Understand it as a natural extension of the secant method, and how it automat-
ically tells us when we get complex roots.

12. The Lagrange Polynomial: Understand how the building blocks Ln,k(x) work, and how they allow
us to interpolate any given data set {xi, yi = f(xi)}ni=0.
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13. Newton’s Divided Differences: Given the points ~x = {x0, x1, x2, . . . , xn} and the function values
~f = {f0, f1, f2, . . . , fn}, where fi = f(xi), i = 0, 1, 2, . . . , n.

(a) Explain how to fill in the table of Newton’s Divided Differences — In particular, write down the
expression for F3,2 assuming all entries to the left in the table are known?

~x ~f 1st 2nd. · · · · · · nth.
x0 f0
x1 f1 F1,1

x2 f2 F2,1 F2,2

x3 f3 F3,1 F3,2 F3,3

...
...

...
...

. . .
xn fn Fn,1 Fn,2 · · · · · · Fn,n

(b) Once the table is full — how do we use it? Write down the interpolating polynomial of degree n
using the appropriate entries from the table.

14. Hermite Interpolation: Given the points ~x = {x0, x1, x2, . . . , xn}, the function values~f = {f0, f1, f2, . . . , fn},
where fi = f(xi), i = 0, 1, 2, . . . , n, and the values of the derivative ~d = {d0, d1, d2, . . . , dn}, where
di = f ′(xi), i = 0, 1, 2, . . . , n.

(a) Explain how to modify the table of Newton’s Divided Differences to compute the Hermite inter-
polating polynomial:
~x ~f 1st 2nd. · · · nth.
x0 f0
x1 f1 F1,1

x2 f2 F2,1 F2,2

...
...

...
...

. . .
xn fn Fn,1 Fn,2 · · · Fn,n

i. First, explain how the table is initialized, i.e. how we use the values ~x, ~f , and ~d to get started.
ii. Second, how do we compute the rest of the values in the table? In particular, write down the

expression for F5,3 assuming all entries to the left in the table are known?
iii. Once the table is full — how do we use it? Write down the interpolating polynomial of degree

(2n+ 1) using the appropriate entries from the table.

MIDTERM #1 MATERIAL ENDS HERE
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15. Cubic Spline Interpolation: Given the points ~x = {x0, x1, x2, . . . , xn} and the function values
~f = {f0, f1, f2, . . . , fn} at those points, we want to generate a cubic spline, i.e. a piecewise third
degree polynomial approximation.

(a) Why would we want to do this — why not just use Newton’s Interpolatory Divided Difference
formula to get an nth degree interpolating polynomial?.

(b) Write down the interpolant Sk(x) on the subinterval [xk, xk+1].

(c) Write down the conditions required for the spline S(x) to fit the data and have two continuous
derivatives, i.e. S(x) ∈ C2[x0, xn].

(d) How many unknown coefficients do we have to determine?

(e) How many equations do we have (in (c))?

(f) Suggest additional boundary conditions, giving enough additional equations to close the system
(assume we have no additional information about f).

16. Piecewise Polynomial Approximation, Quintic Splines: Given the points ~x = {x0, x1, x2, . . . , xn}
and the function values ~f = {f0, f1, f2, . . . , fn} at those points, we want to generate a quintic spline,
i.e. a piecewise fifth degree polynomial approximation.

(a) Why would we want to do this — why not just use Newton’s Interpolatory Divided Difference
formula to get an nth degree interpolating polynomial?.

(b) Write down the interpolant Sk(x) on the subinterval [xk, xk+1].

(c) Write down the conditions required for the spline S(x) to fit the data and have four continuous
derivatives, i.e. S(x) ∈ C4[x0, xn].

(d) How many unknown coefficients do we have to determine?

(e) How many equations do we have (in (c))?

(f) Suggest additional boundary conditions, giving enough additional equations to close the system
(assume we have no additional information about f).

17. Numerical Integration: Simpson’s Rule and Composite Simpson’s Rule.

(a) We write Simpson’s Rule:∫ b

a

f(x) dx ≈ S(f(x), a, b) +
h5

90
f (4)(ξ) =

h

3

[
f(a) + 4f((a+ b)/2) + f(b)

]
+
h5

90
f (4)(ξ).

Explain how we arrive at this formula using the Lagrange Interpolating Polynomial of degree 2.
IGNORE THE ERROR TERM, AND DO NOT COMPUTE ANY INTEGRAL(s).

(b) We define the Composite Simpson’s Rule by splitting the interval [a, b] into smaller sub-intervals,
applying Simpson’s Rule on those sub-intervals, and then summing up the results. Write down
Composite Simpson’s Rule applied to the sub-intervals [x0, x2], [x2, x4], [x4, x6], [x6, x8], where
xk = a+ k(b−a)

8 .

(c) Richardson Extrapolation: Explain how we can use multiple instances of Composite Simp-
son’s Rule (with point-spacing h, h/2, h/4, ...) to generate a scheme with an error term ∼ O(h6).
(Warning: this question is harder than it looks!)

18. Numerical Integration, Gaussian Quadrature: We are interested in integrating a function of
two variables f(x, y) over the square [−1, 1] × [−1, 1], i.e. I =

∫ 1

−1

∫ 1

−1
f(x, y) dx dy. Build a 9-point

numerical integration scheme based on 3-point Gaussian quadrature in the x- and y-directions. Specify
the quadrature points, and the summation weights.
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19. Discrete Least Squares: Suppose you are given the data points ~x = {x0, x1, x2, . . . , xn} and the
function values ~f = {f0, f1, f2, . . . , fn}, where xi > 0 ∀i = 0, 1, 2, . . . , n.

(a) For some reason, you think that h(x) = a+ bx+ c cos(x) is a great model for the data set. Find
the best fit, in the least squares sense, for this model. Find the normal equations.

(b) By a stroke of luck, it turns out that the basis functions {Φ0(x),Φ1(x),Φ2(x)} = {1, x, cos(x)}
are orthogonal on the nodes ~x with respect to summation against the weight function w(x) = 1.
This should help you express the coefficients {a, b, c} in a simpler way than in part (a).

20. Discrete Least Squares Approximation: Suppose you are given the data points ~x = {x0, x1, x2, . . . , xn}
and the function values ~f = {f0, f1, f2, . . . , fn}, where xi > 0 ∀i = 0, 1, 2, . . . , n.

(a) For some reason, you think that h(x) = a+ b
√
x+ cx3 is a great model for the data set. Find the

best fit, in the least squares sense, for this model. Find the normal equations.

(b) Explain how the normal equations simplify if we have an orthogonal set of basis functions
{Φ0(x),Φ1(x),Φ2(x)}, and we are trying to fit the model g(x) = aΦ0(x) + bΦ1(x) + cΦ2(x)
to the given data.

21. The Fast Fourier Transform: The bottlenose dolphin can generate sounds in the range from
250 Hz up to 150 kHz. The lower range, from 250 Hz up to approximately 40 kHz is used for social
communication, and the upper range 40–150 kHz is primarily used for echo-location. The range for
human hearing is from 20 Hz up to 20 kHz (on a very good day). On several web-sites on the net you
can hear “dolphin sounds.”

Assume you have a waterproof microphone sophisticated enough to capture sounds in the bottlenose
dolphin’s range, an AD (Analog-Digital) converter that can sample the signal and save it to a data
file that you can import into matlab. Think outside the box and device a method — using the FFT,
IFFT, low/band/high-pass filters, clever heuristics and a DA (Digital-Analog) converter — so that you
can place “dolphin sounds” (both social and echo-location) on your web-page as well.

22. The Fast Fourier Transform: In space, all alien species speak English(!?) Unfortunately, you have
run into a species which communicates on a different frequency. Whereas the range for human hearing
is from 20 Hz up to 20 kHz (on a very good day) and most human speech falls in the range from 300 Hz
to 3400 Hz; the vocal range for this particular species is in the 90 kHz to 120 kHz band. Assume you
have a access to a microphone sophisticated enough to capture sounds in the entire 20 Hz to 120 kHz
regime, and an AD (Analog-Digital) converter that can sample the signal and save it to a data file that
you can import into matlab. Think outside the box and device a method — using the FFT, IFFT,
low/band/high-pass filters, clever heuristics and an additional DA (Digital-Analog) converter which
accepts vector-input from matlab — so that you can have a conversation with this species.

23. Polynomials: Polynomials are cornerstones in most of our algorithms, therefore understanding the
behavior of them is the key to understanding how these algorithms are derived, and how they perform.

(a) Polynomials can be quickly (efficiently) evaluated using Horner’s method . Given a polynomial
P (x), and a point x0, what does Horner’s method give us? How is the result useful for polynomial
root-finding P (x) = 0? (10 pts.)

(b) One crucial use of polynomials is interpolation of given data points {(xk, fk)}, k = 0, . . . , n.

i. Write down the Lagrange building block Ln,k(x) — that is, the nth degree polynomial which
is one in xk and zero in xj , j 6= k. (5 pts.)

ii. Write down the Lagrange interpolating polynomial, which interpolates the data points {(xk, fk)},
k = 0, . . . , n. (5 pts.)
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(c) Interpolating polynomials are used to derive schemes for numerical computation of derivatives and
integrals. It would seem that the more data points (samples) we have of the underlying function,
the better.

i. In exactly one word, what is the problem with high-degree (interpolating) polynomials?
(5 pts.)

ii. The error term for an nth degree interpolating polynomial is

f (n+1)(ξ)
(n+ 1)!

n∏
k=0

(x− xk)︸ ︷︷ ︸
m(x)

where, in general, it is hard to say anything useful about m(x). However, if we are free to
select the points xk freely we can select an optimal (Chebyshev) placement of the points,

xk = cos
(

2k − 1
2n

π

)
.

What can be said about m(x) in this case? (5 pts.)

(d) Numerical integration schemes are derived by piecewise polynomial interpolation of a function.
Unlike spline interpolation, for integration schemes we do not worry about the continuity of the
derivatives at the points where sub-intervals meet.

i. If we base our numerical integration schemes on the use of interpolating polynomials using
regularly spaced points, that is∫ b

a

f(x) dx ≈
∫ b

a

Pn(x) dx =
n∑

k=0

akf

(
a+

k(b− a)
n

)
then if n is even, the error in the approximation (if the values ak are selected appropriately)
is of the form

Cn
hn+3f (n+2)(ξ)

(n+ 2)!
, Cn ∈ R

What is the highest degree polynomial for which this approximation scheme is
exact? (The degree of precision.) (10 pts.)

ii. If we are free to place the points xk anywhere, then we can optimally place them and get
the Gaussian quadrature formulas. What is the degree of precision for the Gaussian
quadrature scheme ∫ b

a

f(x) dx ≈
n∑

k=0

a∗kf (x∗k)

which uses (n+ 1) points (n subintervals)? Here, x∗k and a∗k denote the Gaussian quadrature
points, and the appropriate summation weights. (10 pts.)
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