Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable

Outline

Numerical Analysis and Computing Lecture Notes #2 — Calculus Review; Computer Artihmetic and Finite Precision; Algorithms and Convergence; Solutions of Equations of One Variable	 Calculus Review Limits, Continuity, and Convergence Differentiability, Rolle's, and the Mean Value Theorem Extreme Value, Intermediate Value, and Taylor's Theorem Computer Arithmetic & Finite Precision 						
Peter Blomgren, (blomgren.peter@gmail.com) Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://terminus.sdsu.edu/	 Binary Representation, IEEE 754-1985 Something's Missing Roundoff and Truncation, Errors, Digits Cancellation Algorithms Algorithms, Pseudo-Code Fundamental Concepts Solutions of Equations of One Variable f(x) = 0, "Root Finding" The Bisection Method When do we stop?! *** Homework #1 *** 						
Fall 2014 Peter Blomgren, (blomgren.peter@gmail.com) Lecture Notes #2 (1/66)	Peter Blomgren, (blomgren.peter@gmail.com) Lecture Notes #2 — (2/66)						
Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable	Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable						
Vhy Review Calculus???	Background Material — A Crash Course in Calculus						
It's a good warm-up for our brains! When developing numerical schemes we will use theorems from calculus to guarantee that our algorithms make sense. If the theory is sound, when our programs fail we look for bugs in the code!	 Key concepts from Calculus Limits Continuity Convergence Differentiability Rolle's Theorem Mean Value Theorem Extreme Value Theorem Intermediate Value Theorem Taylor's Theorem 						

Peter Blomgren, {blomgren.peter@gmail.com} Calculus Review

Limits, Continuity, and Convergence Differentiability, Rolle's, and the Mean Value Theorem Extreme Value, Intermediate Value, and Taylor's Theorem

Limit / Continuity

Definition (Limit)

A function f defined on a set X of real numbers $X \subset \mathbb{R}$ has the limit L at x_0 , written

$$\lim_{x\to x_0} f(x) = L$$

if given any real number $\epsilon > 0$ ($\forall \epsilon > 0$), there exists a real number $\delta > 0$ ($\exists \delta > 0$) such that $|f(x) - L| < \epsilon$, whenever $x \in X$ and $0 < |x - x_0| < \delta$.

Definition (Continuity (at a point))

Let f be a function defined on a set X of real numbers, and $x_0 \in X$. Then f is continuous at x_0 if

 $\lim_{x\to x_0}f(x)=f(x_0).$

Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Calculus Review — (5/66)
Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable	Limits, Continuity, and Convergence Differentiability, Rolle's, and the Mean Value Theorem Extreme Value, Intermediate Value, and Taylor's Theorem

Examples: Jump Discontinuity

The function

$$f(x) = \begin{cases} x + \frac{1}{2}\sin(2\pi x) & x < 0.5\\ x + \frac{1}{2}\sin(2\pi x) + 1 & x > 0.5 \end{cases}$$

has a jump discontinuity at $x_0 = 0.5$.

Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable

Limits, Continuity, and Convergence Differentiability, Rolle's, and the Mean Value Theorem Extreme Value, Intermediate Value, and Taylor's Theorem

Example: Continuity at x_0

Here we see how the limit $x \to x_0$ (where $x_0 = 0.5$) exists for the function $f(x) = x + \frac{1}{2} \sin(2\pi x)$.

6)	Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} angle$	Calculus Review — (6/66)
ı	Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable	Limits, Continuity, and Convergence Differentiability, Rolle's, and the Mean Value Theorem Extreme Value, Intermediate Value, and Taylor's Theorem

Examples: "Spike" Discontinuity

The function

- (7/66)

$$f(x) = \begin{cases} 1 & x = 0.5 \\ 0 & x \neq 0.5 \end{cases}$$

has a discontinuity at $x_0 = 0.5$.

The limit exists, but

$$\lim_{x\to 0.5} f(x) = 0 \neq 1$$

Peter Blomgren, {blomgren.peter@gmail.com} Calculus Review

Limits, Continuity, and Convergence Differentiability, Rolle's, and the Mean Value Theorem Extreme Value, Intermediate Value, and Taylor's Theorem

Continuity / Convergence

Definition (Continuity (in an interval))

The function f is continuous on the set X ($f \in C(X)$) if it is continuous at each point x in X.

Definition (Convergence of a sequence)

Let $\underline{\mathbf{x}} = \{x_n\}_{n=1}^{\infty}$ be an infinite sequence of real (or complex numbers). The sequence $\underline{\mathbf{x}}$ converges to x (has the limit x) if $\forall \epsilon > 0, \exists N(\epsilon) \in \mathbb{Z}^+$: $|x_n - x| < \epsilon \ \forall n > N(\epsilon)$. The notation

 $\lim_{n\to\infty}x_n=x$

means that the sequence $\{x_n\}_{n=1}^{\infty}$ converges to x.

Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Calculus Review — (9
Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable	Limits, Continuity, and Convergence Differentiability, Rolle's, and the Mean Value Theorem Extreme Value, Intermediate Value, and Taylor's Theo

Differentiability

Theorem

If f is a function defined on a set X of real numbers and $x_0 \in X$, the the following statements are equivalent:

- (a) f is continuous at x_0
- (b) If $\{x_n\}_{n=1}^{\infty}$ is any sequence in X converging to x_0 , then $\lim_{n\to\infty} f(x_n) = f(x_0)$.

Definition (Differentiability (at a point))

Let f be a function defined on an open interval containing x_0 ($a < x_0 < b$). f is differentiable at x_0 if

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \quad \text{exists.}$$

If the limit exists, $f'(x_0)$ is the derivative at x_0 .

Definition (Differentiability (in an interval))

If $f'(x_0)$ exists $\forall x_0 \in X$, then f is differentiable on X.

Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable

Limits, Continuity, and Convergence Differentiability, Rolle's, and the Mean Value Theorem Extreme Value, Intermediate Value, and Taylor's Theorem

Illustration: Convergence of a Complex Sequence

A sequence in $\underline{z} = \{z_k\}_{k=1}^{\infty}$ converges to $z_0 \in \mathbb{C}$ (the black dot) if for any ϵ (the radius of the circle), there is a value N (which depends on ϵ) so that the "tail" of the sequence $\underline{z}_t = \{z_k\}_{k=N}^{\infty}$ is inside the circle.

Peter Blomgren, <code>{blomgren.peter@gmail.com}</code>	Calculus Review — (10/66)
Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable	Limits, Continuity, and Convergence Differentiability, Rolle's, and the Mean Value Theorem Extreme Value, Intermediate Value, and Taylor's Theorem

Illustration: Differentiability

Here we see that the limit

(11/66)

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists — and approaches the slope / derivative at x_0 , $f'(x_0)$.

Peter Blomgren, {blomgren.peter@gmail.com} Calculus Review

Differentiability, Rolle's, and the Mean Value Theorem Extreme Value, Intermediate Value, and Taylor's Theorem

Taylor's Theorem

Theorem (Taylor's Theorem Wiki-Link)

Suppose $f \in C^{n}[a, b]$, $f^{(n+1)} \exists$ on [a, b], and $x_{0} \in [a, b]$. Then $\forall x \in (a, b), \exists \xi(x) \in (x_0, x) \text{ with } f(x) = P_n(x) + R_n(x) \text{ where}$

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k, \quad R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{(n+1)}.$$

 $P_n(x)$ is called the **Taylor polynomial of degree** n, and $R_n(x)$ is the remainder term (truncation error).

This theorem is **extremely important** for numerical analysis; Taylor expansion is a fundamental step in the derivation of many of the algorithms we see in this class (and in Math 542 & 693ab).

Limits, Continuity, and Convergence Differentiability, Rolle's, and the Mean Value Theorem Extreme Value, Intermediate Value, and Taylor's Theorem

 $f(x) = \sin(x)$

Illustration: Taylor's Theorem

Calculus Review Binary Representation, IEEE 754-1985 Computer Arithmetic & Finite Precision Algorithms Something's Missing Solutions of Equations of One Variable Cancellation	Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable
Computer Arithmetic and Finite Precision	Finite Precision A single char
Computer Arithmetic and Finite Precision	Computers use a finite number of bits (0's and 1's) to represent numbers. For instance, an 8-bit unsigned integer (a.k.a a "char") is stored: $\frac{2^7 \ 2^6 \ 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0}{0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1}$
	Here, $2^6 + 2^3 + 2^2 + 2^0 = 64 + 8 + 4 + 1 = 77$, which represents the upper-case character "M" (US-ASCII).
Peter Blomgren, (blomgren.peter@gmail.com) Computer Arithmetic & Finite Precision — (21/66)	Peter Blomgren, (blomgren.peter@gmail.com) Computer Arithmetic & Finite Precision — (22/66)
Calculus Review Binary Representation, IEEE 754-1985 Computer Arithmetic & Finite Precision Algorithms Something's Missing Solutions of Equations of One Variable Cancellation	Calculus Review Binary Representation, IEEE 754-1985 Computer Arithmetic & Finite Precision Something's Missing Algorithms Roundoff and Truncation, Errors, Digits Solutions of Equations of One Variable Cancellation
Finite Precision A 64-bit real number, double	Burden-Faires' Description is not complete
The Binary Floating Point Arithmetic Standard 754-1985 (IEEE — The Institute for Electrical and Electronics Engineers) standard specified the following layout for a 64-bit real number: $\frac{S C_{10} C_9 \dots C_1 C_0 m_{51} m_{50} \dots m_1 m_0}{S C_{10} C_9 \dots C_1 C_0 m_{51} m_{50} \dots m_1 m_0}$ Where $\frac{\overline{Symbol} \underline{Bits} \underline{Description} \\ \hline{s} 1 \text{The sign bit} - 0 = \text{positive}, 1 = \text{negative} \\ c 11 \text{The characteristic (exponent)} \\ \hline{m} 52 \text{The mantissa}}$	As described in previous slide, we cannot represent zero! There are some special signals in IEEE-754-1985: Type S (1 bit) C (11 bits) M (52 bits) signaling NaN u 2047 (max) .0uuuuu—u (with at least one 1 bit) quiet NaN u 2047 (max) .1uuuuu—u negative infinity 1 2047 (max) .000000—0 positive infinity 0 2047 (max) .000000—0 positive zero 1 0 .000000—0 positive zero 0 0 .000000—0 Prom: http://www.freesoft.org/CIE/RFC/1832/32.htm
$r = (-1)^{s} 2^{c-1023} (1+m), c = \sum_{k=0}^{10} c_k 2^k, m = \sum_{k=0}^{51} \frac{m_k}{2^{52-k}}$	Peter Blomgren (blomgren peter@gmail.com) Computer Arithmetic & Finite Precision (24/66)

Binary Representation, IEEE 754-1985 Something's Missing... Roundoff and Truncation, Errors, Digits Cancellation

Examples: Finite Precision

$$r = (-1)^{s} 2^{c-1023} (1+f), \quad c = \sum_{k=0}^{10} c_k 2^k, \quad m = \sum_{k=0}^{51} \frac{m_k}{2^{52-k}}$$

Example #1: 3.0

$$r_1 = (-1)^0 \cdot 2^{2^{10} - 1023} \cdot \left(1 + \frac{1}{2}\right) = 1 \cdot 2^1 \cdot \frac{3}{2} = 3.0$$

Example #2: The Smallest Positive Real Number

$$r_2 = (-1)^0 \cdot 2^{0-1023} \cdot (1+2^{-52}) = (1+2^{-52}) \cdot 2^{-1023} \cdot 1 \approx 10^{-308}$$

Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable Binary Representation, IEEE 754-1985 Something's Missing... Roundoff and Truncation, Errors, Digits Cancellation

Examples: Finite Precision

$$r = (-1)^{s} 2^{c-1023} (1+f), \quad c = \sum_{k=0}^{10} c_k 2^k, \quad m = \sum_{k=0}^{51} \frac{m_k}{2^{52-k}}$$

Example #3: The Largest Positive Real Number

$$r_{3} = (-1)^{0} \cdot 2^{1023} \cdot \left(1 + \frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{51}} + \frac{1}{2^{52}}\right)$$
$$= 2^{1023} \cdot \left(2 - \frac{1}{2^{52}}\right) \approx 10^{308}$$

Peter Blomgren, (blomgren.peter@gmail.com) Computer Arithmetic & Finite Precision — (25/66)	Peter Blomgren, (blomgren.peter@gmail.com) Computer Arithmetic & Finite Precision — (26/66)					
Calculus Review Binary Representation, IEEE 754-1985 Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable Cancellation	Calculus Review Binary Representation, IEEE 754-1985 Computer Arithmetic & Finite Precision Something's Missing Algorithms Roundoff and Truncation, Errors, Digits Solutions of Equations of One Variable Cancellation					
Something is Missing — Gaps in the Representation 1 of 3	Something is Missing — Gaps in the Representation 2 of 3					
There are gaps in the floating-point representation!						
Given the representation	A gap of 2^{-1075} doesn't seem too bad					
0 000000000 00000000000000000000000000	However, the size of the gap depend on the value itself					
for the value $\frac{2^{-1023}}{2^{52}}$.	Consider $r = 3.0$					
The next larger floating-point value is	0 1000000000 1000000000000000000000000					
0 000000000 000000000000000000000000000	and the next value					
<i>i.e.</i> the value $\frac{2^{-1023}}{2^{51}}$.	010000000001000000000000000000000000					
The difference between these two values is $\frac{2^{-1023}}{2^{52}} = 2^{-1075}$.	$-\frac{2}{10}$ $\frac{2}{10}$ $\frac{10}{10}$					
Any number in the interval $\left(\frac{2^{-1023}}{2^{52}}, \frac{2^{-1023}}{2^{51}}\right)$ is not	The difference is $\frac{1}{2^{52}} \approx 4.4 \cdot 10^{-10}$.					
Peter Blomgren, (blomgren, peter@gmail.com) Computer Arithmetic & Finite Precision — (27/66)	Peter Blomgren, (blomgren.peter@gmail.com) Computer Arithmetic & Finite Precision - (28/66)					

Something is Missing — Gaps in the Representation

At the other extreme, the difference between

and the previous value

is $\frac{2^{1023}}{2^{52}} = 2^{971} \approx 1.99 \cdot 10^{292}.$

That's a "fairly significant" gap!!!

The number of atoms in the observable universe can be estimated to be no more than $\sim 10^{80}.$

Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable

Binary Representation, IEEE 754-1985 Something's Missing... Roundoff and Truncation, Errors, Digits Cancellation

The Relative Gap

3 of 3

It makes more sense to factor the exponent out of the discussion and talk about the relative gap:

Exponent	Gap	Relative Gap (Gap/Exponent)
2^{-1023}	2^{-1075}	2 ⁻⁵²
2 ¹	2^{-51}	2 ⁻⁵²
2 ¹⁰²³	2 ⁹⁷¹	2 ⁻⁵²

Any difference between numbers smaller than the local gap is not representable, *e.g.* any number in the interval

$$\left[3.0, \, 3.0 + \frac{1}{2^{51}} \right)$$

is represented by the value 3.0.

Svmbol

S

С

т

Bits

1

15

112

Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Computer Arithmetic & Finite Precision	— (29/66)	Peter Blomgren, (blomg	${\tt gren.peter@gmail.com}$	Computer Arithmetic	& Finite Precision	— (30/66)
Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable	Binary Representation, IEEE 754-1985 Something's Missing Roundoff and Truncation, Errors, Digits Cancellation		Computer Arithr Solutions of Eq	Calculus Review netic & Finite Precision Algorithms uations of One Variable	Binary Representation Something's Missing Roundoff and Truncati Cancellation	, IEEE 754-1985 ion, Errors, Digits	
The Floating Point "Theorem"			Finite Precision	A 128-bit re	al number	quadrup	e-precision
"Theorem" Floating point "numbers" represent intervals!		The <i>Binary Floati</i> The Institute for specified the follo	ing Point Arithm Electrical and El wing layout for a	netic Standard 7 ectronics Engin a 128-bit real n	754-1985 (IEE eers) standard umber:	Е — 1	
Since (most) humans find it hard from now on we will for simplicit	to think in binary representa y and without loss of	ition,	s c ₁ . Where	4 c ₁₃ c ₁ c ₀ m	₁₁₁ m ₁₁₀ m	₁ m ₀	

generality assume that floating point numbers are represented in the normalized floating point form as...

k-digit decimal machine numbers

$$\pm 0.d_1d_2\cdots d_{k-1}d_k\cdot 10^n,$$

where

$$1 \leq d_1 \leq 9, \quad 0 \leq d_i \leq 9, \ i \geq 2, \quad n \in \mathbb{Z}$$

 $r = (-1)^{s} 2^{c-16,383} (1+m), \quad c = \sum_{k=0}^{14} c_k 2^k, \quad m = \sum_{k=0}^{111} \frac{m_k}{2^{52-k}}$

The sign bit — 0=positive, 1=negative

Description

The exponent

The fraction

Binary Representation, IEEE 754-1985 Something's Missing... Roundoff and Truncation, Errors, Digits Cancellation

A 256-bit real number

Finite Precision

Layout for a 256-bit real number:

$s\,c_{17}\,c_{16}\,\ldots\,c_{1}\,c_{0}\,m_{236}\,m_{235}\,\ldots\,m_{1}\,m_{0}$

Where

Symbol	Bits	Description
5	1	The sign bit — $0=$ positive, $1=$ negative
С	18	The exponent
т	237	The fraction

$$r = (-1)^{s} 2^{c-131,071} (1+m), \quad c = \sum_{k=0}^{17} c_k 2^k, \quad m = \sum_{k=0}^{236} \frac{m_k}{2^{52-k}}$$

Calculus Review B Computer Arithmetic & Finite Precision S Algorithms R Solutions of Equations of One Variable C

Binary Representation, IEEE 754-1985 Something's Missing... Roundoff and Truncation, Errors, Digits Cancellation

k-Digit Decimal Machine Numbers

Any real number can be written in the form

$$\pm 0.d_1d_2\cdots d_\infty\cdot 10^n$$

given infinite patience and storage space.

We can obtain the floating-point representation fl(r) in two ways:

- (1) Truncating (chopping) just keep the first k digits.
- (2) Rounding if $d_{k+1} \ge 5$ then add 1 to d_k . Truncate.

Examples

$$\mathtt{fl}_{t,5}(\pi) = 0.31415 \cdot 10^1, \quad \mathtt{fl}_{r,5}(\pi) = 0.31416 \cdot 10^1$$

In both cases, the error introduced is called the **roundoff error**.

Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Computer Arithmetic & Finite Precision	— (33/66)	Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Computer Arithmetic & Finite Precision — (34/66)				
Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable	Binary Representation, IEEE 754-1985 Something's Missing Roundoff and Truncation, Errors, Digits Cancellation		Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable	Binary Representation, IEEE 754-1985 Something's Missing Roundoff and Truncation, Errors, Digits Cancellation				
Quantifying the Error			Sources of Numerical Error	Important!!!				
Let p^* be and approximation to p , t	hen							
Definition (The Absolute Error)			1) Representation — Roundoff.					
<i>p</i> -	$-p^{*} $		2) Cancellation — Consider:					
Definition (The Relative Error)			$\begin{array}{c} 0.12345678012345\cdot 10^{1} \\ - 0.12345678012344\cdot 10^{1} \end{array}$					
$\frac{ \boldsymbol{p}-\boldsymbol{p}^* }{ \boldsymbol{p} }, \boldsymbol{p}\neq \boldsymbol{0}$			$= 0.10000000000 \cdot 10^{-13}$					
IF 1			this value has (at most) ${f 1}$ signific	cant digit!!!				
Definition (Significant Digits)The number of significant digits is $\frac{ p - p^* }{ p }$	the largest value of t for which $< 5\cdot 10^{-t}$	1	If you assume a "canceled value" computer will happily give you so programming the autopilot for an	has more significant bits (the me numbers) — I don't want you y airlines!!!				
Poter Blomgren /blomgren neter@gmail.com	Computer Arithmetic & Finite Precision	- (35/66)	Peter Blomgran /blomgran peter@gmail.com	Computer Arithmetic & Finite Precision — (36/66)				

Binary Representation, IEEE 754-1985 Something's Missing... Roundoff and Truncation, Errors, Digits Cancellation

Examples: 5-digit Arithmetic

Rounding 5-digit arithmetic

$$egin{array}{r} (96384+26.678)-96410=\ (96384+00027)-96410=\ 96411-96410=1.0000 \end{array}$$

Truncating 5-digit arithmetic

(96384 + 26.678) - 96410 =(96384 + 00026) - 96410 =96410 - 96410 = 0.0000

Rearrangement changes the result:

(96384 - 96410) + 26.678 = -26.000 + 26.678 = 0.67800

Numerically, order of computation matters! (This is a HARD problem)

Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable Binary Representation, IEEE 754-1985 Something's Missing... Roundoff and Truncation, Errors, Digits Cancellation

Examples: 5-digit Arithmetic

k-Digit Decimal Machine Numbers

Rounding 5-digit arithmetic

 $\begin{array}{l} (0.96384 \cdot 10^5 + 0.26678 \cdot 10^2) - 0.96410 \cdot 10^5 = \\ (0.96384 \cdot 10^5 + 0.00027 \cdot 10^5) - 0.96410 \cdot 10^5 = \\ 0.96411 \cdot 10^5 - 0.96410 \cdot 10^5 = 0.10000 \cdot 10^1 \end{array}$

Truncating 5-digit arithmetic

 $\begin{array}{l} (0.96384 \cdot 10^5 + 0.26678 \cdot 10^2) - 0.96410 \cdot 10^5 = \\ (0.96384 \cdot 10^5 + 0.00026 \cdot 10^5) - 0.96410 \cdot 10^5 = \\ 0.96410 \cdot 10^5 - 0.96410 \cdot 10^5 = 0.0000 \cdot 10^0 \end{array}$

Rearrangement changes the result:

 $\begin{array}{l}(0.96384 \cdot 10^5 - 0.96410 \cdot 10^5) + 0.26678 \cdot 10^2 = \\ -0.26000 \cdot 10^2 + 0.26678 \cdot 10^2 = 0.67800 \cdot 10^0\end{array}$

Peter Blomgren, <code>{blomgren.peter@gmail.com}</code>	Computer Arithmetic & Finite Precision — (37/66)	Р	eter Blo	mgren, (blomgren.p	peter@gmail.com angle	Co	omputer Arithmetic &	Finite Precision	— (38/66)
Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable			Co	omputer Arithmetic	Calculus Review & Finite Precision Algorithms ns of One Variable	Bi So Ro Ca	nary Representation, I omething's Missing oundoff and Truncation ancellation	EEE 754-1985 1, Errors, Digits	
xample: Loss of Significant Digits d	lue to Subtractive Cancellation	Subtrac	tive	Cancellation	Example:	Outp	out		
			n	Xn	<i>n</i> !	n	Xn		
Consider the recursive relation			0	0.63212056	1	11	0.07735223	3.99e+007	
			1	0.36787944	1	12	0.07177325	4.79e+008	
	1		2	0.26424112	2	13	0.06694778	6.23e+009	
$x_{n+1} = 1 - (n+1)x_n$	with $x_0 = 1$.		3	0.20727665	6	14	0.06273108	8.72e+010	
	e		4	0.17089341	24	15	0.05903379	1.31e+012	
-			5	0.14553294	120	16	0.05545930	2.09e+013	
I his sequence can be shown to co	onverge to U (in 2 slides).		6	0.12680236	720	17	0.05719187	3.56e+014	
			7	0.11238350	5.04e + 003	18	-0.02945367	6.4e + 015	

Subtractive cancellation produces an error which is approximately equal to the machine precision times n!.

19

20

1.55961974

-30.19239489

1.22e+017

2.43e+018

(40/66)

4.03e+004

3.63e+005

3.63e+006

0.10093197

0.09161229

0.08387707

10

Calculus Review Binary Representation, IEEE 754-1985 Something's Missing Roundoff and Truncation, Errors, Digits Cancellation	Calculus Review Binary Representation, IEEE 754-1985 Something's Missing Algorithms Solutions of Equations of One Variable Cancellation
Example: Proof of Convergence to 0	Example: Loss of Significant Digits Matlab code
The recursive relation is $x_{n+1} = 1 - (n+1)x_n$ with $x_0 = 1 - \frac{1}{e} = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \dots$ From the recursive relation $x_1 = 1 - x_0 = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots$ $x_2 = 1 - 2x_1 = \frac{1}{3} - \frac{2}{4!} + \frac{2}{5!} - \dots$ $x_3 = 1 - 3x_2 = \frac{3!}{4!} - \frac{3!}{5!} + \frac{3!}{6!} - \dots$ \vdots $x_n = 1 - nx_{n-1} = \frac{n!}{(n+1)!} - \frac{n!}{(n+2)!} + \frac{n!}{(n+3)!} - \dots$ This shows that $x_n = \frac{1}{n+1} - \frac{1}{(n+1)(n+2)} + \dots \to 0 \text{ as } n \to \infty.$	<pre>Matlab code: Loss of Significant Digits clear x(1) = 1-1/exp(1); s(1) = 1; for i = 2:21 x(i) = 1-(i-1)*x(i-1); s(i) = 1/i; f(i) = (i-1)*f(i-1); end n = 0:20; z = [n; x; s; f]; fprintf(1, '\n\n n x(n) 1/(n+1) n!\n\n') fprintf(1, '\%2.0f %13.8f %10.8f %10.3g\n',z)</pre>
Peter Blomgren, (blomgren.peter@gmail.com) Computer Arithmetic & Finite Precision — (41/66)	Peter Blomgren, (blomgren.peter@gmail.com) Computer Arithmetic & Finite Precision — (42/66)
Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable Algorithms Algorithms Algorithms	Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable Pseudo-code
Definition (Algorithm) An algorithm is a procedure that describes, in an unambiguous manner, a finite sequence of steps to be performed in a specific order.	Definition (Pseudo-code) Pseudo-code is an algorithm description which specifies the input/output formats. Note that pseudo-code is not computer language specific, but
procedure to solve a problem or approximate a solution to a problem.	should be easily translatable to any procedural computer language. Examples of Pseudo-code statements:
Most homes have a collection of algorithms in printed form — we tend to call them "recipes."	for i = 1,2,,n Set $x_i = a_i + i * h$
There is a collection of algorithms "out there" called Numerical	While $i < N$ do Steps 17 - 21

Recipes, Google for it!

— (43/66)

 Peter Blomgren, (blomgren.peter@gmail.com)
 Algorithms and Convergence

If ... then ... else

— (44/66)

Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable	Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable
Key Concepts for Numerical Algorithms Stability	Key Concepts for Numerical Algorithms Error Growth
Definition (Stability) An algorithm is said to be stable if small changes in the input, generates small changes in the output.	Suppose $E_0 > 0$ denotes the initial error, and E_n represents the error after <i>n</i> operations. If $E_n \approx CE_0 \cdot n$ (for a constant <i>C</i> which is independent of <i>n</i>), then the growth is linear .
At some point we need to quantify what "small" means! If an algorithm is stable for a certain range of initial data, then is it said to be conditionally stable .	case the error will dominate very fast (undesirable scenario). Linear error growth is usually unavoidable, and in the case where C and E_0 are small the results are generally acceptable. — Stable algorithm
Stability issues are discussed in great detail in Math 543 .	Exponential error growth is unacceptable. Regardless of the size of E_0 the error grows rapidly. — Unstable algorithm.
Peter Blomgren, (blomgren.peter@gmail.com) Algorithms and Convergence	Peter Blomgren, (blomgren.peter@gmail.com) Algorithms and Convergence (46/66)
Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable	Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable
Example BF-1.3.3 1 of 2	Example BF-1.3.3 2 of 2
The recursive equation	Now, consider what happens in 5-digit rounding arithmetic
$p_n = \frac{10}{3}p_{n-1} - p_{n-2}, n = 2, 3, \dots, \infty$	$p_0^* = 1.0000, p_1^* = 0.33333$
has the exact solution	which modifies
$p_n = c_1 \left(\frac{1}{3}\right)^n + c_2 3^n$	$c_1 = 1.0000, c_2 = -0.12500 \cdot 10^{-5}$ The generated sequence is
for any constants c_1 and c_2 . (Determined by starting values.) In particular, if $p_0 = 1$ and $p_1 = \frac{1}{3}$, we get $c_1 = 1$ and $c_2 = 0$, so $p_n = \left(\frac{1}{3}\right)^n$ for all n .	$p_n^* = 1.0000 (0.33333)^n - \underbrace{0.12500 \cdot 10^{-5} (3.0000)^n}_{\text{Exponential Growth}}$
	n [*] quickly becomes a very poor approximation to p_due to the

Peter Blomgren, {blomgren.peter@gmail.com}

Algorithms and Convergence

— (48/66)

Algorithms, Pseudo-Cod Fundamental Concepts

Algorithms and Convergence

Reducing the Effects of Roundoff Error

Peter Blomgren, blomgren.peter@gmail.com

The effects of roundoff error can be reduced by using higher-order-digit arithmetic such as the double or multiple-precision arithmetic available on most computers.

Disadvantages in using double precision arithmetic are that it takes more computation time and **the growth of the roundoff error is not eliminated but only postponed**.

Sometimes, but not always, it is possible to reduce the growth of the roundoff error by restructuring the calculations.

Algorithms and Convergence

— (52/66)

Rate of Convergence

Definition (Rate of Convergence)

Suppose the sequence $\underline{\beta} = \{\beta_n\}_{n=1}^{\infty}$ converges to zero, and $\underline{\alpha} = \{\alpha_n\}_{n=1}^{\infty}$ converges to a number α .

If $\exists K > 0$: $|\alpha_n - \alpha| < K\beta_n$, for *n* large enough, then we say that $\{\alpha_n\}_{n=1}^{\infty}$ converges to α with a **Rate of Convergence** $\mathcal{O}(\beta_n)$ ("Big Oh of β_n ").

We write

Key Concepts

$$\alpha_n = \alpha + \mathcal{O}(\beta_n)$$

Note: The sequence $\beta = {\{\beta_n\}_{n=1}^{\infty}}$ is usually chosen to be

$$\beta_n = \frac{1}{n^p}$$

for some positive value of p.

Peter Blomgren, blomgren.peter@gmail.com

Peter Blomgren, <code>{blomgren.peter@gmail.com}</code>	Algorithms and Convergence	— (49/66)	Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Algorithms and Convergence	— (50/66)
Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable	Algorithms, Pseudo-Code Fundamental Concepts		Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable	Algorithms, Pseudo-Code Fundamental Concepts	
Examples: Rate of Convergence			Examples: Rate of Convergence		
			Example #2 : Consider the sequence	e (as $n ightarrow\infty)$	
Example #1: If $\alpha_n = \alpha_n$	$\alpha + \frac{1}{\sqrt{n}}$		$\alpha_n = \sin \left(\frac{1}{2} \right)$	$\left(\frac{1}{n}\right) - \frac{1}{n} = 0.$	
then for any $\epsilon > 0$			$\sin\left(\frac{1}{2}\right) \sim \frac{1}{2} - \frac{1}{2}$	$\frac{1}{1} + \mathcal{O}\left(\frac{1}{1}\right)$	
$ \alpha_n - \alpha = \frac{1}{\sqrt{n}}$	$\frac{1}{2} \leq \underbrace{(1+\epsilon)}_{\mathcal{K}} \underbrace{\frac{1}{\sqrt{n}}}_{\beta_n}$		Hence $ \alpha_n = \left \frac{1}{6n^3} \right $	$ \begin{array}{c} 6n^3 + \mathcal{O}\left(n^5\right) \\ + \mathcal{O}\left(\frac{1}{n^5}\right) \end{array} $	
hence $\alpha_{\textit{n}} = \alpha +$	$\mathcal{O}\left(\frac{1}{\sqrt{n}}\right)$		It follows that $\label{eq:alpha_n} lpha_{\it n} = {f 0} + \noalign{\medskip}{2mm}$ Note:	$\mathcal{O}\left(\frac{1}{n^3}\right)$	
			$\mathcal{O}\left(rac{1}{n^3} ight) + \mathcal{O}\left(rac{1}{n^5} ight) = \mathcal{O}\left(rac{1}{n^3} ight),$	since $\frac{1}{n^5} \ll \frac{1}{n^3}$, as n	$n ightarrow \infty$

— (51/66)

			Calcult	is Review
Computer	Arithmetic	&	Finite	Precision
			A	lgorithms
Solutions	of Equatio	ns	of One	Variable

Algorithms. Pseudo-Code **Fundamental Concepts**

Generalizing to Continuous Limits

Definition (Rate of Convergence) $\alpha(h) = \sin(h) - h$ Suppose We **Taylor expand** sin(x) about $x_0 = 0$: $\lim_{h\searrow 0}G(h)=0, \quad \text{and} \quad \lim_{h\searrow 0}F(h)=L$ $\sin\left(h ight)\sim h-rac{h^{3}}{6}+\mathcal{O}\left(h^{5} ight)$ If $\exists K > 0$: |F(h) - L| < K |G(h)|Hence $\left| \alpha(h) \right| = \left| \frac{h^3}{6} + \mathcal{O}\left(h^5 \right) \right|$ $\forall h < H$ (for some H > 0), then $F(h) = L + \mathcal{O}(G(h))$ It follows that $\lim_{h\to 0}\alpha(h)=\mathbf{0}+\mathcal{O}\left(h^3\right)$ we say that F(h) converges to L with a **Rate of Convergence** $\mathcal{O}(G(h))$. Note: Usually $G(h) = h^p$, p > 0. Peter Blomgren, {blomgren.peter@gmail.com} — (53/66) Peter Blomgren, blomgren.peter@gmail.com Algorithms and Convergence **Algorithms and Convergence Calculus Review** f(x) = 0, "Root Finding" **Calculus Review** f(x) = 0, "Root Finding" **Computer Arithmetic & Finite Precision** The Bisection Method **Computer Arithmetic & Finite Precision** The Bisection Method When do we stop?! When do we stop?! Algorithms Algorithms *** Homework #1 *** Solutions of Equations of One Variable We are going to solve the equation f(x) = 0 (*i.e.* finding root to Our new favorite problem: the equation), for functions f that are complicated enough that there is no closed form solution (and/or we are too lazy to find it?) f(x) = 0.In a lot of cases we will solve problems to which we can find the closed form solutions — we do this as a training ground and to evaluate how good our numerical methods are.

- (54/66)

Introduction

Algorithms. Pseudo-Code **Fundamental Concepts**

Examples: Rate of Convergence

Example #2-b:	Consider the function	lpha(h) (as $h ightarrow 0)$
---------------	-----------------------	------------------------------

$$\mathcal{O}\left(h^{3}
ight)+\mathcal{O}\left(h^{5}
ight)=\mathcal{O}\left(h^{3}
ight), \hspace{1em} ext{since} \hspace{1em} h^{5}\ll h^{3}, \hspace{1em} ext{as} \hspace{1em} h
ightarrow 0$$

Calculus Review Computer Arithmetic & Finite Precision The Bisection Method Algorithms *** Homework #1 *** Solutions of Equations of One Variable 1 of 4

"Root Findi

The Bisection Method

Suppose f is continuous on the interval (a_0, b_0) and $f(a_0) \cdot f(b_0) < 0$ — This means the function changes sign at least once in the interval.

The intermediate value theorem guarantees the existence of $c \in (a_0, b_0)$ such that f(c) = 0.

Without loss of generality (just consider the function -f(x)), we can assume (for now) that $f(a_0) < 0$.

We will construct a sequence of intervals containing the root *c*:

$$(a_0, b_0) \supset (a_1, b_1) \supset \cdots \supset (a_{n-1}, b_{n-1}) \supset (a_n, b_n) \ni c$$

Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable

The Bisection Method *** Homework #1 ***

2 of 4

The Bisection Method

The sub-intervals are determined recursively:

Given (a_{k-1}, b_{k-1}) , let $m_{k-1} = \frac{a_{k-1} + b_{k-1}}{2}$ be the mid-point. If $f(m_{k-1}) = 0$, we're done, otherwise

 $(a_k, b_k) = \left\{ egin{array}{cc} (m_{k-1}, b_{k-1}) & ext{if } f(m_{k-1}) < 0 \ (a_{k-1}, m_{k-1}) & ext{if } f(m_{k-1}) > 0 \end{array}
ight.$

This construction guarantees that $f(a_k) \cdot f(b_k) < 0$ and $c \in (a_k, b_k).$

Peter Blomgren, {blomgren.peter@gmail.com} Solutions of Equations of One Variable — (57/66)	Peter Blomgren, (blomgren.peter@gmail.com) Solutions of Equations of One Variable — (58/66)
Calculus Review $f(x) = 0$, "Root Finding"Computer Arithmetic & Finite PrecisionThe Bisection MethodAlgorithmsWhen do we stop?!	Calculus Review Computer Arithmetic & Finite Precision Algorithms $f(x) = 0$, "Root Finding" The Bisection Method When do we stop?!
Solutions of Equations of One Variable **** Homework #1 ***	Solutions of Equations of One Variable *** Homework #1 ***
The Bisection Method 3 of 4	The Bisection Method 4 of 4
After <i>n</i> steps, the interval (a_n, b_n) has the length	Convergence is slow: At each step we gain one binary digit in accuracy . Since
$ b_n-a_n =\left(rac{1}{2} ight)^n b_0-a_0 .$	$10^{-1} \approx 2^{-3.3}$, it takes on average 3.3 iterations to gain one decimal digit of accuracy.
We can take	Note: The rate of convergence is completely independent of the function <i>f</i> .
$m_n = \frac{a_n + b_n}{2}$ as the estimate for the root <i>c</i> and we have	We are only using the sign of f at the endpoints of the interval(s) to make decisions on how to update. — By making more effective use of the values of f we can attain significantly faster.
$c=m_n\pm d_n, d_n=\left(rac{1}{2} ight)^{n+1} b_0-a_0 .$	convergence. First an example

The Bisection Method

Example, 1 of 2

The bisection method applied to

$$f(x) = \left(\frac{x}{2}\right)^2 - \sin(x) = 0$$

The Bisection Method

*** Homework #1 ***

with $(a_0, b_0) = (1.5, 2.0)$, and $(f(a_0), f(b_0)) = (-0.4350, 0.0907)$ gives:

k	a _k	b_k	m _k	$f(m_k)$
0	1.5000	2.0000	1.7500	-0.2184
1	1.7500	2.0000	1.8750	-0.0752
2	1.8750	2.0000	1.9375	0.0050
3	1.8750	1.9375	1.9062	-0.0358
4	1.9062	1.9375	1.9219	-0.0156
5	1.9219	1.9375	1.9297	-0.0054
6	1.9297	1.9375	1.9336	-0.0002
7	1.9336	1.9375	1.9355	0.0024
8	1.9336	1.9355	1.9346	0.0011
9	1.9336	1.9346	1.9341	0.0004

Peter Blomgren, <code>{blomgren.peter@gmail.com}</code>	Solutions of Equations of One Variable	— (61/66)
Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable	f(x) = 0, "Root Finding" The Bisection Method When do we stop?! **** Homework #1 ***	

The Bisection Method

Matlab code

(63/66)

Matlab code: The Bisection Method

```
% WARNING: This example ASSUMES that f(a)<0<f(b)...
x = 1.5:0.001:2;
f = inline('(x/2).^{2}-sin(x)', 'x');
a = 1.5;
b = 2.0;
for k = 0:9
    plot(x,f(x),'k-','linewidth',2)
    axis([1.45 2.05 -0.5 .15])
    grid on
    hold on
    plot([a b],f([a b]),'ko','linewidth',5)
    hold off
    m = (a+b)/2;
    if (f(m) < 0)
        a = m;
    else
        b = m;
    end
    pause
    print('-depsc',['bisec' int2str(k) '.eps'],'-f1');
end
```

The Bisection Method

Calculus Review Computer Arithmetic & Finite Precision Algorithms Solutions of Equations of One Variable

f(x) = 0, "Root Finding The Bisection Method When do we stop?! *** Homework #1 ***

Stopping Criteria

When do we stop?

We can (1) keep going until successive iterates are close:

$$|m_k - m_{k-1}| < \epsilon$$

or (2) close in relative terms

$$\frac{|m_k - m_{k-1}|}{|m_k|} < \epsilon$$

or (3) the function value is small enough

 $|f(m_k)| < \epsilon$

No choice is perfect. In general, where no additional information about f is known, the second criterion is the preferred one (since it comes the closest to testing the relative error).

Calculus Review Computer Arithmetic & Finite Precision Algorithms $f(x) = 0$, "Root Finding" The Bisection Method When do we stop?!Solutions of Equations of One Variable*** Homework #1 ***	Calculus Review Computer Arithmetic & Finite Precision Algorithms $f(x) = 0$, "Root Finding" The Bisection Method When do we stop?!Solutions of Equations of One Variable*** Homework #1 ***
Matlab command(s) of the day: help, lookfor	Homework #1 http://webwork.sdsu.edu
<pre>help — Display help text in Command Window matlab>> help, by itself, lists all primary help topics. [] matlab>> help help, gives help for the help command. lookfor — Find all functions with matlab>> lookfor function, will return a (long) list of things related to functions.</pre>	 Will open on 08/29/2014 at 09:30am PDT. Will close no earlier than 09/09/2014 at 09:00pm PDT.
Peter Blomgren, (blomgren.peter@gmail.com) Solutions of Equations of One Variable - (65/66)	Peter Blomgren, (blomgren.peter@gmail.com) Solutions of Equations of One Variable