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Introduction

“[...] it is rare to have the luxury of quadratic convergence.”
(Burden-Faires, p.86 9th)

There are a number of methods for squeezing faster convergence out of
an already computed sequence of numbers.

We here explore one method which seems the have been around since the
beginning of numerical analysis... Aitken’s ∆2 method. It can be used
to accelerate convergence of a sequence that is linearly convergent,
regardless of its origin or application.

A review of extrapolation methods can be found in:
“Practical Extrapolation Methods: Theory and Applications,” Avram
Sidi, Number 10 in Cambridge Monographs on Applied and Compu-
tational Mathematics, Cambridge University Press, June 2003. ISBN:
0-521-66159-5
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Recall: Convergence of a Sequence

Definition

Suppose the sequence {pn}∞n=0 converges to p, with pn 6= p for all
n. If positive constants λ and α exists with

lim
n→∞

|pn+1 − p|
|pn − p|α = λ,

then {pn}∞n=0 converges to p of order α, with asymptotic error
constant λ.

Linear convergence means that α = 1, and λ ∈ (0, 1).
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Aitken’s ∆2 Method I/II

Assume {pn}∞n=0 is a linearly convergent sequence with limit p.

Further, assume we are far out into the tail of the sequence (n
large), and the signs of the successive errors agree, i.e.

sign(pn − p) = sign(pn+1 − p) = sign(pn+2 − p) = . . .

so that

pn+2 − p

pn+1 − p
≈ pn+1 − p

pn − p
≈ λ (the asymptotic limit).

This would indicate

(pn+1 − p)2 ≈ (pn+2 − p)(pn − p),

p2n+1 − 2pn+1p+ p2 ≈ pn+2pn − (pn+2 + pn)p+ p2.

We solve for p and get...
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Aitken’s ∆2 Method II/II

We solve for p and get...

p ≈ pn+2pn − p2n+1

pn+2 − 2pn+1 + pn
.

A little bit of algebraic manipulation put this into the equivalent
“classical” Aitken form:

p̂n = p = pn −
(pn+1 − pn)

2

pn+2 − 2pn+1 + pn
.

Aitken’s ∆2 Method is based on the assumption that the p̂n we compute
from pn+2, pn+1 and pn is a better approximation to the actual limit p.

The analysis needed to rigorously prove this is beyond the scope of this
class, see e.g. Sidi’s book.
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Aitken’s ∆2 Method The Recipe

Given a sequence finite {pn}Nn=0 or infinite {qn}∞n=0 sequence
which converges linearly to some limit.

Define the new sequences

p̂n = pn −
(pn+1 − pn)

2

pn+2 − 2pn+1 + pn
, n = 0, 1, . . . ,N − 2,

or

q̂n = qn −
(qn+1 − qn)

2

qn+2 − 2qn+1 + qn
, n = 0, 1, . . . ,∞.
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Aitken’s ∆2 Method Example

Consider the sequence {pn}∞n=0, where the sequence is generated by the
fixed point iteration pn+1 = cos(pn), p0 = 0.

Iteration pn p̂n
0 0.000000000000000 0 .685073357326045
1 1.000000000000000 0.7 28010361467617
2 0 .540302305868140 0.73 3665164585231
3 0 .857553215846393 0.73 6906294340474
4 0 .654289790497779 0.73 8050421371664
5 0.7 93480358742566 0.73 8636096881655
6 0.7 01368773622757 0.73 8876582817136
7 0.7 63959682900654 0.73 8992243027034
8 0.7 22102425026708 0.7390 42511328159
9 0.7 50417761763761 0.7390 65949599941
10 0.73 1404042422510 0.7390 76383318956
11 0.7 44237354900557 0.73908 1177259563∗
12 0.73 5604740436347 0.73908 3333909684∗

Note: Bold digits are correct; p̂11 needs p13, and p̂12 additionally needs p14.
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Faster Convergence for “Aitken-Sequences”

Theorem (Convergence of Aitken-∆2-Sequences)

Suppose {pn}∞n=0 is a sequence that converges linearly to the limit
p, and for n large enough we have (pn − p)(pn+1 − p) > 0. Then
the Aitken-accelerated sequence {p̂n}∞n=0 converges fast to p in the
sense that

lim
n→∞

[
p̂n − p

pn − p

]
= 0.

We can combine Aitken’s method with fixed-point iteration in
order to get a “fixed-point iteration on steroids.” (or should that be

Erythropoietin (EPO), or possibly Clenbuterol?!)
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Steffensen’s Method: Fixed-Point Iteration on Steroids

Suppose we have a (linearly converging) fixed point iteration:

p0, p1 = g(p0), p2 = g(p1), . . .

Once we have p0, p1 and p2, we can compute

p̂0 = p0 −
(p1 − p0)

2

p2 − 2p1 + p0
.

At this point we “restart” the fixed point iteration with p0 = p̂0, e.g.

p3 = p̂0, p4 = g(p3), p5 = g(p4),

and compute

p̂3 = p3 −
(p4 − p3)

2

p5 − 2p4 + p3
.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 #4: Solutions of Equations in One Variable — (10/59)

Accelerating Convergence
Zeros of Polynomials

Deflation, Müller’s Method
Polynomial Approximation

Review
Aitken’s ∆2 Method
Steffensen’s Method

Steffensen’s Method: The Quadratic, g-g-A, Waltz! Quadratic Convergence

Algorithm: Steffensen’s Method

Input: Initial approximation p0; tolerance TOL; maximum number of
iterations N0.

Output: Approximate solution p, or failure message.
1. Set i = 1
2. While i ≤ N0 do 3--6

3∗ Set p1 = g(p0), p2 = g(p1),
p = p0 − (p1 − p0)

2/(p2 − 2p1 + p0)
4. If |p − p0| < TOL then
4a. output p
4b. stop program
5. Set i = i + 1
6. Set p0 = p
7. Output: “Failure after N0 iterations.”
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Steffensen’s Method: Potential Breakage

3∗ If at some point p2−2p1+p0 = 0 (which appears in the denominator),
then we stop and select the current value of p2 as our approximate
answer.

Both Newton’s and Steffensen’s methods give quadratic convergence. In
Newton’s method we compute one function value and one derivative in
each iteration. In Steffensen’s method we have two function evaluations
and a more complicated algebraic expression in each iteration, but no
derivative. It looks like we got something for (almost) nothing.

However, in order the guarantee quadratic convergence for Steffensen’s
method, the fixed point function g must be 3 times continuously
differentiable, e.g. f ∈ C 3[a, b], (see theorem-2.15 in Burden-Faires 9th).
Newton’s method “only” requires f ∈ C 2[a, b] (BF 9th theorem-2.6).
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Aitken’s ∆2 and Steffensen’s Methods Example

Consider the sequence {pn}∞n=0, where the sequence is generated by the
fixed point iteration pn+1 = cos(pn), p0 = 0.

Iteration pn Aitken-p̂n Steffensen
0 0.000000000000000 0 .685073357326045 0.000000000000000
1 1.000000000000000 0.7 28010361467617 1.000000000000000
2 0 .540302305868140 0.73 3665164585231 0 .540302305868140
3 0 .857553215846393 0.73 6906294340474 0 .685073357326045s

4 0 .654289790497779 0.73 8050421371664 0.7 74372633807905
5 0.7 93480358742566 0.73 8636096881655 0.7 14859871642984
6 0.7 01368773622757 0.73 8876582817136 0.73 8660156167714s

7 0.7 63959682900654 0.73 8992243027034 0.739 371336116415
8 0.7 22102425026708 0.7390 42511328159 0.73 8892313230713
9 0.7 50417761763761 0.7390 65949599941 0.7390851 06356719s

10 0.73 1404042422510 0.7390 76383318956 0.7390851 51307330
11 0.7 44237354900557 0.73908 1177259563∗ 0.7390851 21028058
12 0.73 5604740436347 0.73908 3333909684∗ 0.739085133215161 s

Note: Bold digits are correct; p̂11 needs p13, and p̂12 additionally needs p14.
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Steffensen — Visualization 1 of 3
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Zoomed Steffensen on (cos(x)), step 1
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Steffensen — Visualization 2 of 3
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Steffensen — Visualization 3 of 3
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Zeros of Polynomials

Definition: Degree of a Polynomial

A polynomial of degree n has the form

P(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0, an 6= 0

where the ai ’s are constants (either real, or complex) called the
coefficients of P .

Why look at polynomials? — We’ll be looking at the problem
P(x) = 0 (i.e. f (x) = 0 for a special class of functions.)

Polynomials are the basis for many approximation methods, hence
being able to solve polynomial equations fast is valuable.

We’d like to use Newton’s method, so we need to compute P(x)
and P ′(x) as efficiently as possible.
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Fundamentals

Theorem (The Fundamental Theorem of Algebra)

If P(x) is a polynomial of degree n ≥ 1 with real or complex
coefficients, then P(x) = 0 has at least one (possibly complex)
root.

The proof is surprisingly(?) difficult and requires understanding of
complex analysis... We leave it as an exercise for the motivated
student!
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Key Consequences of the Fundamental Theorem of Algebra 1 of 2

Corollary

If P(x) is a polynomial of degree n ≥ 1 with real or complex
coefficients then there exists unique constants x1, x2, . . . , xk
(possibly complex) and unique positive integers m1, m2, . . . , mk

such that
∑k

i=1mi = n and

P(x) = an(x − x1)
m1(x − x2)

m2 · · · (x − xk)
mk

— The collection of zeros is unique.

— mi are the multiplicities of the individual zeros.

— A polynomial of degree n has exactly n zeros, counting
multiplicity.
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Key Consequences of the Fundamental Theorem of Algebra 2 of 2

Corollary

Let P(x) and Q(x) be polynomials of degree at most n. If x1, x2,
. . . , xk , with k > n are distinct numbers with P(xi ) = Q(xi ) for
i = 1, 2, . . . , k , then P(x) = Q(x) for all values of x .

— If two polynomials of degree n agree at at least (n+1) points,
then they must be the same.
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Horner’s Method: Evaluating Polynomials Quickly 1 of 3

Let
P(x) = anx

n + an−1x
n−1 + · · ·+ a1x + a0.

If we are looking to evaluate P(x0) for any x0, let

bn = an, bk = ak + bk+1x0, k = (n − 1), (n − 2), . . . , 1, 0,

then b0 = P(x0). We have only used n multiplications and n additions.

At the same time we have computed the decomposition

P(x) = (x − x0)Q(x) + b0,

where

Q(x) =
n−1∑

k=0

bk+1x
k .

Peter Blomgren, 〈blomgren.peter@gmail.com〉 #4: Solutions of Equations in One Variable — (21/59)

Accelerating Convergence
Zeros of Polynomials

Deflation, Müller’s Method
Polynomial Approximation

Fundamentals
Horner’s Method

Horner’s Method: Evaluating Polynomials Quickly 2 of 3

Huh?!? Where did the expression come from? — Consider

P(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

= (anx
n−1 + an−1x

n−2 + · · ·+ a1)x + a0

= ((anx
n−2 + an−1x

n−3 + · · · )x + a1)x + a0

= (. . . ((︸ ︷︷ ︸
n−1

anx + an−1︸ ︷︷ ︸
bn−1

)x + · · · )x + a1)x + a0

Horner’s method (first published by Theophilus Holdred(!) in
1820) is “simply” the computation of this parenthesized expression
from the inside-out...
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Horner’s Method: Evaluating Polynomials Quickly 3 of 3

Now, if we need to compute P ′(x0) we have

P ′(x)

∣∣∣∣
x=x0

= (x − x0)Q
′(x) + Q(x)

∣∣∣∣
x=x0

= Q(x0)

Which we can compute (again using Horner’s method) in (n − 1)
multiplications and (n − 1) additions.

Proof? We really ought to prove that Horner’s method works. It
basically boils down to lots of algebra which shows that the
coefficients of P(x) and (x − x0)Q(x) + b0 are the same...

A couple of examples may be more instructive...
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Example#1: Horner’s Method

For P(x) = x4 − x3 + x2 + x − 1, compute P(5):

x0 = 5 a4 = 1 a3 = −1 a2 = 1 a1 = 1 a0 = −1
b4x0 = 5 b3x0 = 20 b2x0 = 105 b1x0 = 530

b4 = 1 b3 = 4 b2 = 21 b1 = 106 b0 = 529

Hence, P(5) = 529, and

P(x) = (x − 5)(x3 + 4x2 + 21x + 106) + 529

Similarly we get P ′(5) = Q(5) = 436

x0 = 5 a3 = 1 a2 = 4 a1 = 21 a0 = 106
b3x0 = 5 b2x0 = 45 b1x0 = 330

b3 = 1 b2 = 9 b1 = 66 b0 = 436
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Algorithm: Horner’s Method

Algorithm: Horner’s Method

Input: Degree n; coefficients a0, a1, . . . , an; x0

Output: y = P(x0), z = P ′(x0).

1. Set y = an, z = an

2. For j = (n − 1), (n − 2), . . . , 1

Set y = x0y + aj , z = x0z + y

3. Set y = x0y + a0

4. Output (y , z)

5. End program
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Deflation — Finding All the Zeros of a Polynomial

If we are solving our current favorite problem

P(x) = 0, P(x) a polynomial of degree n,

and we are using Horner’s method of computing P(xi ) and P ′(xi ),
then after N iterations, xN is an approximation to one of the roots
of P(x) = 0.

We have
P(x) = (x − xN)Q(x) + b0, b0 ≈ 0.

At this point, let r̂1 = xN be the first root, and Q1(x) = Q(x).

We can now find a second root by applying Newton’s method to
Q1(x).
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Deflation — Finding All the Zeros of a Polynomial

After some number of iterations of Newton’s method we have

Q1(x) = (x − r̂2)Q2(x) + b
(2)
0 , b

(2)
0 ≈ 0

If P(x) is an nth-degree polynomial with n real roots, we can apply
this procedure (n − 2) times to find (n − 2) approximate zeros of
P(x): r̂1, r̂2, . . . , r̂n−2, and a quadratic factor Qn−2(x).

At this point we can solve Qn−2(x) = 0 using the quadratic
formula, and we have n roots of P(x) = 0.

This procedure is called Deflation.
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Deflation: Finding All the Zeros of a Polynomial
Müller’s Method — Finding Complex Roots

Quality of Deflation

Now, the big question is “are the approximate roots r̂1, r̂2, . . . ,
r̂n good approximations of the roots of P(x)???”

Unfortunately, sometimes, no.

In each step we solve the equation to some tolerance, i.e.

|b(k)0 | < tol

Even though we may solve to a tight tolerance (10−8), the errors
accumulate and the inaccuracies increase iteration-by-iteration...

Question: Is deflation therefore useless???
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Improving the Accuracy of Deflation

The problem with deflation is that the zeros of Qk(x) are not good
representatives of the zeros of P(x), especially for high k ’s.

As k increases, the quality of the root r̂k decreases.

Maybe there is a way to get all the zeros with the same quality?

The idea is quite simple... in each step of deflation, instead of just
accepting r̂k as a root of P(x), we re-run Newton’s method on the
full polynomial P(x), with r̂k as the starting point — a couple of
Newton iterations should quickly converge to the root of the full
polynomial.
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Improved Deflation — Algorithm Outline

Algorithm Outline: Improved Deflation

1. Apply Newton’s method to P(x) → r̂1, Q1(x).

2. For k = 2, 3, . . . , (n − 2) do 3--4

3. Apply Newton’s method to Qk−1 → r̂∗k, Q∗
k(x).

4. Apply Newton’s method to P(x) with r̂∗k as the initial point
→ r̂k
Apply Horner’s method to Qk−1(x) with x = r̂k → Qk(x)

5. Use the quadratic formula on Qn−2(x) to get the two remaining
roots.

Note: “Inside” Newton’s method, the evaluations of polynomials and their
derivatives are also performed using Horner’s method.
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Deflation & Improvement Wilkinson Polynomials

The Wilkinson Polynomials

PW
n (x) =

n∏

k=1

(x − k)

have the roots {1, 2, . . . , n}, but provide surprisingly tough
numerical root-finding problems. (Additional details in Math 543 .)

In the next few slides we show the results of Deflation and
Improved Deflation applied to Wilkinson polynomials of degree 9,
10, 12, and 13.
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Deflation & Improvement PW
9 (x) and PW

10 (x)
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Figure: [Left] The result of the two algorithms on the Wilkinson polynomial of degree

9; in this case the roots are computed so that |b(k)0 | < 10−6. [Right] The result of
the two algorithms on the Wilkinson polynomial of degree 10; in this case the roots are

computed so that |b(k)0 | < 10−6. In both cases the lower line corresponds to improved
deflation and we see that we get an improvement in the relative error of several orders
of magnitude.
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Deflation & Improvement PW
12 (x) and PW

13 (x)
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Figure: [Left] The result of the two algorithms on the Wilkinson polynomial of degree

12; in this case the roots are computed so that |b(k)0 | < 10−4. [Right] The result of
the two algorithms on the Wilkinson polynomial of degree 13; in this case the roots are

computed so that |b(k)0 | < 10−3. In both cases the lower line corresponds to improved
deflation and we see that we get an improvement in the relative error of several orders
of magnitude.
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What About Complex Roots???

One interesting / annoying feature of polynomials with real
coefficients is that they may have complex roots, e.g.
P(x) = x2 + 1 has the roots {−i , i}. Where by definition
i =

√
−1.

If the initial approximation given to Newton’s method is real, all
the successive iterates will be real... which means we will not find
complex roots.

One way to overcome this is to start with a complex initial
approximation and do all the computations in complex arithmetic.

Another solution is Müller’s Method...
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Müller’s Method

Müller’s method is an extension of the Secant method...

Recall that the secant method uses two points xk and xk−1 and
the function values in those two points f (xk) and f (xk−1). The
zero-crossing of the linear interpolant (the secant line) is used as
the next iterate xk+1.

Müller’s method takes the next logical step: it uses three points:
xk , xk−1 and xk−2, the function values in those points f (xk),
f (xk−1) and f (xk−2); a second degree polynomial fitting these
three points is found, and its zero-crossing is the next iterate xk+1.

Next slide: f (x) = x4 − 3x3 − 1, xk−2 = 1.5, xk−1 = 2.5, xk = 3.5.
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Müller’s Method — Illustration f (x) = x4 − 3x3 − 1

0 1 2 3 4

0

20
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Müller’s Method — Fitting the Quadratic Polynomial

We consider the quadratic polynomial

m(x) = a(x − xk)
2 + b(x − xk) + c

at the three fitting points we get

f (xk−2) = a(xk−2 − xk)
2 + b(xk−2 − xk) + c

f (xk−1) = a(xk−1 − xk)
2 + b(xk−1 − xk) + c

f (xk) = c

We can solve for a, b, and c :

a =
(xk−1 − xk )(f (xk−2)− f (xk))− (xk−2 − xk )(f (xk−1)− f (xk ))

(xk−2 − xk)(xk−1 − xk )(xk−2 − xk−1)

b =
(xk−2 − xk )

2(f (xk−1)− f (xk))− (xk−1 − xk )
2(f (xk−2)− f (xk))

(xk−2 − xk)(xk−1 − xk )(xk−2 − xk−1)

c = f (xk )
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Müller’s Method — Identifying the Zero

We now have a quadratic equation for (x − xk) which gives us two
possibilities for xk+1:

xk+1 − xk =
−2c

b ±
√
b2 − 4ac

In Müller’s method we select

xk+1 = xk −
2c

b + sign(b)
√
b2 − 4ac

we are maximizing the (absolute) size of the denominator, hence
we select the root closest to xk .

Note that if b2− 4ac < 0 then we automatically get complex roots.
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Müller’s Method — Algorithm

Algorithm: Müller’s Method

Input: x0, x1, x2; tolerance tol ; max iterations N0

Output: Approximate solution p, or failure message.

1. Set h1 = (x1 − x0), h2 = (x2 − x1), δ1 = [f (x1) − f (x0)]/h1,
δ2 = [f (x2)− f (x1)]/h2, d = (δ2 − δ1)/(h2 + h1), j = 3.

2. While j ≤ N0 do 3--7

3. b = δ2 + h2d , D =
√

b2 − 4f (x2)d complex?

4. If |b − D| < |b + D| then set E = b + D else set E = b − D

5. Set h = −2f (x2)/E , p = x2 + h

6. If |h| < tol then output p; stop program

7. Set x0 = x1, x1 = x2, x2 = p, h1 = (x1 − x0),
h2 = (x2 − x1), δ1 = [f (x1) − f (x0)]/h1, δ2 = [f (x2) − f (x1)]/h2,
d = (δ2 − δ1)/(h2 + h1), j = j + 1

8. output — “Müller’s Method failed after N0 iterations.”
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Now We Know “Everything” About Solving f (x) = 0 !?

Let’s recap... Things to remember...

The relation between root finding (f (x) = 0) and fixed point
(g(x) = x).

Key algorithms for root finding: Bisection, Secant Method, and
Newton’s Method. — Know what they are (the updates), how to start
(one or two points? bracketing or not bracketing the root?), can the
method break, can breakage be fixed? Convergence properties.

Also, know the mechanics of the Regula Falsi method, and understand
why it can run into trouble.

Fixed point iteration: Under what conditions do FP-iteration converge for
all starting values in the interval?
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Recap, continued...

Basic error analysis: order α, asymptotic error constant λ. —
Which one has the most impact on convergence? Convergence
rate for general fixed point iterations?

Multiplicity of zeros: What does it mean? How do we use this
knowledge to “help” Newton’s method when we’re looking for a
zero of high multiplicity?

Convergence acceleration: Aitken’s ∆2-method. Steffensen’s
Method.

Zeros of polynomials: Horner’s method, Deflation (with
improvement), Müller’s method.
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New Favorite Problem:

Interpolation and Polynomial Approximation
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Weierstrass Approximation Theorem

The following theorem is the basis for polynomial approximation:

Theorem (Weierstrass Approximation Theorem)

Suppose f ∈ C [a, b]. Then ∀ǫ > 0 ∃ a polynomial P(x) :
|f (x)− P(x)| < ǫ, ∀x ∈ [a, b].

Note: The bound is uniform, i.e. valid for all x in the interval.

Note: The theorem says nothing about how to find the polyno-
mial, or about its order.
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Illustrated: Weierstrass Approximation Theorem
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Figure: Weierstrass approximation Theorem guarantees that we (maybe with sub-
stantial work) can find a polynomial which fits into the “tube” around the function
f , no matter how thin we make the tube.
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Candidates: the Taylor Polynomials???

Natural Question:
Are our old friends, the Taylor Polynomials, good candidates
for polynomial interpolation?

Answer:
No. The Taylor expansion works very hard to be accurate in
the neighborhood of one point. But we want to fit data at
many points (in an extended interval).

[Next slide: The approximation is great near the expansion point
x0 = 0, but get progressively worse at we get further away from the
point, even for the higher degree approximations.]

Peter Blomgren, 〈blomgren.peter@gmail.com〉 #4: Solutions of Equations in One Variable — (45/59)

Accelerating Convergence
Zeros of Polynomials

Deflation, Müller’s Method
Polynomial Approximation

Fundamentals
Moving Beyond Taylor Polynomials
Lagrange Interpolating Polynomials
Neville’s Method

Taylor Approximation of ex on the Interval [0, 3]
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Lookahead: Polynomial Approximation

Clearly, Taylor polynomials are not well suited for approximating a
function over an extended interval.

We are going to look at the following:

• Lagrange polynomials — Neville’s Method. [This Lecture]

• Newton’s divided differences.

• Hermite interpolation.

• Cubic splines — Piecewise polynomial approximation.

• (Parametric curves)

• (Bézier curves)
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Interpolation: Lagrange Polynomials

Idea: Instead of working hard at one point, we will prescribe
a number of points through which the polynomial must pass.

As warm-up we will define a function that passes through the
points (x0, f (x0)) and (x1, f (x1)). First, lets define

L0(x) =
x − x1
x0 − x1

, L1(x) =
x − x0
x1 − x0

,

and then define the interpolating polynomial

P(x) = L0(x)f (x0) + L1(x)f (x1),

then P(x0) = f (x0), and P(x1) = f (x1).

– P(x) is the unique linear polynomial passing through
(x0, f (x0)) and (x1, f (x1)).
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An n-degree polynomial passing through n + 1 points

We are going to construct a polynomial passing through the points
(x0, f (x0)), (x1, f (x1)), (x2, f (x2)), . . . , (xN , f (xn)).

We define Ln,k(x), the Lagrange coefficients:

Ln,k(x) =
n∏

i=0, i 6=k

x− xi
xk − xi

=
x − x0
xk − x0

· · · x − xk−1

xk − xk−1
· x − xk+1

xk − xk+1
· · · x − xn

xk − xn
,

which have the properties

Ln,k(xk) = 1; Ln,k(xi ) = 0, ∀i 6= k .
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Example of Ln,k(x)
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-0.5
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0.5

1

This is L6,3(x), for the points xi = i , i = 0, . . . , 6.
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The nth Lagrange Interpolating Polynomial

We use Ln,k(x), k = 0, . . . , n as building blocks for the Lagrange
interpolating polynomial:

P(x) =
n∑

k=0

f (xk)Ln,k(x),

which has the property

P(xi ) = f (xi ), ∀i = 0, . . . , n.

This is the unique polynomial passing through the points
(xi , f (xi )), i = 0, . . . , n.
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Error bound for the Lagrange interpolating polynomial

Suppose xi , i = 0, . . . , n are distinct numbers in the interval [a, b],
and f ∈ Cn+1[a, b]. Then ∀x ∈ [a, b] ∃ ξ(x) ∈ (a, b) so that:

f (x) = PLagrange(x) +
f (n+1)(ξ(x))

(n + 1)!

n∏

i=0

(x − xi ),

where PLagrange(x) is the nth Lagrange interpolating polynomial.

Compare with the error formula for Taylor polynomials

f (x) = PTaylor(x) +
f (n+1)(ξ(x))

(n + 1)!
(x − x0)

n+1,

Problem: Applying the error term may be difficult...
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The Lagrange and Taylor Error Terms

Just to get a feeling for the non-constant part of the error terms in
the Lagrange and Taylor approximations, we plot those parts on
the interval [0, 4] with interpolation points xi = i , i = 0, 1, . . . , 4:
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Figure: [Left] The non-constant error terms for the Lagrange interpolation oscillates in the interval [−4, 4]
(and takes the value zero at the node point xk ), and [Right] the non-constant error term for the Taylor
extrapolation grows in the interval [0, 1024].
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Practical Problems

Applying (estimating) the error term is difficult.

The degree of the polynomial needed for some desired accuracy is
not known until after cumbersome calculations — checking the
error term.

If we want to increase the degree of the polynomial (to e.g.
n + 1) the previous calculations are not of any help...

Building block for a fix: Let f be a function defined at x0, . . . , xn,
and suppose that m1,m2, . . . ,mk are k (< n) distinct integers,
with 0 ≤ mi ≤ n ∀i . The Lagrange polynomial that agrees with
f (x) the k points xm1 , xm2 , . . . , xmk

, is denoted Pm1,m2,...,mk
(x).

Note: {m1,m2, . . . ,mk} ⊂ {0, 1, . . . , n}.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 #4: Solutions of Equations in One Variable — (54/59)

Accelerating Convergence
Zeros of Polynomials

Deflation, Müller’s Method
Polynomial Approximation

Fundamentals
Moving Beyond Taylor Polynomials
Lagrange Interpolating Polynomials
Neville’s Method

Increasing the degree of the Lagrange Interpolation

Theorem

Let f be defined at x0, x1, . . . , xk , and xi and xj be two distinct
points in this set, then

P(x) =
(x − xj)P0,...,j−1,j+1,...,k(x)− (x − xi )P0,...,i−1,i+1,...,k(x)

xi − xj

is the k th Lagrange polynomial that interpolates f at the k + 1
points x0, . . . , xk .
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Recursive Generation of Higher Degree Lagrange Interpolating Polynomials

x0 P0

x1 P1 P0,1

x2 P2 P1,2 P0,1,2

x3 P3 P2,3 P1,2,3 P0,1,2,3

x4 P4 P3,4 P2,3,4 P1,2,3,4 P0,1,2,3,4
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Neville’s Method

The notation in the previous table gets cumbersome... We
introduce the notation QLast,Degree = PLast–Degree,. . . ,Last, the table
becomes:

x0 Q0,0

x1 Q1,0 Q1,1

x2 Q2,0 Q2,1 Q2,2

x3 Q3,0 Q3,1 Q3,2 Q3,3

x4 Q4,0 Q4,1 Q4,2 Q4,3 Q4,4

Compare with the old notation:

x0 P0

x1 P1 P0,1

x2 P2 P1,2 P0,1,2

x3 P3 P2,3 P1,2,3 P0,1,2,3

x4 P4 P3,4 P2,3,4 P1,2,3,4 P0,1,2,3,4
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Algorithm: Neville’s Method — Iterated Interpolation

Algorithm: Neville’s Method

To evaluate the polynomial that interpolates the n + 1 points
(xi , f (xi )), i = 0, . . . , n at the point x :

1. Initialize Qi ,0 = f (xi ).
2.

FOR i = 1 : n
FOR j = 1 : i

Qi ,j =
(x − xi−j)Qi ,j−1 − (x − xi )Qi−1,j−1

xi − xi−j
END

END

3. Output the Q-table.
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Homework #3 http://webwork.sdsu.edu

Will open on 09/12/2014 at 09:30am PDT.

Will close no earlier than 09/24/2014 at 09:00pm PDT.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 #4: Solutions of Equations in One Variable — (59/59)


