Outline

Numerical Analysis and Computing

Lecture Notes \#5 - Interpolation and Polynomial Approximation
Divided Differences, and Hermite Interpolatory Polynomials

Peter Blomgren,

〈blomgren. peter@gmail.com〉

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720
http://terminus.sdsu.edu/

Fall 2014
\#5 Interpolation and Polynomial Approximation - (1/40)

Recap and Lookahead

Previously:

Neville's Method to successively generate higher degree polynomial approximations at a specific point. - If we need to compute the polynomial at many points, we have to re-run Neville's method for each point. $\mathcal{O}\left(n^{2}\right)$ operations/point.

Algorithm: Neville's Method

To evaluate the polynomial that interpolates the $n+1$ points $\left(x_{i}, f\left(x_{i}\right)\right), i=0, \ldots, n$ at the point x :

1. Initialize $Q_{i, 0}=f\left(x_{i}\right)$
2. $\operatorname{FOR} i=1: n$

$$
\begin{aligned}
\text { FOR } j & =1: i \\
Q_{i, j} & =\frac{\left(x-x_{i-j}\right) Q_{i, j-1}-\left(x-x_{i}\right) Q_{i-1, j-1}}{x_{i}-x_{i-j}}
\end{aligned}
$$

END

END
3. Output the Q-table

1) Polynomial Approximation: Practical Computations

- Representing Polynomials
- Divided Differences
- Different forms of Divided Difference Formulas

Polynomial Approximation, Higher Order Matching

- Osculating Polynomials
- Hermite Interpolatory Polynomials
- Computing Hermite Interpolatory Polynomials

Beyond Hermite Interpolatory Polynomials

Recap and Lookahead

Next:

Use divided differences to generate the polynomials* themselves.

* The coefficients of the polynomials. Once we have those, we can quickly (remember Horner's method?) compute the polynomial in any desired points. $\mathcal{O}(n)$ operations/point.

Algorithm: Horner's Method
Input: Degree n; coefficients $a_{0}, a_{1}, \ldots, a_{n} ; x_{0}$
Output: $y=P\left(x_{0}\right), z=P^{\prime}\left(x_{0}\right)$.

1. Set $y=a_{n}, z=a_{n}$
2. For $j=(n-1),(n-2), \ldots, 1$

Set $y=x_{0} y+a_{j}, z=x_{0} z+y$
3. Set $y=x_{0} y+a_{0}$
4. Output (y, z)
5. End program

If $P_{n}(x)$ is the $n^{\text {th }}$ degree polynomial that agrees with $f(x)$ at the points $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$, then we can (for the appropriate constants $\left.\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}\right)$ write:

$$
\begin{aligned}
P_{n}(x)=\quad & a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots \\
& \cdots+a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
\end{aligned}
$$

Note that we can evaluate this "Horner-style," by writing

$$
\begin{aligned}
P_{n}(x)= & a_{0}+\left(x-x_{0}\right)\left(a_{1}+\left(x-x_{1}\right)\left(a_{2}+\cdots\right.\right. \\
& \left.\left.\cdots+\left(x-x_{n-2}\right)\left(a_{n-1}+a_{n}\left(x-x_{n-1}\right)\right)\right)\right)
\end{aligned}
$$

so that each step in the Horner-evaluation consists of a subtraction, a multiplication, and an addition.

Sir Isaac Newton to the Rescue: Divided Differences

Zeroth Divided Difference:

$$
f\left[x_{i}\right]=f\left(x_{i}\right) .
$$

First Divided Difference:

$$
f\left[x_{i}, x_{i+1}\right]=\frac{f\left[x_{i+1}\right]-f\left[x_{i}\right]}{x_{i+1}-x_{i}}
$$

Second Divided Difference:

$$
f\left[x_{i}, x_{i+1}, x_{i+2}\right]=\frac{f\left[x_{i+1}, x_{i+2}\right]-f\left[x_{i}, x_{i+1}\right]}{x_{i+2}-x_{i}} .
$$

k th Divided Difference:

$$
f\left[x_{i}, x_{i+1}, \ldots, x_{i+k}\right]=\frac{f\left[x_{i+1}, x_{i+2}, \ldots, x_{i+k}\right]-f\left[x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right]}{x_{i+k}-x_{i}} .
$$

Given the relation

$$
\begin{aligned}
P_{n}(x)=\quad & a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots \\
& \cdots+a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
\end{aligned}
$$

at $\mathbf{x}_{0}: \quad a_{0}=P_{n}\left(x_{0}\right)=f\left(x_{0}\right)$.
at $\mathbf{x}_{1}: \quad f\left(x_{0}\right)+a_{1}\left(x_{1}-x_{0}\right)=P_{n}\left(x_{1}\right)=f\left(x_{1}\right)$

$$
\Rightarrow a_{1}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

at $\mathbf{x}_{2}: \quad a_{2}=\frac{f\left(x_{2}\right)-f\left(x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}-\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{1}-x_{0}\right)}$.
This gets massively ugly fast! - We need some nice clean notation!

The Constants $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ - Revisited
We had
at $\mathbf{x}_{0}: \quad a_{0}=P_{n}\left(x_{0}\right)=f\left(x_{0}\right)$.
at $\mathbf{x}_{1}: \quad f\left(x_{0}\right)+a_{1}\left(x_{1}-x_{0}\right)=P_{n}\left(x_{1}\right)=f\left(x_{1}\right)$

$$
\Rightarrow a_{1}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} .
$$

at $\mathbf{x}_{2}: \quad a_{2}=\frac{f\left(x_{2}\right)-f\left(x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}-\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{1}-x_{0}\right)}$.
Clearly:

$$
a_{0}=f\left[x_{0}\right], \quad a_{1}=f\left[x_{0}, x_{1}\right] .
$$

We may suspect that $a_{2}=f\left[x_{0}, x_{1}, x_{2}\right]$, that is indeed so (a "little bit" of careful algebra will show it), and in general

$$
\mathbf{a}_{\mathbf{k}}=\mathbf{f}\left[\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right] .
$$

$$
\begin{aligned}
a_{2} & =\frac{f\left(x_{2}\right)-f\left(x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}-\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{\left(x_{2}-x_{1}\right)\left(x_{1}-x_{0}\right)} \\
& =\frac{\left(f\left(x_{2}\right)-f\left(x_{0}\right)\right)\left(x_{1}-x_{0}\right)-\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right)\left(x_{2}-x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{1}-x_{0}\right)} \\
& =\frac{\left(x_{1}-x_{0}\right) f\left(x_{2}\right)-\left(x_{2}-x_{0}\right) f\left(x_{1}\right)+\left(x_{2}-x_{0}-x_{1}+x_{0}\right) f\left(x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{1}-x_{0}\right)} \\
& =\frac{\left(x_{1}-x_{0}\right) f\left(x_{2}\right)-\left(\mathbf{x}_{1}-x_{0}+x_{2}-\mathbf{x}_{1}\right) f\left(x_{1}\right)+\left(x_{2}-x_{1}\right) f\left(x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{1}-x_{0}\right)} \\
& =\frac{\left(x_{1}-x_{0}\right)\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)-\left(x_{2}-x_{1}\right)\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{1}-x_{0}\right)} \\
& =\frac{\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}-\frac{\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right)}{\left(x_{2}-x_{0}\right)\left(x_{1}-x_{0}\right)} \\
& =\frac{f\left[x_{1}, x_{2}\right]}{x_{2}-x_{0}}-\frac{f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}=\mathbf{f}\left[\mathbf{x}_{0}, \mathbf{x}_{\mathbf{1}}, \mathbf{x}_{2}\right]
\end{aligned}
$$

Computing the Divided Differences (by table)

\mathbf{x}	$\mathbf{f (x)}$	1st Div. Diff.	2nd Div. Diff.
x_{0}	$f\left[x_{0}\right]$	$f\left[x_{0}, x_{1}\right]=\frac{f\left[x_{1}\right]-f\left[x_{0}\right]}{x_{1}-x_{0}}$	
x_{1}	$f\left[x_{1}\right]$	$f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}$	
x_{2}	$f\left[x_{2}\right]$	$f\left[x_{1}, x_{2}\right]=\frac{f\left[x_{2}\right]-f\left[x_{1}\right]}{x_{2}-x_{1}}$	$f\left[x_{1}, x_{2}, x_{3}\right]=\frac{f\left[x_{2}, x_{3}\right]-f\left[x_{1}, x_{2}\right]}{x_{3}-x_{1}}$
x_{3}	$f\left[x_{3}\right]$	$f\left[x_{2}, x_{3}\right]=\frac{f\left[x_{3}\right]-f\left[x_{2}\right]}{x_{3}-x_{2}}$	$f\left(x_{2}, x_{3}, x_{4}\right]=\frac{f\left[x_{3}, x_{4}\right]-f\left[x_{2}, x_{3}\right]}{x_{4}-x_{2}}$
x_{4}	$f\left[x_{4}\right]$	$f\left[x_{3}, x_{4}\right]=\frac{f\left[x_{4}\right]-f\left[x_{3}\right]}{x_{4}-x_{3}}$	$f\left[x_{3}, x_{4}, x_{5}\right]=\frac{f\left[x_{4}, x_{5}\right]-f\left[x_{3}, x_{4}\right]}{x_{5}-x_{3}}$
x_{5}	$f\left[x_{5}\right]$	$f\left[x_{4}, x_{5}\right]=\frac{f\left[x_{5}\right]-f\left[x_{4}\right]}{x_{5}-x_{4}}$	

Note: The table can be extended with three 3rd divided differences, two 4 th divided differences, and one 5 th divided difference.

Newton's Interpolatory Divided Difference Formula

Hence, we can write

$$
P_{n}(x)=f\left[x_{0}\right]+\sum_{k=1}^{n}\left[f\left[x_{0}, \ldots, x_{k}\right] \prod_{m=0}^{k-1}\left(x-x_{m}\right)\right]
$$

$$
\begin{aligned}
P_{n}(x)= & f\left[x_{0}\right]+ \\
& f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+ \\
& f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)+ \\
& f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)+\cdots
\end{aligned}
$$

This expression is known as Newton's Interpolatory Divided Difference Formula.

Algorithm: Computing the Divided Differences

Algorithm: Newton's Divided Differences
Given the points $\left(x_{i}, f\left(x_{i}\right)\right), i=0, \ldots, n$.
Step 1: Initialize $F_{i, 0}=f\left(x_{i}\right), i=0, \ldots, n$
Step 2:

$$
\begin{aligned}
& \text { FOR } i=1: n \\
& \qquad \begin{aligned}
\text { FOR } j=1: i \\
\quad F_{i, j}=\frac{F_{i, j-1}-F_{i-1, j-1}}{x_{i}-x_{i-j}}
\end{aligned}
\end{aligned}
$$

END
END
Result: The diagonal, $F_{i, i}$ now contains $f\left[x_{0}, \ldots, x_{i}\right]$.

Theorem (Generalized Mean Value Theorem)

Suppose that $f \in C^{n}[a, b]$ and $\left\{x_{0}, \ldots, x_{n}\right\}$ are distinct number in $[a, b]$. Then $\exists \xi \in(a, b)$:

$$
f\left[x_{0}, \ldots, x_{n}\right]=\frac{f^{(n)}(\xi)}{n!}
$$

For $n=1$ this is exactly the Mean Value Theorem...
So we have extended to MVT to higher order derivatives!
What is the theorem telling us?

- Newton's $n^{\text {th }}$ divided difference is in some sense an approximation to the $n^{\text {th }}$ derivative of f.

Simplification: Equally Spaced Points

When the points $\left\{x_{0}, \ldots, x_{n}\right\}$ are equally spaced, i.e.

$$
h=x_{i+1}-x_{i}, i=0, \ldots, n-1,
$$

we can write $x=x_{0}+s h, x-x_{k}=(s-k) h$ so that

$$
P_{n}(x)=P_{n}\left(x_{0}+s h\right)=\sum_{k=0}^{n} s(s-1) \cdots(s-k+1) h^{k} f\left[x_{0}, \ldots, x_{k}\right] .
$$

Using the binomial coefficients, $\binom{s}{k}=\frac{s(s-1) \cdots(s-k+1)}{k!}-$

$$
\mathbf{P}_{\mathbf{n}}\left(\mathrm{x}_{0}+\mathbf{s h}\right)=\mathbf{f}\left[\mathrm{x}_{0}\right]+\sum_{k=1}^{n}\binom{\mathbf{s}}{\mathbf{k}} \mathbf{k}!\mathbf{h}^{\mathbf{k}} \mathbf{f}\left[\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{k}}\right] .
$$

This is Newton's Forward Divided Difference Formula.

Newton vs. Taylor...

Using Newton's Divided Differences...

$$
\begin{aligned}
P_{n}^{N}(x)= & f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+ \\
& f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)+ \\
& f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)+\cdots
\end{aligned}
$$

Using Taylor expansion

$$
\begin{aligned}
P_{n}^{T}(x)= & f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+ \\
& \frac{1}{2!} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+ \\
& \frac{1}{3!} f^{\prime \prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{3}+\cdots
\end{aligned}
$$

It makes sense that the divided differences are approximating the derivatives in some sense!

Notation, Notation, Notation...
Another form, Newton's Forward Difference Formula is constructed by using the forward difference operator Δ :

$$
\Delta f\left(x_{n}\right)=f\left(x_{n+1}\right)-f\left(x_{n}\right)
$$

using this notation:

$$
\begin{gathered}
f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=\frac{1}{h} \Delta f\left(x_{0}\right) . \\
f\left[x_{0}, x_{1}, x_{2}\right]=\frac{1}{2 h}\left[\frac{\Delta f\left(x_{1}\right)-\Delta f\left(x_{0}\right)}{h}\right]=\frac{1}{2 h^{2}} \Delta^{2} f\left(x_{0}\right) . \\
f\left[x_{0}, \ldots, x_{k}\right]=\frac{1}{k!h^{k}} \Delta^{k} f\left(x_{0}\right) .
\end{gathered}
$$

Thus we can write Newton's Forward Difference Formula

$$
\mathbf{P}_{\mathrm{n}}\left(\mathrm{x}_{0}+\mathbf{s h}\right)=\mathbf{f}\left[\mathrm{x}_{0}\right]+\sum_{\mathrm{k}=1}^{\mathrm{n}}\binom{\mathbf{s}}{\mathrm{k}} \boldsymbol{\Delta}^{\mathrm{k}} \mathbf{f}\left(\mathrm{x}_{0}\right) .
$$

If we reorder $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \rightarrow\left\{x_{n}, \ldots, x_{1}, x_{0}\right\}$, and define the backward difference operator ∇ :

$$
\nabla f\left(x_{n}\right)=f\left(x_{n}\right)-f\left(x_{n-1}\right)
$$

we can define the backward divided differences:

$$
f\left[x_{n}, \ldots, x_{n-k}\right]=\frac{1}{k!h^{k}} \nabla^{k} f\left(x_{n}\right)
$$

We write down Newton's Backward Difference Formula

$$
\mathbf{P}_{\mathbf{n}}(\mathbf{x})=\mathbf{f}\left[\mathrm{x}_{\mathrm{n}}\right]+\sum_{\mathbf{k}=\mathbf{1}}^{\mathbf{n}}(-\mathbf{1})^{\mathbf{k}}\binom{-\mathbf{s}}{\mathbf{k}} \nabla^{\mathrm{k}} \mathbf{f}\left(\mathrm{x}_{\mathrm{n}}\right)
$$

where

$$
\binom{-s}{k}=(-1)^{k} \frac{s(s+1) \cdots(s+k-1)}{k!}
$$

Stirling's Formula - Approximating at Interior Points

Assume we are trying to approximate $f(x)$ close to the interior point x_{0} :

$$
\begin{aligned}
P_{n}(x)= & P_{2 m+1}(x)=f\left[x_{0}\right]+s h \frac{f\left[x_{-1}, x_{0}\right]+f\left[x_{0}, x_{1}\right]}{2} \\
& +s^{2} h^{2} f\left[x_{-1}, x_{0}, x_{1}\right] \\
& +s\left(s^{2}-1\right) h^{3} \frac{f\left[x_{-2}, x_{-1}, x_{0}, x_{1}\right]+f\left[x_{-1}, x_{0}, x_{1}, x_{2}\right]}{2} \\
& +s^{2}\left(s^{2}-1\right) h^{4} f\left[x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}\right] \\
& +\cdots \\
& +s^{2}\left(s^{2}-1\right) \cdots\left(s^{2}-(m-1)^{2}\right) h^{2 m} f\left[x_{-m}, \ldots, x_{m}\right] \\
& +s\left(s^{2}-1\right) \cdots\left(s^{2}-m^{2}\right) h^{2 m+1} \\
& . \frac{f\left[x_{-m-1}, \cdots, x_{m}\right]+f\left[x_{-m}, \ldots, x_{m+1}\right]}{2}
\end{aligned}
$$

If n is odd (can be written as $2 m+1$), otherwise delete the last two lines.

Newton's Interpolatory Divided Difference Formula

$$
\begin{aligned}
P_{n}(x)= & f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)+ \\
& f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)+\cdots
\end{aligned}
$$

Newton's Forward Divided Difference Formula

$$
P_{n}\left(x_{0}+s h\right)=f\left[x_{0}\right]+\sum_{k=1}^{n}\binom{s}{k} k!h^{k} f\left[x_{0}, \ldots, x_{k}\right]
$$

Newton's Backward Difference Formula

$$
P_{n}(x)=f\left[x_{n}\right]+\sum_{k=1}^{n}(-1)^{k}\binom{-s}{k} \nabla^{k} f\left(x_{n}\right)
$$

Reference: Binomial Coefficients

$$
\binom{s}{k}=\frac{s(s-1) \cdots(s-k+1)}{k!}, \quad\binom{-s}{k}=(-1)^{k} \frac{s(s+1) \cdots(s+k-1)}{k!}
$$

Combining Taylor and Lagrange Polynomials

A Taylor polynomial of degree n matches the function and its first n derivatives at one point.
A Lagrange polynomial of degree n matches the function values at $n+1$ points.
Question: Can we combine the ideas of Taylor and Lagrange to get an interpolating polynomial that matches both the function values and some number of derivatives at multiple points?
Answer: To our euphoric joy, such polynomials exist! They are called Osculating Polynomials.

The Concise Oxford Dictionary:

Osculate 1. (arch. or joc.) kiss. 2. (Biol., of species, etc.) be related through intermediate species etc., have common characteristics with another or with each other. 3. (Math., of curve or surface) have contact of higher than first order with, meet at three or more coincident points.

- Will open on 09/24/2014 at 09:30am PDT
- Will close no earlier than 10/3/2014 at 09:00pm PDT.

Given $(n+1)$ distinct points $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \in[a, b]$, and non-negative integers $\left\{m_{0}, m_{1}, \ldots, m_{n}\right\}$.
Notation: Let $m=\max \left\{m_{0}, m_{1}, \ldots, m_{n}\right\}$.
The osculating polynomial approximation of a function $f \in C^{m}[a, b]$ at $x_{i}, i=0,1, \ldots, n$ is the polynomial (of lowest possible order) that agrees with

$$
\left\{f\left(x_{i}\right), f^{\prime}\left(x_{i}\right), \ldots, f^{\left(m_{i}\right)}\left(x_{i}\right)\right\} \text { at } x_{i} \in[a, b], \forall i .
$$

The degree of the osculating polynomial is at most

$$
M=n+\sum_{i=0}^{n} m_{i} .
$$

In the case where $m_{i}=1, \forall i$ the polynomial is called a Hermite Interpolatory Polynomial.

If $f \in C^{1}[a, b]$ and $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \in[a, b]$ are distinct, the unique polynomial of least degree ($\leq 2 n+1$) agreeing with $f(x)$ and $f^{\prime}(x)$ at $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is

$$
\mathbf{H}_{2 \mathrm{n}+\mathbf{1}}(\mathrm{x})=\sum_{\mathrm{j}=\mathbf{0}}^{\mathrm{n}} \mathrm{f}\left(\mathrm{x}_{\mathrm{j}}\right) \mathbf{H}_{\mathrm{n}, \mathrm{j}}(\mathrm{x})+\sum_{\mathrm{j}=\mathbf{0}}^{\mathrm{n}} \mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{j}}\right) \hat{\boldsymbol{H}}_{\mathrm{n}, \mathrm{j}}(\mathrm{x})
$$

where

$$
\begin{gathered}
H_{n, j}(x)=\left[1-2\left(x-x_{j}\right) L_{n, j}^{\prime}\left(x_{j}\right)\right] L_{n, j}^{2}(x) \\
\hat{H}_{n, j}(x)=\left(x-x_{j}\right) L_{n, j}^{2}(x)
\end{gathered}
$$

and $L_{n, j}(x)$ are our old friends, the Lagrange coefficients:

$$
L_{n, j}(x)=\prod_{i=0, i \neq j}^{n} \frac{x-x_{i}}{x_{j}-x_{i}}
$$

Further, if $f \in C^{2 n+2}[a, b]$, then for some $\xi(x) \in[a, b]$

$$
f(x)=H_{2 n+1}(x)+\frac{\prod_{i=0}^{n}\left(x-x_{i}\right)^{2}}{(2 n+2)!} f^{(2 n+2)}(\xi(x)) .
$$

Proof, continued...

$$
\begin{aligned}
H_{n, j}^{\prime}\left(x_{j}\right) & =\left[-2 L_{n, j}^{\prime}\left(x_{j}\right)\right] \underbrace{1}_{L_{n, j}^{2}\left(x_{j}\right)} \\
& +[1-2(\underbrace{\left(x_{j}-x_{j}\right)} L_{n, j}^{\prime}\left(x_{j}\right)] \cdot \underbrace{2 L_{n, j}\left(x_{j}\right)}_{1} L_{n, j}^{\prime}\left(x_{j}\right) \\
& =-2 L_{n, j}^{\prime}\left(x_{j}\right)^{0}+1 \cdot 2 \cdot L_{n, j}^{\prime}\left(x_{j}\right)=0
\end{aligned}
$$

i.e. $\mathbf{H}_{\mathrm{n}, \mathrm{j}}^{\prime}\left(\mathbf{x}_{\mathbf{i}}\right)=\mathbf{0}, \forall \mathbf{i}$.

$$
\begin{aligned}
\hat{H}_{n, j}^{\prime}(x) & =L_{n, j}^{2}(x)+2\left(x-x_{j}\right) L_{n, j}(x) L_{n, j}^{\prime}(x) \\
& =L_{n, j}(x)\left[L_{n, j}(x)+2\left(x-x_{j}\right) L_{n, j}^{\prime}(x)\right]
\end{aligned}
$$

If $i \neq j: \hat{H}_{n, j}^{\prime}\left(x_{i}\right)=0$, since $L_{n, j}\left(x_{i}\right)=\delta_{i, j}$.
If $i=j: \hat{H}_{n, j}^{\prime}\left(x_{j}\right)=1 \cdot\left[1+2\left(x_{j}-x_{j}\right) L_{n, j}^{\prime}\left(x_{j}\right)\right]=1$.
Hence, $\mathbf{H}_{\mathbf{2 n}+\mathbf{1}}^{\prime}\left(\mathbf{x}_{\mathbf{i}}\right)=\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathbf{i}}\right), \forall \mathbf{i}$.

Recall: $L_{n, j}\left(x_{i}\right)=\delta_{i, j}=\left\{\begin{array}{ll}0, & \text { if } i \neq j \\ 1 & \text { if } i=j\end{array} \quad\left(\delta_{i, j}\right.\right.$ is Kronecker's delta $)$.
If follows that when $i \neq j: \quad H_{n, j}\left(x_{i}\right)=\hat{H}_{n, j}\left(x_{i}\right)=0$.
When $i=j: \quad\left\{\begin{array}{l}H_{n, j}\left(x_{j}\right)=\left[1-2\left(x_{j}-x_{j}\right) L_{n, j}^{\prime}\left(x_{j}\right)\right] \cdot 1=1 \\ \hat{H}_{n, j}\left(x_{j}\right)=\left(x_{j}-x_{j}\right) L_{n, j}^{2}\left(x_{j}\right)=0 .\end{array}\right.$
Thus, $\mathbf{H}_{\mathbf{2 n + 1}}\left(\mathbf{x}_{\mathbf{j}}\right)=\mathbf{f}\left(\mathbf{x}_{\mathbf{j}}\right)$.

$$
\begin{aligned}
H_{n, j}^{\prime}(x) & =\left[-2 L_{n, j}^{\prime}\left(x_{j}\right)\right) L_{n, j}^{2}(x)+\left[1-2\left(x-x_{j}\right) L_{n, j}^{\prime}\left(x_{j}\right)\right] \cdot 2 L_{n, j}(x) L_{n, j}^{\prime}(x) \\
& =L_{n, j}(x)\left[-2 L_{n, j}^{\prime}\left(x_{j}\right) L_{n, j}(x)+\left[1-2\left(x-x_{j}\right) L_{n, j}^{\prime}\left(x_{j}\right)\right] \cdot 2(x) L_{n, j}^{\prime}\right]
\end{aligned}
$$

Since $L_{n, j}(x)$ is a factor in $H_{n, j}^{\prime}(x): H_{n, j}^{\prime}\left(x_{i}\right)=0$ when $i \neq j$.

- Assume there is a second polynomial $G(x)$ (of degree $\leq 2 n+1$) interpolating the same data.
- Define $R(x)=H_{2 n+1}(x)-G(x)$.
- Then by construction $R\left(x_{i}\right)=R^{\prime}\left(x_{i}\right)=0$, i.e. all the x_{i} 's are zeros of multiplicity at least 2 .
- This can only be true if $R(x)=q(x) \prod_{i=0}^{n}\left(x-x_{i}\right)^{2}$, for some $q(x)$.
- If $q(x) \not \equiv 0$ then the degree of $R(x)$ is $\geq 2 n+2$, which is a contradiction.
- Hence $q(x) \equiv 0 \Rightarrow R(x) \equiv 0 \Rightarrow H_{2 n+1}(x)$ is unique.

One of the primary applications of Hermite Interpolatory Polynomials is the development of Gaussian quadrature for numerical integration. (To be revisited later this semester.)
The most commonly seen Hermite interpolatory polynomial is the cubic one, which satisfies

$$
\begin{array}{ll}
H_{3}\left(x_{0}\right)=f\left(x_{0}\right), & H_{3}^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \\
H_{3}\left(x_{1}\right)=f\left(x_{1}\right), & H_{3}^{\prime}\left(x_{1}\right)=f^{\prime}\left(x_{1}\right) .
\end{array}
$$

it can be written explicitly as

$$
\begin{aligned}
H_{3}(x)= & {\left[1+2 \frac{x-x_{0}}{x_{1}-x_{0}}\right]\left[\frac{x_{1}-x}{x_{1}-x_{0}}\right]^{2} f\left(x_{0}\right)+\left(x-x_{0}\right)\left[\frac{x_{1}-x}{x_{1}-x_{0}}\right]^{2} f^{\prime}\left(x_{0}\right) } \\
& +\left[1+2 \frac{x_{1}-x}{x_{1}-x_{0}}\right]\left[\frac{x-x_{0}}{x_{1}-x_{0}}\right]^{2} f\left(x_{1}\right)+\left(x-x_{1}\right)\left[\frac{x-x_{0}}{x_{1}-x_{0}}\right]^{2} f^{\prime}\left(x_{1}\right) .
\end{aligned}
$$

It appears in some optimization algorithms (see Math 693a, linesearch algorithms.)
\#5 Interpolation and Polynomial Approximation - (29/40)

Hermite Interpolatory Polynomial using Modified Newton Divided Differences

\mathbf{y}	$\mathbf{f}(\mathbf{x})$	1st Div. Diff.	2nd Div. Diff.	3rd Div. Diff.
$y_{0}=x_{0}$	$f\left[y_{0}\right]$	$f\left[y_{0}, y_{1}\right]=f^{\prime}\left(y_{0}\right)$		$f\left[y_{0}, y_{1}, y_{2}\right]$
$y_{1}=x_{0}$	$f\left[y_{1}\right]$	$f\left[y_{1}, y_{2}\right]$	$f\left[y_{0}, y_{1}, y_{2}, y_{3}\right]$	
$y_{2}=x_{1}$	$f\left[y_{2}\right]$	$f\left[y_{2}, y_{3}\right]=f^{\prime}\left(y_{2}\right)$	$f\left[y_{1}, y_{2}, y_{3}\right]$	$f\left[y_{2}, y_{3}, y_{4}\right]$
$y_{3}=x_{1}$	$f\left[y_{3}\right]$	$f\left[y_{1}, y_{2}, y_{3}, y_{4}\right]$		
$y_{4}=x_{2}$	$f\left[y_{4}\right]$	$f\left[y_{4}\right]$	$f\left[y_{2}, y_{3}, y_{4}, y_{5}\right]$	
$y_{5}=x_{2}$	$f\left[y_{5}\right]$	$f\left[y_{4}\right]=f^{\prime}\left(y_{4}\right)$	$f\left[y_{3}, y_{4}, y_{5}\right]$	$f\left[y_{3}, y_{4}, y_{5}, y_{6}\right]$
$y_{6}=x_{3}$	$f\left[y_{6}\right]$	$f\left[y_{5}, y_{6}\right]$	$f\left[y_{6}\right]$	$f\left[y_{4}, y_{5}, y_{6}, y_{7}\right]$
$y_{7}=x_{3}$	$f\left[y_{7}\right]$	$f\left[y_{6}, y_{7}\right]=f^{\prime}\left(y_{6}\right)$	$f\left[y_{5}, y_{6}, y_{7}\right]$	$f\left[y_{5}, y_{6}, y_{7}, y_{8}\right]$
$y_{8}=x_{4}$	$f\left[y_{8}\right]$	$f\left[y_{7}, y_{8}\right]$	$f\left[y_{7}, y_{8}\right]$	$f\left[y_{6}, y_{7}, y_{8}, y_{9}\right]$
$y_{9}=x_{4}$	$f\left[y_{9}\right]$	$\left.\left.f y_{8}, f_{9}\right]=y_{8}\right)$		

However, there is good news: we can re-use the algorithm for Newton's
Interpolatory Divided Difference Formula with some modifications in the initialization.

We "double" the number of points, i.e. let

$$
\left\{y_{0}, y_{1}, \ldots, y_{2 n+1}\right\}=\left\{x_{0}, x_{0}+\epsilon, x_{1}, x_{1}+\epsilon, \ldots, x_{n}, x_{n}+\epsilon\right\}
$$

Set up the divided difference table (up to the first divided differences), and let $\epsilon \rightarrow 0$ (formally), and identify:

$$
f^{\prime}\left(x_{i}\right)=\lim _{\epsilon \rightarrow 0} \frac{f\left[x_{i}+\epsilon\right]-f\left[x_{i}\right]}{\epsilon}
$$

to get the table [next slide]...
$H_{3}(x)$ revisited...

Old notation

$$
\begin{aligned}
H_{3}(x)= & {\left[1+2 \frac{x-x_{0}}{x_{1}-x_{0}}\right]\left[\frac{x_{1}-x}{x_{1}-x_{0}}\right]^{2} f\left(x_{0}\right)+\left[1+2 \frac{x_{1}-x}{x_{1}-x_{0}}\right]^{2}\left[\frac{x-x_{0}}{x_{1}-x_{0}}\right]^{2} f\left(x_{1}\right) } \\
+ & \left(x-x_{0}\right)\left[\frac{x_{1}-x}{x_{1}-x_{0}}\right]^{2} f^{\prime}\left(x_{0}\right)+\left(x-x_{1}\right)\left[\frac{x-x_{0}}{x_{1}-x_{0}}\right]^{2} f^{\prime}\left(x_{1}\right) .
\end{aligned}
$$

Divided difference notation

$$
\begin{aligned}
H_{3}(x)= & f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left[x_{0}, x_{0}, x_{1}\right]\left(x-x_{0}\right)^{2} \\
& +f\left[x_{0}, x_{0}, x_{1}, x_{1}\right]\left(x-x_{0}\right)^{2}\left(x-x_{1}\right) .
\end{aligned}
$$

Or with the y 's...

$$
\begin{aligned}
H_{3}(x)= & f\left(y_{0}\right)+f^{\prime}\left(y_{0}\right)\left(x-y_{0}\right)+f\left[y_{0}, y_{1}, y_{2}\right]\left(x-y_{0}\right)\left(x-y_{1}\right) \\
+ & f\left[y_{0}, y_{1}, y_{2}, y_{3}\right]\left(x-y_{0}\right)\left(x-y_{1}\right)\left(x-y_{2}\right) .
\end{aligned}
$$

$H_{3}(x)$ Example

$x_{0}=0, \quad x_{1}=1$

$$
\begin{gathered}
f\left(x_{0}\right)=0, \quad f^{\prime}\left(x_{0}\right)=4, \quad f\left(x_{1}\right)=3, \quad f^{\prime}\left(x_{1}\right)=-1 \\
H_{3}(x)=4 x-x^{2}-3 x^{2}(x-1)
\end{gathered}
$$

\#5 Interpolation and Polynomial Approximation - (33/40)

Algorithm: Hermite Interpolation

Algorithm: Hermite Interpolation, Part \#1

Given the data points $\left(x_{i}, f\left(x_{i}\right), f^{\prime}\left(x_{i}\right)\right), i=0, \ldots, n$.
Step 1: FOR i=0:n

$$
\begin{aligned}
& y_{2 i}=x_{i}, Q_{2 i, 0}=f\left(x_{i}\right), \quad y_{2 i+1}=x_{i}, \quad Q_{2 i+1,0}=f\left(x_{i}\right) \\
& Q_{2 i+1,1}=f^{\prime}\left(x_{i}\right) \\
& \operatorname{IF} i>0 \\
& \quad Q_{2 i, 1}=\frac{Q_{i, 0}-Q_{i-1,0}}{y_{2 i}-y_{2 i-1}} \\
& \text { END }
\end{aligned}
$$

END

$H_{3}(x)$ Example — Not Very Pretty Computations

Example

$\begin{aligned} & x 0=0 ; x 1=1 ; \\ & \mathrm{fv} 0=0 ; \mathrm{fpv}=4 ; \quad \% \text { This is the dat } \end{aligned}$	
$\mathrm{fv} 1=3 ; \mathrm{fpv1}=-1$;	
$\mathrm{y} 0=\mathrm{x} 0 ; \mathrm{f} 0=\mathrm{fv} 0$;	\% Initializing the table
$\mathrm{y} 1=\mathrm{x} 0$; f1=fv0;	
$\begin{aligned} & \mathrm{y} 2=\mathrm{x} 1 ; \mathrm{f} 2=\mathrm{fv} 1 ; \\ & \mathrm{y} 3=\mathrm{x} 1 ; \mathrm{f}=\mathrm{fv} 1 ; \end{aligned}$	
$\mathrm{f01}=\mathrm{fpv0}$;	\% First divided differences
$\mathrm{f} 12=(\mathrm{f} 2-\mathrm{f} 1) /(\mathrm{y} 2-\mathrm{y} 1)$;	
f 23 = fpv1;	
$\mathrm{f012}=(\mathrm{f} 12-\mathrm{f01}) /(\mathrm{y} 2-\mathrm{y} 0)$;	\% Second divided differences
$\mathrm{f} 123=(\mathrm{f} 23-\mathrm{f} 12) /(\mathrm{y} 3-\mathrm{y} 1)$;	
$\mathrm{f0123}=(\mathrm{f} 123-\mathrm{f012}) /(\mathrm{y} 3-\mathrm{y} 0)$;	\% Third divided difference
$\mathrm{x}=(0: 0.01: 1)^{\prime}$;	
H3 $=\mathrm{f0}+\mathrm{f01*}(\mathrm{x}-\mathrm{yO})+\mathrm{f012}$	y0).*(x-y1) +
f0123* (x-y0).*(x-y1).* (

Algorithm: Hermite Interpolation

Algorithm: Hermite Interpolation, Part \#2
Step 2: FOR $i=2:(2 n+1)$

$$
\begin{aligned}
& \mathrm{FOR} j=2: i \\
& \qquad Q_{i, j}=\frac{Q_{i, j-1}-Q_{i-1, j-1}}{y_{i}-y_{i-j}} . \\
& \text { END }
\end{aligned}
$$

END
Result: $q_{i}=Q_{i, i}, i=0, \ldots, 2 n+1$ now contains the coefficients for

$$
H_{2 n+1}(x)=q_{0}+\sum_{k=1}^{2 n+1}\left[q_{k} \prod_{j=0}^{k-1}\left(x-y_{j}\right)\right]
$$

So far we have seen the osculating polynomials of order 0 - the Lagrange polynomial, and of order 1 - the Hermite interpolatory polynomial.

It turns out that generating osculating polynomials of higher order is fairly straight-forward; - and we use Newton's divided differences to generate those as well.

Given a set of points $\left\{x_{k}\right\}_{k=0}^{n}$, and $\left\{f^{(\ell)}\left(x_{k}\right)\right\}_{k=0, \ell=0}^{n, \ell_{k}}$; i.e. the function values, as well as the first ℓ_{k} derivatives of f in x_{k}. (Note that we can specify a different number of derivatives in each point.)

Set up the Newton-divided-difference table, and put in $\left(\ell_{k}+1\right)$ duplicate entries of each point x_{k}, as well as its function value $f\left(x_{k}\right)$.

\mathbf{y}	$\mathbf{f}(\mathbf{x})$	1st Div. Diff.	2nd Div. Diff.	3rd Div. Diff.
$y_{0}=x_{0}$	$f\left[y_{0}\right]$	$f\left[y_{0}, y_{1}\right]=f^{\prime}\left(x_{0}\right)$		
$y_{1}=x_{0}$	$f\left[y_{1}\right]$	$f\left[y_{1}, y_{1}, y_{2}\right]=\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)$		
$y_{2}=x_{0}$	$f\left[y_{2}\right]$	$f\left[y_{2}\right]=f^{\prime}\left(x_{0}\right)$	$f\left[y_{1}, y_{2}, y_{3}\right]$	$f\left[y_{0}, y_{1}, y_{2}, y_{3}\right]$
$y_{3}=x_{1}$	$f\left[y_{3}\right]$	$f\left[y_{3}\right]$	$f\left[y_{2}, y_{3}, y_{4}\right]$	$f=f^{\prime}\left(x_{1}\right)$
$y_{4}=x_{1}$	$f\left[y_{4}\right]$	$f\left[y_{3}\right]$		
$y_{5}=x_{1}$	$f\left[y_{5}\right]$	$f\left[y_{4}, y_{5}\right]=f^{\prime}\left(x_{1}\right)$	$f\left[y_{3}, y_{4}, y_{5}\right]=\frac{1}{2} f^{\prime \prime}\left(x_{1}\right)$	$f\left[y_{2}, y_{3}, y_{4}, y_{5}\right]$

3rd and higher order divided differences are computed "as usual" in this case.

On the next slide we see four examples of 2nd order osculating polynomials.

Run the computation of Newton's divided differences as usual; with the following exception:

Whenever a zero-denominator is encountered - i.e. the divided difference for that entry cannot be computed due to duplication of a point - use a derivative instead. For $m^{\text {th }}$ divided differences, use $\frac{1}{m!} f^{(m)}\left(x_{k}\right)$.

On the next slide we see the setup for two point in which two derivatives are prescribed.

Examples...

