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Recap and Lookahead

Previously:
Neville’s Method to successively generate higher degree polynomial ap-
proximations at a specific point. — If we need to compute the polyno-
mial at many points, we have to re-run Neville’s method for each point.
O(n2) operations/point.

Algorithm: Neville’s Method

To evaluate the polynomial that interpolates the n + 1 points (xi , f (xi )), i = 0, . . . , n
at the point x :

1. Initialize Qi,0 = f (xi ).
2. FOR i = 1 : n

FOR j = 1 : i

Qi,j =
(x − xi−j )Qi,j−1 − (x − xi )Qi−1,j−1

xi − xi−j

END

END

3. Output the Q-table.
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Recap and Lookahead

Next:
Use divided differences to generate the polynomials∗ themselves.
∗ The coefficients of the polynomials. Once we have those, we can
quickly (remember Horner’s method?) compute the polynomial in
any desired points. O(n) operations/point.

Algorithm: Horner’s Method

Input: Degree n; coefficients a0, a1, . . . , an; x0

Output: y = P(x0), z = P′(x0).

1. Set y = an, z = an

2. For j = (n − 1), (n − 2), . . . , 1

Set y = x0y + aj , z = x0z + y

3. Set y = x0y + a0

4. Output (y , z)

5. End program
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Representing Polynomials

If Pn(x) is the nth degree polynomial that agrees with f (x) at the
points {x0, x1, . . . , xn}, then we can (for the appropriate constants
{a0, a1, . . . , an}) write:

Pn(x) = a0 + a1(x − x0) + a2(x − x0)(x − x1) + · · ·
· · ·+ an(x − x0)(x − x1) · · · (x − xn−1)

Note that we can evaluate this “Horner-style,” by writing

Pn(x) = a0 + (x − x0) (a1 + (x − x1) (a2+ · · ·
· · ·+ (x − xn−2) (an−1 + an(x − xn−1)))) ,

so that each step in the Horner-evaluation consists of a
subtraction, a multiplication, and an addition.
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Finding the Constants {a0, a1, . . . , an} “Just Algebra”

Given the relation

Pn(x) = a0 + a1(x − x0) + a2(x − x0)(x − x1) + · · ·
· · ·+ an(x − x0)(x − x1) · · · (x − xn−1)

at x0: a0 = Pn(x0) = f (x0).

at x1: f (x0) + a1(x1 − x0) = Pn(x1) = f (x1)

⇒ a1 =
f (x1)− f (x0)

x1 − x0
.

at x2: a2 =
f (x2)− f (x0)

(x2 − x0)(x2 − x1)
−

f (x1)− f (x0)

(x2 − x0)(x1 − x0)
.

This gets massively ugly fast! — We need some nice clean
notation!
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Sir Isaac Newton to the Rescue: Divided Differences

Zeroth Divided Difference:

f [xi ] = f (xi ).

First Divided Difference:

f [xi , xi+1] =
f [xi+1]− f [xi ]

xi+1 − xi
.

Second Divided Difference:

f [xi , xi+1, xi+2] =
f [xi+1, xi+2]− f [xi , xi+1]

xi+2 − xi
.

kth Divided Difference:

f [xi , xi+1, . . . , xi+k ] =
f [xi+1, xi+2, . . . , xi+k ]− f [xi , xi+1, . . . , xi+k−1]

xi+k − xi
.
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The Constants {a0, a1, . . . , an} — Revisited

We had

at x0: a0 = Pn(x0) = f (x0).

at x1: f (x0) + a1(x1 − x0) = Pn(x1) = f (x1)

⇒ a1 =
f (x1)− f (x0)

x1 − x0
.

at x2: a2 =
f (x2)− f (x0)

(x2 − x0)(x2 − x1)
−

f (x1)− f (x0)

(x2 − x0)(x1 − x0)
.

Clearly:
a0 = f [x0], a1 = f [x0, x1].

We may suspect that a2 = f [x0, x1, x2], that is indeed so (a “little
bit” of careful algebra will show it), and in general

ak = f[x0, x1, . . . , xk].
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Algebra: Chasing down a2 = f [x0, x1, x2]

a2 =
f (x2)− f (x0)

(x2 − x0)(x2 − x1)
−

f (x1)− f (x0)

(x2 − x1)(x1 − x0)

=
(f (x2)− f (x0))(x1 − x0)− (f (x1)− f (x0))(x2 − x0)

(x2 − x0)(x2 − x1)(x1 − x0)

=
(x1 − x0)f (x2)− (x2 − x0)f (x1) + (x2 − x0 − x1 + x0)f (x0)

(x2 − x0)(x2 − x1)(x1 − x0)

=
(x1 − x0)f (x2)− (x1 − x0 + x2 − x1)f (x1) + (x2 − x1)f (x0)

(x2 − x0)(x2 − x1)(x1 − x0)

=
(x1 − x0)(f (x2)− f (x1))− (x2 − x1)(f (x1)− f (x0))

(x2 − x0)(x2 − x1)(x1 − x0)

=
(f (x2)− f (x1))

(x2 − x0)(x2 − x1)
−

(f (x1)− f (x0))

(x2 − x0)(x1 − x0)

=
f [x1, x2]

x2 − x0
−

f [x0, x1]

x2 − x0
= f[x0, x1, x2] (!!!)
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Newton’s Interpolatory Divided Difference Formula

Hence, we can write

Pn(x) = f [x0] +

n
∑

k=1

[

f [x0, . . . , xk ]

k−1
∏

m=0

(x − xm)

]

.

Pn(x) = f [x0] +
f [x0, x1](x − x0) +
f [x0, x1, x2](x − x0)(x − x1) +
f [x0, x1, x2, x3](x − x0)(x − x1)(x − x2) + · · ·

This expression is known as Newton’s Interpolatory Divided
Difference Formula.
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Computing the Divided Differences (by table)

x f(x) 1st Div. Diff. 2nd Div. Diff.
x0 f [x0]

f [x0, x1] =
f [x1]−f [x0]

x1−x0

x1 f [x1] f [x0, x1, x2] =
f [x1,x2]−f [x0,x1]

x2−x0

f [x1, x2] =
f [x2]−f [x1]

x2−x1

x2 f [x2] f [x1, x2, x3] =
f [x2,x3]−f [x1,x2]

x3−x1

f [x2, x3] =
f [x3]−f [x2]

x3−x2

x3 f [x3] f [x2, x3, x4] =
f [x3,x4]−f [x2,x3]

x4−x2

f [x3, x4] =
f [x4]−f [x3]

x4−x3

x4 f [x4] f [x3, x4, x5] =
f [x4,x5]−f [x3,x4]

x5−x3

f [x4, x5] =
f [x5]−f [x4]

x5−x4
x5 f [x5]

Note: The table can be extended with three 3rd divided
differences, two 4th divided differences, and one 5th divided
difference.
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Algorithm: Computing the Divided Differences

Algorithm: Newton’s Divided Differences

Given the points (xi , f (xi )), i = 0, . . . , n.

Step 1: Initialize Fi ,0 = f (xi ), i = 0, . . . , n

Step 2:

FOR i = 1 : n

FOR j = 1 : i

Fi ,j =
Fi ,j−1 − Fi−1,j−1

xi − xi−j

END

END

Result: The diagonal, Fi ,i now contains f [x0, . . . , xi ].
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A Theoretical Result: Generalization of the Mean Value Theorem

Theorem (Generalized Mean Value Theorem)

Suppose that f ∈ Cn[a, b] and {x0, . . . , xn} are distinct number in
[a, b]. Then ∃ ξ ∈ (a, b) :

f [x0, . . . , xn] =
f (n)(ξ)

n!
.

For n = 1 this is exactly the Mean Value Theorem...

So we have extended to MVT to higher order derivatives!

What is the theorem telling us?

— Newton’s nth divided difference is in some sense an approxi-
mation to the nth derivative of f .
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Newton vs. Taylor...

Using Newton’s Divided Differences...

PN
n (x) = f [x0] + f [x0, x1](x − x0) +

f [x0, x1, x2](x − x0)(x − x1) +
f [x0, x1, x2, x3](x − x0)(x − x1)(x − x2) + · · ·

Using Taylor expansion

PT
n (x) = f (x0) + f ′(x0)(x − x0) +

1
2! f

′′(x0)(x − x0)
2 +

1
3! f

′′′(x0)(x − x0)
3 + · · ·

It makes sense that the divided differences are approximating the
derivatives in some sense!
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Simplification: Equally Spaced Points

When the points {x0, . . . , xn} are equally spaced, i.e.

h = xi+1 − xi , i = 0, . . . , n − 1,

we can write x = x0 + sh, x − xk = (s − k)h so that

Pn(x) = Pn(x0 + sh) =

n
∑

k=0

s(s − 1) · · · (s − k + 1)hk f [x0, . . . , xk ].

Using the binomial coefficients,

(

s

k

)

=
s(s − 1) · · · (s − k + 1)

k!
—

Pn(x0 + sh) = f[x0] +
n

∑

k=1

(

s

k

)

k!hk f[x0, . . . , xk].

This is Newton’s Forward Divided Difference Formula.
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Notation, Notation, Notation...

Another form, Newton’s Forward Difference Formula is constructed
by using the forward difference operator ∆:

∆f (xn) = f (xn+1)− f (xn)

using this notation:

f [x0, x1] =
f (x1)− f (x0)

x1 − x0
=

1

h
∆f (x0).

f [x0, x1, x2] =
1

2h

[

∆f (x1)−∆f (x0)

h

]

=
1

2h2
∆2f (x0).

f [x0, . . . , xk ] =
1

k! hk
∆k f (x0).

Thus we can write Newton’s Forward Difference Formula

Pn(x0 + sh) = f[x0] +
n

∑

k=1

(

s

k

)

∆kf(x0).
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Notation, Notation, Notation... Backward Formulas

If we reorder {x0, x1, . . . , xn} → {xn, . . . , x1, x0}, and define the backward
difference operator ∇:

∇f (xn) = f (xn)− f (xn−1),

we can define the backward divided differences:

f [xn, . . . , xn−k ] =
1

k! hk
∇k f (xn).

We write down Newton’s Backward Difference Formula

Pn(x) = f[xn] +

n
∑

k=1

(−1)k
(

−s

k

)

∇kf(xn),

where
(

−s

k

)

= (−1)k
s(s + 1) · · · (s + k − 1)

k!
.
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Forward? Backward? I’m Confused!!!

x f (x) 1st Div. Diff. 2nd Div. Diff.
x0 f [x0]

f[x0, x1] =
f[x1]−f[x0]

x1−x0

x1 f [x1] f[x0, x1, x2] =
f[x1,x2]−f[x0,x1]

x2−x0

f [x1, x2] =
f [x2]−f [x1]

x2−x1

x2 f [x2] f [x1, x2, x3] =
f [x2,x3]−f [x1,x2]

x3−x1

f [x2, x3] =
f [x3]−f [x2]

x3−x2

x3 f [x3] f [x2, x3, x4] =
f [x3,x4]−f [x2,x3]

x4−x2

f [x3, x4] =
f [x4]−f [x3]

x4−x3

x4 f [x4] f[x3, x4, x5] =
f[x4,x5]−f[x3,x4]

x5−x3

f[x4, x5] =
f[x5]−f[x4]

x5−x4
x5 f [x5]

Forward: The fwd div. diff. are the top entries in the table.

Backward: The bwd div. diff. are the bottom entries in the table.
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Forward? Backward? — Straight Down the Center!

The Newton formulas works best for points close to the edge of
the table; if we want to approximate f (x) close to the center, we
have to work some more...

x f (x) 1st Div. Diff. 2nd Div. Diff. 3rd Div. Diff. 4th Div. Diff.
x
−2 f [x

−2]
f [x

−2, x−1]
x
−1 f [x

−1] f [x
−2, x−1, x0]

f[x
−1, x0] f[x

−2, x−1, x0, x1]
x0 f[x0] f[x

−1, x0, x1] f[x
−2, x−1, x0, x1, x2]

f[x0, x1] f[x
−1, x0, x1, x2]

x1 f [x1] f [x0, x1, x2] f [x
−1, x0, x1, x2, x3]

f [x1, x2] f [x0, x1, x2, x3]
x2 f [x2] f [x1, x2, x3]

f [x2, x3]
x3 f [x3]

We are going to construct Stirling’s Formula — a scheme using
centered differences. In particular we are going to use the blue
(centered at x0) entries, and averages of the red (straddling the x0
point) entries.
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Stirling’s Formula — Approximating at Interior Points

Assume we are trying to approximate f (x) close to the interior
point x0:

Pn(x) = P2m+1(x) = f [x0] + sh
f [x−1, x0] + f [x0, x1]

2
+ s2h2 f [x−1, x0, x1]

+ s(s2 − 1)h3
f [x−2, x−1, x0, x1] + f [x−1, x0, x1, x2]

2
+ s2(s2 − 1)h4 f [x−2, x−1, x0, x1, x2]

+ . . .

+ s2(s2 − 1) · · · (s2 − (m − 1)2)h2m f [x−m, . . . , xm]

+ s(s2 − 1) · · · (s2 −m2)h2m+1

·
f [x−m−1, . . . , xm] + f [x−m, . . . , xm+1]

2

If n is odd (can be written as 2m + 1), otherwise delete the last
two lines.
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Summary: Divided Difference Formulas

Newton’s Interpolatory Divided Difference Formula

Pn(x) = f [x0] + f [x0, x1](x − x0) + f [x0, x1, x2](x − x0)(x − x1) +
f [x0, x1, x2, x3](x − x0)(x − x1)(x − x2) + · · ·

Newton’s Forward Divided Difference Formula

Pn(x0 + sh) = f [x0] +

n∑

k=1

(s

k

)

k! hk f [x0, . . . , xk ]

Newton’s Backward Difference Formula

Pn(x) = f [xn] +
n∑

k=1

(−1)k
(−s

k

)

∇k f (xn)

Reference: Binomial Coefficients

(s

k

)

=
s(s − 1) · · · (s − k + 1)

k!
,

(−s

k

)

= (−1)k
s(s + 1) · · · (s + k − 1)

k!
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Homework #4 http://webwork.sdsu.edu

Will open on 09/24/2014 at 09:30am PDT.

Will close no earlier than 10/3/2014 at 09:00pm PDT.
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Combining Taylor and Lagrange Polynomials

A Taylor polynomial of degree n matches the function and its
first n derivatives at one point.

A Lagrange polynomial of degree n matches the function values
at n + 1 points.

Question: Can we combine the ideas of Taylor and Lagrange to
get an interpolating polynomial that matches both the
function values and some number of derivatives at mul-
tiple points?

Answer: To our euphoric joy, such polynomials exist! They are
called Osculating Polynomials.

The Concise Oxford Dictionary:

Osculate 1. (arch. or joc.) kiss. 2. (Biol., of species, etc.) be related through

intermediate species etc., have common characteristics with another or with each

other. 3. (Math., of curve or surface) have contact of higher than first order with,

meet at three or more coincident points.
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Osculating Polynomials In Painful Generality

Given (n + 1) distinct points {x0, x1, . . . , xn} ∈ [a, b], and non-negative
integers {m0,m1, . . . ,mn}.

Notation: Let m = max{m0,m1, . . . ,mn}.

The osculating polynomial approximation of a function f ∈ Cm[a, b]
at xi , i = 0, 1, . . . , n is the polynomial (of lowest possible order) that
agrees with

{f (xi ), f
′(xi ), . . . , f

(mi )(xi )} at xi ∈ [a, b], ∀i .

The degree of the osculating polynomial is at most

M = n +

n
∑

i=0

mi .

In the case where mi = 1, ∀i the polynomial is called a Hermite
Interpolatory Polynomial.
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Hermite Interpolatory Polynomials The Existence Statement

If f ∈ C 1[a, b] and {x0, x1, . . . , xn} ∈ [a, b] are distinct, the unique
polynomial of least degree (≤ 2n + 1) agreeing with f (x) and f ′(x) at
{x0, x1, . . . , xn} is

H2n+1(x) =
n∑

j=0

f(xj)Hn,j(x) +
n∑

j=0

f′(xj)Ĥn,j(x),

where
Hn,j (x) =

[

1− 2(x − xj )L
′
n,j (xj )

]

L2n,j (x)

Ĥn,j (x) = (x − xj )L
2
n,j (x),

and Ln,j(x) are our old friends, the Lagrange coefficients:

Ln,j (x) =

n∏

i=0, i 6=j

x − xi

xj − xi
.

Further, if f ∈ C 2n+2[a, b], then for some ξ(x) ∈ [a, b]

f (x) = H2n+1(x) +

∏n
i=0(x − xi )

2

(2n + 2)!
f (2n+2)(ξ(x)).
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That’s Hardly Obvious — Proof Needed! 1 of 2

Recall: Ln,j (xi ) = δi,j =

{
0, if i 6= j

1 if i = j
(δi,j is Kronecker’s delta).

If follows that when i 6= j : Hn,j(xi ) = Ĥn,j(xi ) = 0.

When i = j :

{

Hn,j(xj) =
[

1− 2(xj − xj)L
′
n,j(xj)

]

· 1 = 1

Ĥn,j(xj) = (xj − xj)L
2
n,j(xj) = 0.

Thus, H2n+1(xj) = f(xj).

H′
n,j (x) = [−2L′n,j (xj )]L

2
n,j (x) + [1− 2(x − xj )L

′
n,j (xj )] · 2Ln,j (x)L

′
n,j (x)

= Ln,j (x)
[

−2L′n,j (xj )Ln,j (x) + [1− 2(x − xj )L
′
n,j (xj )] · 2(x)L

′
n,j

]

Since Ln,j(x) is a factor in H ′
n,j(x): H

′
n,j(xi ) = 0 when i 6= j .
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Proof, continued...

H′
n,j (xj ) = [−2L′n,j (xj )] L

2
n,j (xj )

︸ ︷︷ ︸

1

+ [1− 2 (xj − xj )
︸ ︷︷ ︸

0

L′n,j (xj )] · 2 Ln,j (xj )
︸ ︷︷ ︸

1

L′n,j (xj )

= −2L′n,j (xj ) + 1 · 2 · L′n,j (xj ) = 0

i.e. H′
n,j(xi) = 0, ∀i.

Ĥ′
n,j (x) = L2n,j (x) + 2(x − xj )Ln,j (x)L

′
n,j (x)

= Ln,j (x)
[

Ln,j (x) + 2(x − xj )L
′
n,j (x)

]

If i 6= j : Ĥ ′
n,j(xi ) = 0, since Ln,j(xi ) = δi ,j .

If i = j : Ĥ ′
n,j(xj) = 1 ·

[

1 + 2(xj − xj)L
′
n,j(xj)

]

= 1.

Hence, H′
2n+1(xi) = f ′(xi), ∀i. �

Peter Blomgren, 〈blomgren.peter@gmail.com〉 #5 Interpolation and Polynomial Approximation — (27/40)



Polynomial Approximation: Practical Computations
Polynomial Approximation, Higher Order Matching

Beyond Hermite Interpolatory Polynomials

Osculating Polynomials
Hermite Interpolatory Polynomials
Computing Hermite Interpolatory Polynomials

Uniqueness Proof

Assume there is a second polynomial G (x) (of degree
≤ 2n + 1) interpolating the same data.

Define R(x) = H2n+1(x)− G (x).

Then by construction R(xi ) = R ′(xi ) = 0, i.e. all the xi ’s are
zeros of multiplicity at least 2.

This can only be true if R(x) = q(x)
∏n

i=0(x − xi )
2, for some

q(x).

If q(x) 6≡ 0 then the degree of R(x) is ≥ 2n + 2, which is a
contradiction.

Hence q(x) ≡ 0 ⇒ R(x) ≡ 0 ⇒ H2n+1(x) is unique. �
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Main Use of Hermite Interpolatory Polynomials

One of the primary applications of Hermite Interpolatory Polynomials is
the development of Gaussian quadrature for numerical integration. (To
be revisited later this semester.)

The most commonly seen Hermite interpolatory polynomial is the cubic
one, which satisfies

H3(x0) = f (x0), H ′

3(x0) = f ′(x0)
H3(x1) = f (x1), H ′

3(x1) = f ′(x1).

it can be written explicitly as

H3(x) =
[

1 + 2 x−x0
x1−x0

] [

x1−x
x1−x0

]2

f (x0) + (x − x0)
[

x1−x
x1−x0

]2

f ′(x0)

+
[

1 + 2 x1−x
x1−x0

] [

x−x0
x1−x0

]2

f (x1) + (x − x1)
[

x−x0
x1−x0

]2

f ′(x1).

It appears in some optimization algorithms (see Math 693a, linesearch
algorithms.)

Peter Blomgren, 〈blomgren.peter@gmail.com〉 #5 Interpolation and Polynomial Approximation — (29/40)



Polynomial Approximation: Practical Computations
Polynomial Approximation, Higher Order Matching

Beyond Hermite Interpolatory Polynomials

Osculating Polynomials
Hermite Interpolatory Polynomials
Computing Hermite Interpolatory Polynomials

Computing from the Definition is Tedious!

However, there is good news: we can re-use the algorithm for Newton’s
Interpolatory Divided Difference Formula with some modifications in
the initialization.

We “double” the number of points, i.e. let

{y0, y1, . . . , y2n+1} = {x0, x0 + ǫ, x1, x1 + ǫ, . . . , xn, xn + ǫ}

Set up the divided difference table (up to the first divided differences),
and let ǫ → 0 (formally), and identify:

f ′(xi ) = lim
ǫ→0

f [xi + ǫ]− f [xi ]

ǫ
,

to get the table [next slide]...
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Hermite Interpolatory Polynomial using Modified Newton Divided Differences

y f(x) 1st Div. Diff. 2nd Div. Diff. 3rd Div. Diff.
y0 = x0 f [y0]

f [y0, y1] = f ′(y0)
y1 = x0 f [y1] f [y0, y1, y2]

f [y1, y2] f [y0, y1, y2, y3]
y2 = x1 f [y2] f [y1, y2, y3]

f [y2, y3] = f ′(y2) f [y1, y2, y3, y4]
y3 = x1 f [y3] f [y2, y3, y4]

f [y3, y4] f [y2, y3, y4, y5]
y4 = x2 f [y4] f [y3, y4, y5]

f [y4, y5] = f ′(y4) f [y3, y4, y5, y6]
y5 = x2 f [y5] f [y4, y5, y6]

f [y5, y6] f [y4, y5, y6, y7]
y6 = x3 f [y6] f [y5, y6, y7]

f [y6, y7] = f ′(y6) f [y5, y6, y7, y8]
y7 = x3 f [y7] f [y6, y7, y8]

f [y7, y8] f [y6, y7, y8, y9]
y8 = x4 f [y8] f [y7, y8, y9]

f [y8, y9] = f ′(y8)
y9 = x4 f [y9]
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H3(x) revisited...

Old notation

H3(x) =
[

1 + 2 x−x0
x1−x0

] [

x1−x
x1−x0

]2

f (x0) +
[

1 + 2 x1−x
x1−x0

] [

x−x0
x1−x0

]2

f (x1)

+ (x − x0)
[

x1−x
x1−x0

]2

f ′(x0) + (x − x1)
[

x−x0
x1−x0

]2

f ′(x1).

Divided difference notation

H3(x) = f (x0) + f ′(x0)(x − x0) + f [x0, x0, x1](x − x0)
2

+ f [x0, x0, x1, x1](x − x0)
2(x − x1).

Or with the y ’s...

H3(x) = f (y0) + f ′(y0)(x − y0) + f [y0, y1, y2](x − y0)(x − y1)
+ f [y0, y1, y2, y3](x − y0)(x − y1)(x − y2).
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H3(x) Example

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

x0 = 0, x1 = 1

f (x0) = 0, f ′(x0) = 4, f (x1) = 3, f ′(x1) = −1

H3(x) = 4x − x2 − 3x2(x − 1)
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H3(x) Example — Not Very Pretty Computations

Example

x0 = 0; x1 = 1; % This is the data
fv0 = 0; fpv0 = 4;
fv1 = 3; fpv1 = -1;

y0 = x0; f0=fv0; % Initializing the table
y1 = x0; f1=fv0;
y2 = x1; f2=fv1;
y3 = x1; f3=fv1;

f01 = fpv0; % First divided differences
f12 = (f2-f1)/(y2-y1);
f23 = fpv1;

f012 = (f12-f01)/(y2-y0); % Second divided differences
f123 = (f23-f12)/(y3-y1);

f0123 = (f123-f012)/(y3-y0); % Third divided difference

x=(0:0.01:1)’;

H3 = f0 + f01*(x-y0) + f012*(x-y0).*(x-y1) + ...

f0123*(x-y0).*(x-y1).* (x-y2);
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Algorithm: Hermite Interpolation

Algorithm: Hermite Interpolation, Part #1

Given the data points (xi , f (xi ), f
′(xi )), i = 0, . . . , n.

Step 1: FOR i=0:n

y2i = xi, Q2i,0 = f (xi ), y2i+1 = xi, Q2i+1,0 = f (xi )
Q2i+1,1 = f ′(xi )
IF i > 0

Q2i,1 =
Qi,0 − Qi−1,0

y2i − y2i−1
END

END
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Algorithm: Hermite Interpolation

Algorithm: Hermite Interpolation, Part #2

Step 2: FOR i = 2 : (2n + 1)
FOR j = 2 : i

Qi,j =
Qi,j−1 − Qi−1,j−1

yi − yi−j

.

END

END

Result: qi = Qi,i , i = 0, . . . , 2n + 1 now contains the coefficients for

H2n+1(x) = q0 +

2n+1
∑

k=1



qk

k−1
∏

j=0

(x − yj)



 .
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Higher Order Osculating Polynomials 1 of 3

So far we have seen the osculating polynomials of order 0 — the
Lagrange polynomial, and of order 1 — the Hermite interpolatory
polynomial.

It turns out that generating osculating polynomials of higher order
is fairly straight-forward; — and we use Newton’s divided
differences to generate those as well.

Given a set of points {xk}
n
k=0, and {f (ℓ)(xk)}

n,ℓk
k=0,ℓ=0; i.e. the

function values, as well as the first ℓk derivatives of f in xk . (Note
that we can specify a different number of derivatives in each point.)

Set up the Newton-divided-difference table, and put in (ℓk + 1)
duplicate entries of each point xk , as well as its function value
f (xk).
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Run the computation of Newton’s divided differences as usual;
with the following exception:

Whenever a zero-denominator is encountered — i.e. the divided
difference for that entry cannot be computed due to duplica-
tion of a point — use a derivative instead. For mth divided
differences, use 1

m! f
(m)(xk).

On the next slide we see the setup for two point in which two
derivatives are prescribed.
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y f(x) 1st Div. Diff. 2nd Div. Diff. 3rd Div. Diff.
y0 = x0 f [y0]

f [y0, y1] = f ′(x0)
y1 = x0 f [y1] f [y0, y1, y2] =

1
2
f ′′(x0)

f [y1, y2] = f ′(x0) f [y0, y1, y2, y3]
y2 = x0 f [y2] f [y1, y2, y3]

f [y2, y3] f [y1, y2, y3, y4]
y3 = x1 f [y3] f [y2, y3, y4]

f [y3, y4] = f ′(x1) f [y2, y3, y4, y5]
y4 = x1 f [y4] f [y3, y4, y5] =

1
2
f ′′(x1)

f [y4, y5] = f ′(x1)
y5 = x1 f [y5]

3rd and higher order divided differences are computed “as usual”
in this case.

On the next slide we see four examples of 2nd order osculating
polynomials.
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Examples...

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f(−1)   = +1.00

df(−1)  = +1.00

ddf(−1) = +0.00

f(1)   = −1.00

df(1)  = −1.00

ddf(1) = +0.00

f(0)   = +0.00

df(0)  = +1.00

ddf(0) = +0.00

Osculating Polynomials
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−0.8

−0.6
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0

0.2

0.4

0.6

0.8

1

f(−1)   = +1.00

df(−1)  = +1.00

ddf(−1) = +0.00

f(1)   = −1.00

df(1)  = −1.00

ddf(1) = +0.00

f(0)   = +0.00

df(0)  = −1.00

ddf(0) = +0.00

Osculating Polynomials
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1

f(−1)   = +1.00

df(−1)  = +2.00

ddf(−1) = −1.00

f(1)   = −1.00

df(1)  = +1.00

ddf(1) = +3.00

f(0)   = +0.00

df(0)  = +0.00

ddf(0) = +10.00
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f(−1)   = +1.00

df(−1)  = −1.00

ddf(−1) = −10.00

f(1)   = −1.00

df(1)  = −1.00

ddf(1) = +10.00

f(0)   = +0.00

df(0)  = −1.00

ddf(0) = −10.00

Osculating Polynomials
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