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Numerical Differentiation: The Big Picture

The goal of numerical differentiation is to compute an accurate
approximation to the derivative(s) of a function.

Given measurements {f;}7_, of the underlying function f(x) at the
node values {x;}"_g, our task is to estimate f'(x) (and, later,
higher derivatives) in the same nodes.

The strategy: Fit a polynomial to a cleverly selected subset of the

nodes, and use the derivative of that polynomial as
the approximation of the derivative.
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Numerical Differentiation

Definition (Derivative as a limit)

The derivative of f at xg is

f/(x0) = lim fxo + h/)7 — flx)

The obvious approximation is to fix A “small” and compute

F(x0) ~ f(xo + h/)7 — f(xo)‘

Problems: Cancellation and roundoff errors. — For small values
of h, f(xo+h) = f(xp) so the difference may have very
few significant digits in finite precision arithmetic.
=- smaller h not necessarily better numerically.
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Main Tools for Numerical Differentiation 1of2

In the discussion on Numerical Differentiation (and later
Integration) we will rely on our old friend (nemesis?) — the Taylor
expansions...

Theorem (Taylor's Theorem)

Suppose f € C"[a, b], f("t1)3 on [a, b], and xo € [a, b]. Then
Vx € (a, b), 3¢(x) € (min(xg, x), max(xp, x)) with
f(x) = Pn(x) + Rn(x) where

D FR) (g
put) = 3= Rt ) -

k=0

Fm(E(x)) n
CES I

P,(x) is the Taylor polynomial of degree n, and
R.(x) is the remainder term (truncation error).
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Main Tools for Numerical Differentiation 2 of 2

Our second tool for building Differentiation and Integration
schemes are the Lagrange Coefficients

Lox(x) = H X%

j=0jk KT
Recall: L, x(x) is the nth degree polynomial which is 1 in xx and
0 in the other nodes (x;j, j # k).

Previously we have used the family L, o(x), Ln1(x), ..., Ly n(x) to
build the Lagrange interpolating polynomial. — A good tool for
discussing polynomial behavior, but not necessarily for computing
polynomial values (c.f. Newton's divided differences).

Now, lets combine our tools and look at differentiation.
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Getting an Error Estimate — Taylor Expansion

f(xo+ h) — f(x0)
h

= F[F00) + B (x0) + BF(6(x)) — F(x0)
= f'(x0) + §F"(£(x))
If ”(£(x)) is bounded, i.e.

[F7(E(x))| < M, VE&(x) € (x0, %0 + h)

then we have

f(xo + h) — f(x0)
h b

Mih|

f'(x0) ~ with an error less than

This is the approximation error.
(Roundoff error, ~ €.y ~ 10710, not taken into account).
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Using Higher Degree Polynomials to get Better Accuracy

Suppose {xo, x1,...,%n} are distinct points in an interval Z, and
f € C"Y(T), we can write

RN [Ti—o(x = xk) (n
x) = kz_;f(xk)Ln,k(X) +k(r$+1)lvf( (E(x))

Error Term

Lagrange Interp. Poly.

Formal differentiation of this expression gives:

> Fa) L i(x) + % [HZO(X _) Xk)} FT(E(x))
k=0

— (n+1)!
e o,

Note: When we evaluate f’(x;) at the node points (x;) the last term
gives no contribution. (= we don't have to worry about it...)

%; Richardson’s Extrapolation; [ f(x) dx — (8/55)



Exercising the Product Rule for Differentiation

4l

(n+1)!

HZ:O(X — Xk)

(n+1)! ]:

L[ xa)(x - x0) -

n

,,+1|Z H (X_Xk)

=0 | k=0,k#j

“(x = xn) + (x — x0)(x — x2) -

(= xp) o] =

Now, if we let x = x; for some particular value of ¢, only the

product which skips that value of j = £ is non-zero..

(n+

n

.Z Il

=0 | k=0,k#j

— Xk)

X=

Xe

a .
55+ R

. eg.

n

S | T

(n T 1)' k=0,k#£l
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The (n+ 1) point formula for approximating f’(x;)

Putting it all together yields what is known as the (n+ 1) point
formula for approximating f'(x;):

n £(nt1) n

F05) = D FO)al) + o)
k=0 ~|k=0
k#

(% — xk)

Note: The formula is most useful when the node points are equally
spaced (it can be computed once and stored), i.e.

Xk = Xg + kh.
Now, we have to compute the derivatives of the Lagrange

coefficients, i.e. Ly x(x)... [We can no longer dodge this task!]
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Example: 3-point Formulas, I/IlI

Building blocks:

(x = x1)(x — x2) ; _ (x=x)+ (x—x)
200 = G e =) 20 = e TG0 — )
(x = x0)(x — x2) ; ~ (x=x0) + (x—x)
baal) = (31— x0)(x1 — x2)’ F2al0) = (a —x0)(x1 — x2)
(x = x0)(x — x1) ; ~ (x=x0) +(x—x)
faalx) = (x2 — x0) (2 — x1)’ L2l = (2 —x0) (2 — x1)
Formulas:

2Xj — X1 — X2 2Xj — X0 — X2

Flg) = fla) [(XO T —Xz)] ) {
+ f(xz)[ o ] f(3) ﬁ o

(x2 — x0) (X2 — x1) .
75

Jo

(x1 — x0)(x1 — x2)
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Example: 3-point Formulas, I1/1lI

When the points are equally spaced...
1 h?
fl(x0) = 57 [=3f (%) +4f(x1) — )] + 5 F (&)

v a f(xO)H(x;:)]f’lf”(sl)

i) = 2h

F/(2) = o 1F(50) — 4F(s2) + 3 ()] + 2 (&)

Use xg as the reference point — xx = xg + kh:
1 h?
f'(x0) = >h [3f(x0) +4f(xo + h) — f(xo + 2h)] + ?fe)(fo)
Fixo +h) = 5 [=F(x0) + f(xo + 2h)] = =F(&)
1 h?
f'(x0 + 2h) = 2 [f(x0) — 4f(x0 + h) + 3f(x0 + 2h)] + —f )(&)
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Example: 3-point Formulas, I11/11I

F/0) = o [-3(s0) + 40+ ) — Fs0 + 20)] + oF9 (&)
)= o |

2
F06) = 5 [FOG —2) — 4f (g — h) +360)] + 5 (&)

After the substitution xg + h — X in the second equation, and
Xo +2h — xgr in the third equation.

2
F(x6) = 55 [0 —h) + £ + )] — = FO(&r)

Note#1: The third equation can be obtained from the first one by setting h — —h.
Note#2: The error is smallest in the second equation.

Note#3: The second equation is a two-sided approximation, the first and third one-
sided approximations.

Note#4: We can drop the superscripts *,T ...
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3-point Formulas: lllustration Centered Formula

5x=1/1, dP(0) = 1.2985, df(0) =1

-1

-2

-3

-4

-5

-6

-7
-2 -1.5 -1 -0.5 0 0.5 1 15 2

Fl0) = 5o [-F(x0 — ) + Fro + W) — T FO)(e)
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3-point Formulas: lllustration Forward Formula

5x=1/1, dP(0) = 0.55759, df(0) =1

-1r e J

—2t 2 : . 4

-3 g J

5y J

6+ . : ]

2
F/(x0) = o [-3F(:0) + 40 + h) — F(3x0 +2)] + = FO) (o)
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3-point Formulas: lllustration Backward Formula

5x=1/1, dP(0) = 1.2153, df(0) =1

2
F/(30) = g [Flx0 — 2) 4730 — ) + 37 (x0)] + 5 FO()
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5-point Formulas

If we want even better approximations we can go to 4-point,
5-point, 6-point, etc... formulas.

The most accurate (smallest error term) 5-point formula is:

f/(XO) _ f(X0*2h)*8f(X0*h)lgi?f(X0+h)*f(XO+2h) + %f(s)(f)

Sometimes (e.g for end-point approximations like the clamped
splines), we need one-sided formulas

f-/(XO) — —25f(X0)+48f(X0+h)—36f(Xg;—h2h)+16f(Xo+3h)—3f(X0+4h) +%4 f(5)(§)
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5-Point Formulas Reference

f(x) = % [ — 25f(xp) + 48f(x1) — 361 (x2) + 16 (x3) — 3f(x4)]
f/(XQ) = lih |: 3f(X 1) - 10f(X0) + 18f(X1) - 6f(X2) + f(X3):|

f’(Xo) = % |:f(X_2) — Sf(X_l) + 8f(X1) — f(XQ):|

f'(x0) = ﬁ [ — f(x_3) +6f(x_2) — 18f(x_1) + 10(x0) + 3f(x1)]

f'(x0) = L [3f(x_ ) — 16f(x_3) + 36f(x_2) — 48(x_1) + 25f(x0)]

12h
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5-point Formulas: lllustration Centered Formula

ox=1/1, dP(0) = 1.1611, df(0) =1
2 T T T T T

-1

-2

-3

-4

-5

-6

Ty 45 1 05 0 0.5 1 1.5 2

f/(XO) _ f(x072h)78f(x07h)lgi?f(xo+h)ff(xo+2h) + %f(s)(f)

%; Richardson’s Extrapolation; [ f(x) dx — (19/55)



I
_

3-point and 5-point Formulas X

Bx=1/1, dP(0) = 0.55759, df(0) = 1 sx=1/1, dP(0) = 1.2153, df(0) = 1

2 45 -1 05 0 05 1 15 2 2 45 -1 05 0 05 1 15 2
x=1M, dP(0) = 1.2085, df(0) = 1 x=1M, dP(0) = 11611, df(0) = 1
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3-point and 5-point Formulas ox =1/2

, 5x=1/2, dP(0) = 0.85359, df(0) = 1 , Sx=1/2, dP(0) = 0.8744, df(0) = 1
0 0

-1 -1

-2 -2

-3 -3

-4 i’ -4

-5 l," -5 l,"

-6, g -6 .

-7 -7,
2 15 -1 05 0 05 1 15 2 -2 -15 -1 05 0 05 1 15 2

, Sx=1/2, dP(0) = 1.0812, df(0) = 1 , &x=112, dP(0) = 1.0088, df(0) = 1
0| - 0|

-1 5 -1

2 . .'/ . . . 2

-3 -3 ;

-4 S -4 !

-5 g -5

-6[ -8,/

T a5 o s 0 05 1 15 2 T a5 4 s 0 05 1 15 2
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3-point and 5-point Formulas

ox=1/4

Bx=1/4, dP(0) = 0.95985, df(0) =1

-7
2

-1 05 0 05 1 15 2
Sx=1/4, dP(0) = 1.0207, df(0) =1

E

-2

-3

Sx=1/4, dP(0) = 0.96051, df(0) =1

15 -1 05 0 05 1 15 2

Sx=1/4, dP(0) = 1.0005, df(0) =1

E

-2

-3

-5

-6

-7
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3-point and 5-point Formulas Summary
d 3-Point Formulas 5-point
Backward Center Forward | Formula
1 1.2153 1.2985 0.55759 1.1611
1/2 0.8744 1.0812 0.8536 1.0088
1/4 0.96051 1.0207 0.95985 1.0005
Table: “Clearly” the centered 3-point formula beats
out the backward and forward formulas; but the 5-point
formula is big winner here.
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Higher Order Derivatives

We can derive approximations for higher order derivatives in the
same way. — Fit a kth degree polynomial to a cluster of points
{xi, (x,)}”J’kJr:l and compute the appropriate derivative of the
polynomial in the point of interest.

The standard centered approximation of the second derivative is
given by

f(XO -+ h) — 2f(X0) + f(Xo — h)
h2

" (x0) = + O(h?)
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Wrapping Up Numerical Differentiation

We now have the tools to build high-order accurate approximations
to the derivative.

We will use these tools and similar techniques in building
integration schemes in the following lectures.

Also, these approximations are the backbone of finite difference
methods for numerical solution of differential equations (see
Math 542, and Math 693b).

Next, we develop a general tool for combining low-order accurate
approximations (to derivatives, integrals, anything! (almost))... in
order to hierarchically constructing higher order approximations.
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Richardson’s Extrapolation

What it is: A general method for generating high-accuracy
results using low-order formulas.

Applicable when: The approximation technique has an error
term of predictable form, e.g.
o0

M — Nj(h) = Eih¥,
k=j

where M is the unknown value we are trying to approximate, and

N;(h) the approximation (which has an error O(H).)

Procedure: Use two approximations of the same order, but with
different h; e.g. N;(h) and N;(h/2). Combine the two
approximations in such a way that the error terms of
order W cancel.
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Building High Accuracy Approximations 1of5

Consider two first order approximations to M:
M — Ny(h) = Z E h¥,
and
M — Ny(h/2) = ZEk2k.
If we let Na(h) = 2Nj(h/2) — Ny (h), then

h n
M — Ny(h) = 2E 7 — Eth+Y ES K,

—— —— k=2
0

1

Hence, N,(h) is now a second order approximation to M.

where
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Building High Accuracy Approximations

20of 5

We can play the game again, and combine N(h) with No(h/2) to get a

third-order accurate approximation, etc.

_ 4Na(h/2) — Na(h)
3

Na(h/2) — Na(h)

Ns(h) 3

= Nao(h/2) +

N3(h/2) — N3(h)
7
Na(h/2) — Na(h)
241

In general, combining two jth order approximations to get a
(j + 1)st order approximation:

Ny(h) = Na(h/2) +

Ns(h) = Na(h/2) +

Nj(h/2) — Ny(h)

Njia(h) = Ny(h/2) + =00
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Building High Accuracy Approximations 30of5

Let's derive the general update formula. Given,
M—N;(h) = EHW +0O (K1)

M—Ni(h/2) = E

57 +0O (K1)

We let
Nj+1(h) = ajNj(h) + B;N;(h/2)

However, if we want Njy1(h) to approximate M, we must have
aj + B; = 1. Therefore

. h .
M = Njsa(h) = ojEi + (1= aj)Ej; + O (W)
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Building High Accuracy Approximations 4 of 5

Now,

M — Njj1(h) = Ei [0‘1 + (1~ o) 11] +O (W)

2

We want to select «; so that the expression in the bracket is zero.

This gives
-1 2 (2-1)+1 1
= 1-oj=-— = =1+ -
GT 1 AT 5 2 —1 +2,_1
Therefore,

N;(h/2) = N;(h)

Nyia(h) = Nj(h/2) + L0
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Building High Accuracy Approximations 50f 5

The following table illustrates how we can use Richardson's
extrapolation to build a 5th order approximation, using five 1st
order approximations:

O (h) Oom?’) om) omY) 0(n)
Ni1(h)

Ni(h/2) Na(h)

Ni(h/4) N2(h/2)  N3(h)

Ni(h/8) Na(h/4)  N3(h/2)  Na(h)

N1 (h/16) Na(h/8) N3(h/4) Na(h/2) Ns(h)
T Measurements T Extrapolations T
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Example (c.f. slide#13, and slide#17)

The centered difference formula approximating f’(xg) can be expressed:

f/(XO) _ f(X + h)2_hf(x — h) _ %2)(///(5) + O(h4)

Na(h) error term

In order to eliminate the h? part of the error, we let our new
approximation be

( Melh/2) — Nalh)

f(x+h)—f(x=h) _ f(x+2h)—f(x—2h)
2h 4h

N3(2h) — f(X“rh)*f(th) +

8F(x-+h)—8F(x—h)  f(x+2h)—f(x—2h)

6h 6h

= 35 [f(x — 2h) — 8f(x — h) + 8f(x + h) — f(x + 2h)].
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Example, f(x) = x

2

er.

X

X

f(x)

1.70
1.80
1.90
2.00
2.10
2.20
2.30

15.8197
19.6009
24.1361
29.5562
36.0128
43.6811
52.7634

f'(x) = (2x + x?)e*,
f'(2) = 8e? = 59.112.

f2D-F20) _ 64.566. (Fwd Difference, 2pt)
f2D-F19) — 59.384. (Ctr Difference, 3pt)

W = 60.201. (Ctr Difference)

(4%59.384—60.201)/3 = 59.111. (Richardson)
f(1.8)—8f(1. f(2.1)—f(2.
(1.8)—8f(1 9)14.;8 @1-f22) _ 59111 (5pt)
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Integration: Introduction — The “Why?”

After taking calculus, | thought | could differentiate and/or
integrate every function...

Then came physics, mechanical engineering, etc...

The need for numerical integration was painfully obvious!

Sometimes (most of the time?), the anti-derivative is not available
in closed form.

/f(x)dx: F(x) +¢C
—

Anti-Derivative
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Numerical Quadrature

The basic idea is to replace integration by clever summation:

b n
/ f(x)dx — Z aif;,
a i=0

where a < xp < x3 < -+ < xp < b, fi = f(x;).

The coefficients a; and the nodes x; are to be selected.
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Building Integration Schemes with Lagrange Polynomials

Given the nodes {xp, x1,...,%,} we can use the Lagrange
interpolating polynomial

F () T

1y 11e)

Pn(x) = Z filni(x), with error E,(x) =
i=0 i=0

to obtain

/abf(x)dx: /abP,,(x)dx + /abE,,(x)dx

The Approximation ~ The Error Estimate
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Identifying the Coefficients

b n b n
/ n(x) dx—/ ZfL,,,(x dx—Zf,/ L,,7,-(x)dx:Zf,-a,-.
a —0 4 ) i=0
aj

Hence we write . .
/ f(x)dx ~ Z aif;
a i=0

with error given by

b b £(n+1)(¢(x
E(f):/a E,,(x)dx:/a f (;+(1()!)) H(x—x,-)dx.

Note: Can we change the order of integration | and summation >~ as we did above?
In this case where we are integrating a polynomial over a finite interval it is
OK. For technical details see a class on real analysis (e.g. Math 534B).
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Example #1: Trapezoidal Rule [/111

Let a = xo < x1 = b, and use the linear interpolating polynomial

X — X X — X
Pl(x):fo[_xo_xll}_i_fl[ 0].
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Example #1: Trapezoidal Rule 1n/m

Then

b X1 _ _
/f(x)dx - / [fo[x X1]+f1[x XOH dx
a X0 X0 — X1 X1 — X0

+ / F(E00)(x = x0)(x — x1) o

0

The error term (use the Weighted Mean Value Theorem):

[ e ax = 76) [ sl ) o
X3 X X & 3
— £(¢) [3 _ %)f + XOX1X:| = —%fﬁ(f)-

where h=x; —xp = b— a.
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Example #1: Trapezoidal Rule

/n

Hence,

/f

_ (x1;xo) fo+ fi] -

h3

-[s[2n)

Ef”(ﬁ)

ﬁV”ﬂWHT_”ﬂw

2(X1 — Xo)

/abf(x)dx =

h [f(xo) + f(x1)

2

] AfW@) h=b-—a.
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Example #2a: Simpson'’s Rule (sub-optimal error bound)

Let xg = a, x1 = a+b , xo = b, let h = 252 and use the quadratic
interpolating polynomlal

b x x —x1)(x — x X — xp)(x — x
/ f(X)dX:/ |:f(X0)(( 1)( 2) +f(X1)( 0)( 2)

X0 —Xl)(Xo —X2) (Xl —Xo)(Xl —X2)
(x — x0)(x — x1) "
] «

(X2 - XO)(X2 — X1

+/X:2 (X — XO)(X —6X1)(X - X2) f(3)(§(x)) dx ...

+ f(x2)

/ab £(x) dx = h |:f(X0) + 4f(3X1) + f(X2)] + O(h4f(3)(f)).

%; Richardson’s Extrapolation; [ f(x) dx — (41/55)



Example #2b: Simpson's Rule (optimal error bound)

The optimal error bound for Simpson's rule can be obtained by Taylor
expanding f(x) about the mid-point x;:

s 7 (x) 3 W)
(x — x1) +T(X7X1) + "

f”(xl) 4
— (x—x)"

F(x) = F0xa) + £/ Ga)(x — x) +
then formally integrating this expression, to get:

W (g(x)
24

' (x1) " (x1)

(X*X1)2+ T(X*X1)3+ (xf)q)4 dx.

[’ [f(xn ) — ) +

After use of the weighted mean value theorem, and the approximation
f'(x1) = H[f(x0) — 2f(x1) + F(x2)] — %f(“)(f), and a whole lot of
algebra (see BF &*/%h pp 189-190 / 195-196) we end up with

2 X X X 5
[ o Lol 28O 2 )] By

X0
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Example #2: Simpson’s Rule

/b () dx  h [f(xo) + 4f(3x1) + f(x2) N O(h5f(4)(§)).

f(x)

p(x) — Simpson’s Rule
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Integration Examples

f(x) [a,b] fab f(x)dx | Trapezoidal Error | Simpson Error
X [0,1] 172 05 0 05 0
x? [0,1] 1/3 0.5 0.16667 | 0.33333 0
X3 [0,1] 1/4 0.5 0.25000 | 0.25000 0
Xt [0,1] 1/5 0.5 0.30000 | 0.20833  0.0083333
e [0,1] e—1 1.8591 0.14086 1.7189  0.0005793

The Trapezoidal rule gives exact solutions for linear functions. —

The error terms contains a second derivative.

Simpson's rule gives exact solutions for polynomials of degree less
than 4. — The error term contains a fourth derivative.
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Degree of Accuracy (Precision)

Definition (Degree of Accuracy)

The Degree of Accuracy, or precision, of a quadrature formula is
the largest positive integer n such that the formula is exact for x*
Vk=0,1,...,n.

With this definition:

Scheme Degree of Accuracy
Trapezoidal 1
Simpson'’s 3

Trapezoidal and Simpson's are examples of a class of methods
known as Newton-Cotes formulas.
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Newton-Cotes Formulas — Two Types Closed

Closed The (n+ 1) point closed NCF uses nodes x; = xp + ih,
i=0,1,...,n where xo = a, x, = band h = (b—a)/n. It
is called closed since the endpoints are included as nodes.

Y

f)

a=xy XN X3 Xpoy X, =b X
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Newton-Cotes Formulas — Two Types Open

Open The (n + 1) point open NCF uses nodes x; = xp + ih,
i=0,1,...,nwhere h=(b—a)/(n+2) and xo = a+ h,
Xn = b — h. (We label x_1 = a, x,41 = b.)

/ ¢ -
T B J T T T L)
a=x_ X X X Xy Gy =b *
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Closed Newton-Cotes Formulas

The approximation is

b n
/ Fx)dx~ " aif (x),
a i=0

where
n

Xn (x — x;

aj = L dX—/ 'I

/xo ( 1:[ _XJ)
A

Note: The Lagrange polynomial L, ;(x) models a function which
takes the value 0 at all x; (j # /i), and 1 at x;. Hence, the
coefficient a; captures the integral of a function which is 1
in x; and zero in the other node points.
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Closed Newton-Cotes Formulas — Error

Theorem

Suppose that Y a;jf(x;) denotes the (n+ 1) point closed
Newton-Cotes formula with xo = a, x, = b, and h= (b — a)/n. Then
there exists £ € (a, b) for which

PRV o SRS i Sl (3 B A YOI
/a{( )d. 7§a,f( i)+ ("1 2) /Ot(t 1)---(t — n)dt,

if n is even and f € C"2[a, b], and

b n hn+2f(n+1) (f)
/a F(x)dx = z:% )+ (t — n)dt,

if n is odd and f € C"[a, b].

Note that when n is an even integer, the degree of precision is (n+ 1).
When n is odd, the degree of precision is only n.
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Closed Newton-Cotes Formulas — Examples

n = 2: Simpson’s Rule

5
g [f(xo) +4f(x1) + f(xz)] - %f(4)(§)

n = 3: Simpson’s %-Rule

> [f(xo) +3f(a) + 3 (x2) + f(X3)} -3 s
n = 4: Boole’s Rule
ig [Yf(xo) +32f(x1) + 12 (x2) + 32F(x3) + 7f(><4)] — gi’;ﬂf”@)
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Open Newton-Cotes Formulas

The approximation is

where
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Open Newton-Cotes Formulas — Error

Theorem

Suppose that Y\ a;jf(x;) denotes the (n+ 1) point open Newton-Cotes
formula with x_1 = a, x,01 = b, and h= (b —a)/(n+2). Then there
exists £ € (a, b) for which

hn+3 f‘(n+2) (5)

b n n+1 )
/a f(X)dngaif(Xi)—’—W/—l t?(t —1)---(t — n)dt,
if n is even and f € C"2[a, b], and

b n hn+2f (n+1) (f)
/a F(x)dx = ; af) + s (t — n)dt,

if n is odd and f € C"[a, b].

Note that when n is an even integer, the degree of precision is (n+ 1).
When n is odd, the degree of precision is only n.
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Open Newton-Cotes Formulas — Examples

h3
n=0: 2hf (o) + ()
3
n=1: % I:f(Xo) + f(Xl):| + %fﬁ(g)
n=2: %h [Qf(XO) — () + 2f(X2):| 14h° f(4)(f)
n=3: 22 {Hf(x()) +f(xa) + F2) + llf(X3)] - 9154/;57‘ )(€)
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Divide and Conquer!

Say you want to compute:

/0 100 f(x) dx.

Is it a Good Idea™ to directly apply your favorite Newton-Cotes
formula to this integral?!?

No!

With the closed 5-point NCF, we have h = 25 and h°/90 ~ 10° so
even with a bound on f(®)(¢) the error will be large.

Better: Apply the closed 5-point NCF to the integrals

a(i+1)
/ f(x)dx, i=0,1,...,24
4i

then sum. “Composite Numerical Integration.” (next time)
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Homework #6 http://webwork.sdsu.edu

@ Will open on 10/15/2014 at 09:30am PDT.
@ Will close no earlier than 10/24/2014 at 09:00pm PDT.
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