Numerical Analysis and Computing
 Lecture Notes \#13
 - Approximation Theory -
 Rational Function Approximation

Peter Blomgren,

〈blomgren. peter@gmail.com〉

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720
http://terminus.sdsu.edu/

Fall 2014

Rational Function Approximation

Advantages of Polynomial Approximation:

[1] We can approximate any continuous function on a closed interval to within arbitrary tolerance. (Weierstrass approximation theorem)
[2] Easily evaluated at arbitrary values. (e.g. Horner's method)
[3] Derivatives and integrals are easily determined.

Disadvantage of Polynomial Approximation:

[1] Polynomials tend to be oscillatory, which causes errors. This is sometimes, but not always, fixable: - E.g. if we are free to select the node points we can minimize the interpolation error (Chebyshev polynomials), or optimize for integration (Gaussian Quadrature).

Approximation Theory

- Pros and Cons of Polynomial Approximation
- New Bag-of-Tricks: Rational Approximation
- Padé Approximation: Example \#1Padé Approximation
- Example \#2
- Finding the Optimal Padé Approximation

Moving Beyond Polynomials: Rational Approximation

We are going to use rational functions, $r(x)$, of the form

$$
r(x)=\frac{p(x)}{q(x)}=\frac{\sum_{i=0}^{n} p_{i} x^{i}}{1+\sum_{j=1}^{m} q_{i} x^{i}}
$$

and say that the degree of such a function is $N=n+m$.
Since this is a richer class of functions than polynomials - rational functions with $q(x) \equiv 1$ are polynomials, we expect that rational approximation of degree N gives results that are at least as good as polynomial approximation of degree N.

We take a fairly simplistic view of Rational / Padé approximation in what follows.

More details, theory, warnings, and best practices are found in:

Reference

Llyod N. Trefethen, Approximation Theory and Approximation Practice. Chaper 27: Padé Approximation; and Chapter 26: Rational Interpolation and Linearized Least-Squares.

Extension of Taylor expansion to rational functions; selecting the p_{i} 's and q_{i} 's so that $r^{(k)}\left(x_{0}\right)=f^{(k)}\left(x_{0}\right) \forall k=0,1, \ldots, N$.

$$
f(x)-r(x)=f(x)-\frac{p(x)}{q(x)}=\frac{f(x) q(x)-p(x)}{q(x)} .
$$

Now, use the Taylor expansion $f(x) \sim \sum_{i=0}^{\infty} a_{i}\left(x-x_{0}\right)^{i}$, for simplicity $x_{0}=0$:

$$
f(x)-r(x)=\frac{\sum_{i=0}^{\infty} a_{i} x^{i} \sum_{i=0}^{m} q_{i} x^{i}-\sum_{i=0}^{n} p_{i} x^{i}}{q(x)}
$$

Next, we choose $p_{0}, p_{1}, \ldots, p_{n}$ and $q_{1}, q_{2}, \ldots, q_{m}$ so that the numerator has no terms of degree $\leq N$.

Find the Padé approximation of $f(x)$ of degree 5 , where $f(x) \sim a_{0}+a_{1} x+\ldots a_{5} x^{5}$ is the Taylor expansion of $f(x)$ about the point $x_{0}=0$.

The corresponding equations are:

x^{0}	a_{0}	$-p_{0}=0$
x^{1}	$a_{0} q_{1}+a_{1}$	$-p_{1}=0$
x^{2}	$a_{0} q_{2}+a_{1} q_{1}+a_{2}$	$-p_{2}=0$
x^{3}	$a_{0} q_{3}+a_{1} q_{2}+a_{2} q_{1}+a_{3}$	$-p_{3}=0$
x^{4}	$a_{0} q_{4}+a_{1} q_{3}+a_{2} q_{2}+a_{3} q_{1}+a_{4}$	$-p_{4}=0$
x^{5}	$a_{0} q_{5}+a_{1} q_{4}+a_{2} q_{3}+a_{3} q_{2}+a_{4} q_{1}+a_{5}$	$-p_{5}=0$

Note: $p_{0}=a_{0}!!!$ (This reduces the number of unknowns and equations by one (1).)

We get a linear system for $p_{1}, p_{2}, \ldots, p_{N}$ and $q_{1}, q_{2}, \ldots, q_{N}$:

$$
\left[\begin{array}{lllll}
a_{0} & & & & \\
a_{1} & a_{0} & & & \\
a_{2} & a_{1} & a_{0} & & \\
a_{3} & a_{2} & a_{1} & a_{0} & \\
a_{4} & a_{3} & a_{2} & a_{1} & a_{0}
\end{array}\right]\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q_{4} \\
q_{5}
\end{array}\right]-\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5}
\end{array}\right]=-\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]
$$

If we want $n=3, m=2$: (empty entries $=$ zeros)

$$
\left[\begin{array}{ll|lll}
a_{0} & & -1 & & \\
a_{1} & a_{0} & & -1 & \\
a_{2} & a_{1} & & & -1 \\
a_{3} & a_{2} & & & \\
a_{4} & a_{3} & & &
\end{array}\right]\left[\begin{array}{l}
q_{1} \\
q_{2} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]=-\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right]
$$

Padé Approximation: Concrete Example, e^{-x}

All the possible Padé approximations of degree 5 are:

$$
\begin{aligned}
& r_{5,0}(x)=1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5} \\
& r_{4,1}(x)=\frac{1-\frac{4}{5} x+\frac{3}{10} x^{2}-\frac{1}{1} x^{3}+\frac{1}{12} x^{4}}{1+\frac{1}{5} x} \\
& r_{3,2}(x)=\frac{1-\frac{3}{5} x+\frac{3}{20} x^{2}-\frac{1}{6 x} x^{3}}{1+\frac{2}{5} x+\frac{1}{20} x^{2}} \\
& r_{2,3}(x)=\frac{1-\frac{2}{5} x+\frac{1}{20} x^{2}}{1+\frac{3}{5} x+\frac{3}{20} x^{2}+\frac{1}{60} x^{3}} \\
& r_{1,4}(x)=\frac{1-\frac{1}{x} x}{1+\frac{4}{5} x+\frac{3}{10} x^{2}+\frac{1}{15} x^{3}+\frac{1}{120} x^{4}} \\
& r_{0,5}(x)=\frac{1}{1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}}
\end{aligned}
$$

Note: $r_{5,0}(x)$ is the Taylor polynomial of degree 5 .

The Taylor series expansion for e^{-x} about $x_{0}=0$ is $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} x^{k}$, hence $\left\{a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}=\left\{1,-1, \frac{1}{2}, \frac{-1}{6}, \frac{1}{24}, \frac{-1}{120}\right\}$.

$$
\left[\begin{array}{rr|lll}
1 & & -1 & & \\
-1 & 1 & & -1 & \\
1 / 2 & -1 & & & -1 \\
-1 / 6 & 1 / 2 & & & \\
1 / 24 & -1 / 6 & & &
\end{array}\right]\left[\begin{array}{r}
q_{1} \\
q_{2} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]=-\left[\begin{array}{r}
-1 \\
1 / 2 \\
-1 / 6 \\
1 / 24 \\
-1 / 120
\end{array}\right],
$$

which gives $\left\{q_{1}, q_{2}, p_{1}, p_{2}, p_{3}\right\}=\{2 / 5,1 / 20,-3 / 5,3 / 20,-1 / 60\}$, i.e.

$$
r_{3,2}(x)=\frac{1-\frac{3}{5} x+\frac{3}{20} x^{2}-\frac{1}{60} x^{3}}{1+\frac{2}{5} x+\frac{1}{20} x^{2}}
$$

Rational Function Approximation

Padé Approximation: Concrete Example, e^{-x}

Maybe we should worry about division by zero? After all, the polynomials in the denominators have roots.

- $r_{5,0}(x): q(x)=1$ has no roots.
- $r_{4,1}(x): q(x)=1+\frac{1}{5} x$ has the root -5 .
- $r_{3,2}(x): q(x)=1+\frac{2}{5} x+\frac{1}{20} x^{2}$ has the roots $-4 \pm 2 i$.
- $r_{2,3}(x): q(x)=1+\frac{3}{5} x+\frac{3}{20} x^{2}+\frac{1}{60} x^{3}$ has the roots -3.6378 , $-2.6811 \pm 3.0504 i$.
- $r_{1,4}(x): q(x)=1+\frac{4}{5} x+\frac{3}{10} x^{2}+\frac{1}{15} x^{3}+\frac{1}{120} x^{4}$ has the roots $-1.2357 \pm 3.4377 i,-2.7643+1.1623 i$.
- $r_{0,5}(x): q(x)=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}$ has the roots $-2.1806,0.2398 \pm 3.1283 i,-1.6495 \pm 1.6939 i$

For now we sweep such "minor" details under the rug; but keep in mind that troublesome things may happen, and there are potential limits to the usefulness of a particular rational expression.

	One Point	Optimal Points
Polynomials	Taylor	Chebyshev
Rational Functions	Padé	???

From the example e^{-x} we can see that Padé approximations suffer from the same problem as Taylor polynomials - they are very accurate near one point, but away from that point the approximation degrades.
"Chebyshev-placement" of interpolating points for polynomials gave us an optimal (uniform) error bound over the interval.
Can we do something similar for rational approximations???

The algorithm in the book looks frightening! If we think in term of the matrix problem defined earlier, it is easier to figure out what is going on
\% The Taylor Coefficients, $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$
$\mathrm{a}=\left[\begin{array}{lllll}1 & -1 & 1 / 2 & -1 / 6 & 1 / 24-1 / 120\end{array}\right.$ ';
$\mathrm{N}=$ length (a); $\mathrm{A}=\operatorname{zeros}(\mathrm{N}-1, \mathrm{~N}-1)$;
$\% m$ is the degree of $q(x)$, and n the degree of $p(x)$
$\mathrm{m}=3$; $\mathrm{n}=\mathrm{N}-1-\mathrm{m}$;
$\%$ Set up the columns which multiply q_{1} through q_{m}
for $i=1$:m
$A(i:(N-1), i)=a(1:(N-i)) ;$
end
\% Set up the columns that multiply p_{1} through p_{n}
$\mathrm{A}(1: n, m+(1: n))=-\operatorname{eye}(n)$
\% Set up the right-hand-side
$b=-a(2: N)$;
\% Solve
$\mathrm{c}=\mathrm{A} \backslash \mathrm{b}$;
$\mathrm{Q}=[1 ; \mathrm{c}(1: \mathrm{m})] ; \%$ Select q_{0} through q_{m}
$\mathrm{P}=\left[a_{0} ; \mathrm{c}((\mathrm{m}+1):(\mathrm{m}+\mathrm{n}))\right] ; \%$ Select p_{0} through p_{n}

Chebyshev Basis for the Padé Approximation!

We use the same idea - instead of expanding in terms of the basis functions x^{k}, we will use the Chebyshev polynomials, $T_{k}(x)$, as our basis, i.e.

$$
r_{n, m}(x)=\frac{\sum_{k=0}^{n} p_{k} T_{k}(x)}{\sum_{k=0}^{m} q_{k} T_{k}(x)},
$$

where $N=n+m$, and $q_{0}=1$.
We also need to expand $f(x)$ in a series of Chebyshev polynomials:

$$
f(x)=\sum_{k=0}^{\infty} a_{k} T_{k}(x)
$$

so that

$$
f(x)-r_{n, m}(x)=\frac{\sum_{k=0}^{\infty} a_{k} T_{k}(x) \sum_{k=0}^{m} q_{k} T_{k}(x)-\sum_{k=0}^{n} p_{k} T_{k}(x)}{\sum_{k=0}^{m} q_{k} T_{k}(x)} .
$$

Again, the coefficients $p_{0}, p_{1}, \ldots, p_{n}$ and $q_{1}, q_{2}, \ldots, q_{m}$ are chosen so that the numerator has zero coefficients for $T_{k}(x)$,
$k=0,1, \ldots, N$, i.e.

$$
\sum_{k=0}^{\infty} a_{k} T_{k}(x) \sum_{k=0}^{m} q_{k} T_{k}(x)-\sum_{k=0}^{n} p_{k} T_{k}(x)=\sum_{k=N+1}^{\infty} \gamma_{k} T_{k}(x)
$$

We will need the following relationship:

$$
T_{i}(x) T_{j}(x)=\frac{1}{2}\left[T_{i+j}(x)+T_{|i-j|}(x)\right]
$$

Also, we must compute (maybe numerically)
$a_{0}=\frac{1}{\pi} \int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} d x \quad$ and $\quad a_{k}=\frac{2}{\pi} \int_{-1}^{1} \frac{f(x) T_{k}(x)}{\sqrt{1-x^{2}}} d x, \quad k \geq 1$.

The $8^{\text {th }}$ order Chebyshev-expansion (All Pralise mapie) for e^{-x} is

$$
\begin{aligned}
P_{8}^{C T}(x)= & 1.266065878 T_{0}(x)-1.130318208 T_{1}(x)+0.2714953396 T_{2}(x) \\
& -0.04433684985 T_{3}(x)+0.005474240442 T_{4}(x) \\
& -0.0005429263119 T_{5}(x)+0.00004497732296 T_{6}(x) \\
& -0.000003198436462 T_{7}(x)+0.0000001992124807 T_{8}(x),
\end{aligned}
$$

and using the same strategy - building a matrix and right-hand-side utilizing the coefficients in this expansion, we can solve for the Chebyshev-Padé polynomials of degree $(n+2 m) \leq 8$:
Next slide shows the matrix set-up for the $r_{3,2}^{\mathrm{CP}}(x)$ approximation.
Note: Due to the "folding", $T_{i}(x) T_{j}(x)=\frac{1}{2}\left[T_{i+j}(x)+T_{|i-j|}(x)\right]$, we need $n+2 m$ Chebyshev-expansion coefficients. (BurdenFaires(8th) do not mention this, but it is "obvious" from algorithm 8.2; Example 2 (p. 519) is broken, - it needs $\tilde{P}_{7}(x)$.)

Rational Function Approximation
$\mathrm{R}_{4,1}^{\mathrm{CP}}(\mathrm{x})=$

$$
\underline{1.155054} T_{0}(x)-0.8549674 T_{1}(x)+0.1561297 T_{2}(x)-0.01713502 T_{3}(x)+0.001066492 T_{4}(x)
$$

$\mathrm{R}_{3,2}^{\mathrm{CP}(x)}=$
$\frac{1.050531166 T_{0}(x)-0.6016362122 T_{1}(x)+0.07417897149 T_{2}(x)-0.004109558353 T_{3}(x)}{T_{0}(x)+0.3870509565 T_{1}(x)+0.02365167312 T_{2}(x)}$
$\mathrm{R}_{2,3}^{\mathrm{CP}}(\mathrm{x})=$

$$
\frac{0.9541897238 T_{0}(x)-0.3737556255 T_{1}(x)+0.02331049609 T_{2}(x)}{T_{0}(x)+0.5682932066 T_{1}(x)+0.06911746318 T_{2}(x)+0.003726440404 T_{3}(x)}
$$

$\mathrm{R}_{1,4}^{\mathrm{CP}}(\mathrm{x})=$

Rational Function Apporin 0.5

The Bad News - It's Not Optimal!

The Chebyshev basis does not give an optimal (in the min-max sense) rational approximation. However, the result can be used as a starting point for the second Remez algorithm. It is an iterative scheme which converges to the best approximation.

A discussion of how and why (and why not) you may want to use the second Remez' algorithm can be found in Numerical Recipes in C: The Art of Scientific Computing (Section 5.13). [You can read it for free on the web ${ }^{(*)}$ - just Google for it!]
(*) The old 2nd Edition is Free, the new 3rd edition is for sale...

