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Polynomial Approximation: Pros and Cons.

Advantages of Polynomial Approximation:

[1] We can approximate any continuous function on a closed inter-
val to within arbitrary tolerance. (Weierstrass approximation
theorem)

[2] Easily evaluated at arbitrary values. (e.g. Horner’s method)

[3] Derivatives and integrals are easily determined.

Disadvantage of Polynomial Approximation:

[1] Polynomials tend to be oscillatory, which causes errors. This
is sometimes, but not always, fixable: — E.g. if we are free to
select the node points we can minimize the interpolation error
(Chebyshev polynomials), or optimize for integration (Gaussian
Quadrature).
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Moving Beyond Polynomials: Rational Approximation

We are going to use rational functions, r(x), of the form

r(x) =
p(x)

q(x)
=

n
∑

i=0

pix
i

1 +

m
∑

j=1

qix
i

and say that the degree of such a function is N = n +m.

Since this is a richer class of functions than polynomials — rational
functions with q(x) ≡ 1 are polynomials, we expect that rational
approximation of degree N gives results that are at least as
good as polynomial approximation of degree N.
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Caveat Emptor!

We take a fairly simplistic view of Rational / Padé approximation
in what follows.

More details, theory, warnings, and best practices are found in:

Reference

Llyod N. Trefethen, Approximation Theory and
Approximation Practice. Chaper 27: Padé Approximation; and
Chapter 26: Rational Interpolation and Linearized Least-Squares.
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Padé Approximation

Extension of Taylor expansion to rational functions; selecting the
pi ’s and qi ’s so that r (k)(x0) = f (k)(x0) ∀k = 0, 1, . . . ,N.

f (x)− r(x) = f (x)− p(x)

q(x)
=

f (x)q(x)− p(x)

q(x)
.

Now, use the Taylor expansion f (x) ∼ ∑∞
i=0 ai (x − x0)

i , for
simplicity x0 = 0:

f (x)− r(x) =

∞
∑

i=0

aix
i

m
∑

i=0

qix
i −

n
∑

i=0

pix
i

q(x)
.

Next, we choose p0, p1, . . . , pn and q1, q2, . . . , qm so that the numerator
has no terms of degree ≤ N.
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Padé Approximation: The Mechanics.

For simplicity/implementation we (sometimes) define the
“indexing-out-of-bounds” coefficients:

{

pn+1 = pn+2 = · · · = pN = 0
qm+1 = qm+2 = · · · = qN = 0,

so we can express the coefficients of xk in

∞
∑

i=0

aix
i

m
∑

i=0

qix
i −

n
∑

i=0

pix
i = 0,

as

k
∑

i=0

aiqk−i = pk , k = 0, 1, . . . ,N.
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Padé Approximation: Abstract Example 1 of 2

Find the Padé approximation of f (x) of degree 5, where
f (x) ∼ a0 + a1x + . . . a5x

5 is the Taylor expansion of f (x) about
the point x0 = 0.

The corresponding equations are:

x0 a0 − p0 = 0

x1 a0q1 + a1 − p1 = 0
x2 a0q2 + a1q1 + a2 − p2 = 0
x3 a0q3 + a1q2 + a2q1 + a3 − p3 = 0
x4 a0q4 + a1q3 + a2q2 + a3q1 + a4 − p4 = 0
x5 a0q5 + a1q4 + a2q3 + a3q2 + a4q1 + a5 − p5 = 0

Note: p0 = a0!!! (This reduces the number of unknowns and
equations by one (1).)
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Padé Approximation: Abstract Example 2 of 2

We get a linear system for p1, p2, . . . , pN and q1, q2, . . . , qN :













a0
a1 a0
a2 a1 a0
a3 a2 a1 a0
a4 a3 a2 a1 a0

























q1
q2
q3
q4
q5













−













p1
p2
p3
p4
p5













= −













a1
a2
a3
a4
a5













.

If we want n = 3, m = 2: (empty entries = zeros)













a0 −1
a1 a0 −1
a2 a1 −1
a3 a2
a4 a3

























q1
q2
p1
p2
p3













= −













a1
a2
a3
a4
a5













.
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Padé Approximation: Concrete Example, e−x 1 of 4

The Taylor series expansion for e−x about x0 = 0 is
∑∞

k=0
(−1)k

k! xk ,
hence {a0, a1, a2, a3, a4, a5} = {1,−1, 12 ,

−1
6 , 1

24 ,
−1
120}.













1 −1
−1 1 −1
1/2 −1 −1

−1/6 1/2
1/24 −1/6

























q1
q2
p1
p2
p3













= −













−1
1/2

−1/6
1/24

−1/120













,

which gives {q1, q2, p1, p2, p3} = {2/5, 1/20, −3/5, 3/20, −1/60}, i.e.

r3,2(x) =
1− 3

5
x +

3

20
x2 − 1

60
x3

1 +
2

5
x +

1

20
x2

.
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Padé Approximation: Concrete Example, e−x 2 of 4

All the possible Padé approximations of degree 5 are:

r5,0(x) = 1− x + 1
2x

2 − 1
6x

3 + 1
24x

4 − 1
120x

5

r4,1(x) =
1− 4

5 x+
3
10 x

2
−

1
15 x

3+ 1
120 x

4

1+ 1
5 x

r3,2(x) =
1− 3

5 x+
3
20 x

2
−

1
60 x

3

1+ 2
5 x+

1
20 x

2

r2,3(x) =
1− 2

5 x+
1
20 x

2

1+ 3
5 x+

3
20 x

2+ 1
60 x

3

r1,4(x) =
1− 1

5 x

1+ 4
5 x+

3
10 x

2+ 1
15 x

3+ 1
120 x

4

r0,5(x) = 1
1+x+ 1

2 x
2+ 1

6 x
3+ 1

24 x
4+ 1

120 x
5

Note: r5,0(x) is the Taylor polynomial of degree 5.
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Padé Approximation: Concrete Example, e−x 3 of 4

The Absolute Error.
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Padé Approximation: Concrete Example, e−x 4 of 4

Maybe we should worry about division by zero? After all, the polynomials
in the denominators have roots.

r5,0(x): q(x) = 1 has no roots.

r4,1(x): q(x) = 1 + 1
5x has the root −5.

r3,2(x): q(x) = 1 + 2
5x + 1

20x
2 has the roots −4± 2i .

r2,3(x): q(x) = 1 + 3
5x + 3

20x
2 + 1

60x
3 has the roots −3.6378,

−2.6811± 3.0504i .

r1,4(x): q(x) = 1 + 4
5x + 3

10x
2 + 1

15x
3 + 1

120x
4 has the roots

−1.2357± 3.4377i , −2.7643 + 1.1623i .

r0,5(x): q(x) = 1 + x + 1
2x

2 + 1
6x

3 + 1
24x

4 + 1
120x

5 has the roots
−2.1806, 0.2398± 3.1283i , −1.6495± 1.6939i

For now we sweep such “minor” details under the rug; but keep in mind
that troublesome things may happen, and there are potential limits to
the usefulness of a particular rational expression.
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Padé Approximation: Matlab Code.

The algorithm in the book looks frightening! If we think in term of the
matrix problem defined earlier, it is easier to figure out what is going on:

% The Taylor Coefficients, a0, a1, a2, a3, a4, a5
a = [1 −1 1/2 −1/6 1/24 −1/120]’;
N = length(a); A = zeros(N-1,N-1);
% m is the degree of q(x), and n the degree of p(x)
m = 3; n = N-1-m;
% Set up the columns which multiply q1 through qm
for i=1:m

A(i:(N-1),i) = a(1:(N-i));
end
% Set up the columns that multiply p1 through pn
A(1:n,m+(1:n)) = -eye(n)
% Set up the right-hand-side
b = - a(2:N);
% Solve
c = A\b;
Q = [1 ; c(1:m)]; % Select q0 through qm
P = [a0 ; c((m+1):(m+n))]; % Select p0 through pn
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Optimal Padé Approximation?

One Point Optimal Points

Polynomials Taylor Chebyshev

Rational Functions Padé ???

From the example e−x we can see that Padé approximations suffer
from the same problem as Taylor polynomials – they are very
accurate near one point, but away from that point the
approximation degrades.

“Chebyshev-placement” of interpolating points for polynomials
gave us an optimal (uniform) error bound over the interval.

Can we do something similar for rational approximations???
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Chebyshev Basis for the Padé Approximation!

We use the same idea — instead of expanding in terms of the
basis functions xk , we will use the Chebyshev polynomials,
Tk(x), as our basis, i.e.

rn,m(x) =

∑n
k=0 pkTk(x)

∑m
k=0 qkTk(x)

,

where N = n +m, and q0 = 1.

We also need to expand f (x) in a series of Chebyshev polynomials:

f (x) =
∞
∑

k=0

akTk(x),

so that

f (x)− rn,m(x) =

∑∞
k=0 akTk(x)

∑m
k=0 qkTk(x)−

∑n
k=0 pkTk(x)

∑m
k=0 qkTk(x)

.
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The Resulting Equations

Again, the coefficients p0, p1, . . . , pn and q1, q2, . . . , qm are chosen
so that the numerator has zero coefficients for Tk(x),
k = 0, 1, . . . ,N, i.e.

∞
∑

k=0

akTk(x)
m
∑

k=0

qkTk(x)−
n

∑

k=0

pkTk(x) =
∞
∑

k=N+1

γkTk(x).

We will need the following relationship:

Ti (x)Tj(x) =
1

2

[

Ti+j(x) + T|i−j |(x)
]

.

Also, we must compute (maybe numerically)

a0 =
1

π

∫ 1

−1

f (x)√
1− x2

dx and ak =
2

π

∫ 1

−1

f (x)Tk(x)√
1− x2

dx , k ≥ 1.
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Example: Revisiting e−x with Chebyshev-Padé Approximation 1/5

The 8th order Chebyshev-expansion (All Praise Maple) for e−x is

PCT
8 (x) = 1.266065878T0(x)− 1.130318208T1(x) + 0.2714953396T2(x)

−0.04433684985T3(x) + 0.005474240442T4(x)
−0.0005429263119T5(x) + 0.00004497732296T6(x)
−0.000003198436462T7(x) + 0.0000001992124807T8(x),

and using the same strategy — building a matrix and
right-hand-side utilizing the coefficients in this expansion, we can
solve for the Chebyshev-Padé polynomials of degree (n + 2m) ≤ 8:

Next slide shows the matrix set-up for the rCP3,2(x) approximation.

Note: Due to the “folding”, Ti (x)Tj(x) =
1
2

[

Ti+j(x) + T|i−j |(x)
]

,
we need n+ 2m Chebyshev-expansion coefficients. (Burden-
Faires(8th) do not mention this, but it is “obvious” from
algorithm 8.2; Example 2 (p. 519) is broken, – it needs P̃7(x).)
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Example: Revisiting e−x with Chebyshev-Padé Approximation 2/5

T0(x) :
1
2

[

a1q1 + a2q2 − 2p0 = 2a0

]

T1(x) :
1
2

[

(2a0 + a2)q1 + (a1 + a3)q2 − 2p1 = 2a1

]

T2(x) :
1
2

[

(a1 + a3)q1 + (2a0 + a4)q2 − 2p2 = 2a2

]

T3(x) :
1
2

[

(a2 + a4)q1 + (a1 + a5)q2 − 2p3 = 2a3

]

T4(x) :
1
2

[

(a3 + a5)q1 + (a2 + a6)q2 − 0 = 2a4

]

T5(x) :
1
2

[

(a4 + a6)q1 + (a3 + a7)q2 − 0 = 2a5

]
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Example: Revisiting e−x with Chebyshev-Padé Approximation 3/5

RCP4,1 (x) =

1.155054T0(x) − 0.8549674T1(x) + 0.1561297T2(x) − 0.01713502T3(x) + 0.001066492T4(x)

T0(x) + 0.1964246628T1(x)

RCP3,2 (x) =

1.050531166T0(x) − 0.6016362122T1(x) + 0.07417897149T2(x) − 0.004109558353T3(x)

T0(x) + 0.3870509565T1(x) + 0.02365167312T2(x)

RCP2,3 (x) =

0.9541897238T0(x) − 0.3737556255T1(x) + 0.02331049609T2(x)

T0(x) + 0.5682932066T1(x) + 0.06911746318T2(x) + 0.003726440404T3(x)

RCP1,4 (x) =

0.8671327116T0(x) − 0.1731320271T1(x)

T0(x) + 0.73743710T1(x) + 0.13373746T2(x) + 0.014470654T3(x) + 0.00086486509T4(x)
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Example: Revisiting e−x with Chebyshev-Padé Approximation 4/5
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Example: Revisiting e−x with Chebyshev-Padé Approximation 5/5
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The Bad News — It’s Not Optimal!

The Chebyshev basis does not give an optimal (in the min-max
sense) rational approximation. However, the result can be used as
a starting point for the second Remez algorithm. It is an
iterative scheme which converges to the best approximation.

A discussion of how and why (and why not) you may want to use
the second Remez’ algorithm can be found in Numerical Recipes
in C: The Art of Scientific Computing (Section 5.13). [You can
read it for free on the web(∗) — just Google for it!]

(∗) The old 2nd Edition is Free, the new 3rd edition is for sale...
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