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Polynomial Approximation: Pros and Cons.

Advantages of Polynomial Approximation:

[1] We can approximate any continuous function on a closed inter-
val to within arbitrary tolerance. (Weierstrass approximation
theorem)

[2] Easily evaluated at arbitrary values. (e.g. Horner's method)
[3] Derivatives and integrals are easily determined.
Disadvantage of Polynomial Approximation:

[1] Polynomials tend to be oscillatory, which causes errors. This
is sometimes, but not always, fixable: — E.g. if we are free to
select the node points we can minimize the interpolation error
(Chebyshev polynomials), or optimize for integration (Gaussian
Quadrature).
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Moving Beyond Polynomials: Rational Approximation

We are going to use rational functions, r(x), of the form
n .
) ZP;X'
p\X i=0
r(X) = - m
q(x) ;
1+ Z qix
j=1

and say that the degree of such a function is N = n+ m.

Since this is a richer class of functions than polynomials — rational
functions with g(x) = 1 are polynomials, we expect that rational
approximation of degree N gives results that are at least as
good as polynomial approximation of degree N.
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Caveat Emptor!

We take a fairly simplistic view of Rational / Padé approximation
in what follows.

More details, theory, warnings, and best practices are found in:

Reference

Lryop N. TREFETHEN, Approximation Theory and
Approximation Practice. Chaper 27: Padé Approximation; and
Chapter 26: Rational Interpolation and Linearized Least-Squares.
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Padé Approximation

Extension of Taylor expansion to rational functions; selecting the
pi's and g;'s so that r(K)(xg) = F(N(x9) Yk =0,1,...,N.

F(x) — r(x) = F(x) — P

Tax) a(x)

Now, use the Taylor expansion f(x) ~ > %2, ai(x — xo)", for
simplicity xp = 0:
o¢] m n
S a3 -3 e
i=0

_ () — 120 i=0
f(x) = r(x) 0

Next, we choose po, p1, ..., pn and g1, G2, ..., qm so that the numerator
has no terms of degree < N.
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Padé Approximation: The Mechanics.

For simplicity /implementation we (sometimes) define the
“indexing-out-of-bounds” coefficients:

{Pn+1:Pn+2:"':PN:0
Im+1 = Gmi2 =~ =qn =0,

so we can express the coefficients of x* in

o0 m n

i i i
E ajx E gix' — E pix' =0,
i=0 i=0 i=0

as

K
ZQIQkfi =pk, k=0,1,....N.
i=0
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Padé Approximation: Abstract Example 1of2

Find the Padé approximation of f(x) of degree 5, where
f(x) ~ ap + a1x + ...asx> is the Taylor expansion of f(x) about
the point xg = 0.

The corresponding equations are:

x% | ag - o 0

x' | agqr + & - pr = 0

x? | a0qo + a1q1 + a2 - p2 = 0

x3 | a0q3 + a1q2 + axq1 + a3 - p3 = 0

x* | a0qs + a1q3 + axq2 + a3q1 + a4 — ps = 0

x> | ags + a1Ga + a2q3 + asqe +auqr +as — ps = 0
Note: py = ap!!! (This reduces the number of unknowns and

equations by one (1).)
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Padé Approximation: Abstract Example 2 of 2

We get a linear system for p1, po,...,pxy and g1, G2, ..., qn:

a0 a1 P1 ai
ar 4ao qz P2 a
a2 ai 4do @B | —| P3|=—] a3
az a a1 4o qa P4 a4
a4 a3 a2 ar 4o as Ps as

ag -1 a1 a1
ar ao -1 a2 as
a a —1 pr | =—| a3
as az P2 as
a4 as P3 as
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Padé Approximation: Concrete Example, e™> 1of4

i i —x —0; oo (=D* «k
The Taylor series expansion for e ab?ut i(o - 0 |15 Zk:O X
hence {ao, a1, a2, a3,a4, a5} = {1, 1,5, % 27 13-

1 -1 ¢ ~1
~1 1 ~1 %@ 1/2
12 -1 “1||pm|==] -1/61,

~1/6  1/2 P2 1/24
1/24 —1/6 P ~1/120

which gives {q1, g2, p1, P2, p3} = {2/5, 1/20, —3/5, 3/20, —1/60}, i.e.

1—§x—&—ix2—ix3
ra(x) = — 520" _ 60
32(x) = 2 1,
14 = il
Tt 5%
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Padé Approximation: Concrete Example, e~

X

20of 4

All the possible Padé approximations of degree 5 are:

r5,0(x)
fa,1(x)
r32(x)
r2,3(x)

r1,4(x)

r0,5(x)

e l,2 1,3, 1.4 1.5
L= x+5x7 = 5x7 + x 120X

4 3 .2 1.3 1.4
17§x+ﬁx — 15X + 135X
1+%><

3 3.2 1.3
1—Ex+35x"—ggX

2 1,2
1+ 5 x+55x
2,12
ek
3.1 321 1.3
I+ x+5x*+g5x
17%x
[ 32 1,3, 1 4
I+gx+ 10X+ 55X+ 13X

1
T+x+3x2+ 333+ 4 x4+ 135 X5

Note: r50(x) is the Taylor polynomial of degree 5.
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Padé Approximation: Concrete Example, e™>

3of 4

The Absolute Error.
: ‘

01g : ‘ ‘ 3
- [— REOK ]
[ | a—a R{41}(X) ]
I |+ R{32(x) )
0.01 |e—e R{23}(x)
F | e—e R{14(X)
L | m—m R{0,5}(x)
0.0011
\
1e055 05 1 15 2
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Padé Approximation: Concrete Example, e™> 4 of 4

Maybe we should worry about division by zero? After all, the polynomials
in the denominators have roots.

)

)
)
)

r5.0(x): g(x) =1 has no roots.

ra1(x): q(x) =1+ £x has the root —5.

r32(x): q(x) =1+ £x + 55x% has the roots —4 + 2i.

r3(x): q(x) =1+ 2x+ 2x% + g5x* has the roots —3.6378,
—2.6811 £ 3.0504.

ra(x): g(x) =14 gx+ x>+ £x3 + 5x* has the roots
—1.2357 £ 3.4377i, —2.7643 + 1.1623,.

ros(x): g(x) =1+ x—+ 3x%+ 1x3 + Lx* 4+ 35x° has the roots
—2.1806, 0.2398 + 3.1283/, —1.6495 + 1.6939/

For now we sweep such “minor” details under the rug; but keep in mind
that troublesome things may happen, and there are potential limits to
the usefulness of a particular rational expression.
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Padé Approximation: Matlab Code.

The algorithm in the book looks frightening! If we think in term of the
matrix problem defined earlier, it is easier to figure out what is going on:

% The Taylor Coefficients, ap, ai, a», a3, as, as
a=1[1-11/2 —-1/6 1/24 —1/120];
N = length(a); A = zeros(N-1,N-1);
% m is the degree of q(x), and n the degree of p(x)
3; N-1-m;
% Set up the columns which multiply g; through g,
for i=1:m

AGi: (N-1),i) = a(1:(N-1));
end
% Set up the columns that multiply p; through p,
A(l:n,m+(1:n)) = -eye(n)
% Set up the right-hand-side

g nun

b =-a(2:N);
% Solve
c = A\b

Q=1[1 z c(1:m)]; % Select gy through g,
P = [ay ; c((m+1):(m+n))]; % Select py through p,
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Optimal Padé Approximation?

One Point | Optimal Points
Polynomials Taylor Chebyshev
Rational Functions | Padé 77

From the example e we can see that Padé approximations suffer

from the same problem as Taylor polynomials — they are very

accurate near one point, but away from that point the

approximation degrades.

“Chebyshev-placement” of interpolating points for polynomials

gave us an optimal (uniform) error bound over the interval.

Can we do something similar for rational approximations???
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Chebyshev Basis for the Padé Approximation!

We use the same idea — instead of expanding in terms of the
basis functions x¥, we will use the Chebyshev polynomials,
Tk(x), as our basis, i.e.

r (X) _ EZ:Okak(X)
o > ko 9k Tk(x)’

where N =n+ m, and gg = 1.

We also need to expand f(x) in a series of Chebyshev polynomials:

f(X) = Z ak Tk(X)v
k=0
so that

F(x) — ram(x) = 220 3Tkl Do @ Tl = 3o PuTiX)

ZT:O gk Tk(x)
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The Resulting Equations

Again, the coefficients pg, p1,...,pn and g1, 92, ..., gm are chosen
so that the numerator has zero coefficients for Ty (x),
k=0,1,...,N, e

Zaka ZCIka ZPka Z Vi Tk(x)

k=N-+1

We will need the following relationship:

Ti(x)Tj(x) = % [Titj(x) + Ty (x)] -

Also, we must compute (maybe numerically)

1 [t f(x) 2 1 F(X)Te(x)
ap = — 7dx and a, = — L dx, k> 1.
0 7T/ V1—x? , _1 V1 —x?
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Example: Revisiting e™ with Chebyshev-Padé Approximation 1/5

The 8" order Chebyshev-expansion (av prasse Mars) for €% is

PET(x) = 1.266065878 To(x) — 1.130318208 T1(x) + 0.2714953396 T»(x)
—0.04433684985 T3(x) + 0.005474240442 T4(x)
—0.0005429263119 Ts(x) + 0.00004497732296 Te(x)
—0.000003198436462 T+(x) + 0.0000001992124807 Tg(x),

and using the same strategy — building a matrix and
right-hand-side utilizing the coefficients in this expansion, we can
solve for the Chebyshev-Padé polynomials of degree (n+2m) < 8:

Next slide shows the matrix set-up for the r§%(x) approximation.

Note: Due to the “folding”, T;(x) Tj(x) = & [Tip;(x) + Tii—ji(x)].
we need n+ 2m Chebyshev-expansion coefficients. (Burden-
Faires(8th) do not mention this, but it is “obvious” from
algorithm 8.2; Example 2 (p. 519) is broken, — it needs 157(X).)
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Example: Revisiting e™ with Chebyshev-Padé Approximation

2/5

To(x) :

T1(x) :

Ta(x) :

T3(x) :

Ta(x) :

Ts(x) :

N|—= Nl N N N

NI

aiqi

(2a0 + a2)

(a1 + a3)qn

(a2 + as)q1

(33 + a5)q1

(a2 + a6)q1

+

+

_|_

+

aq2 - 2pp =
(ar+as)g — 2p1 =
(Qao +az)q2 — 2p» =
(a1+as)g2 — 2p3 =
(2+a)g — 0 =
(star)ge — 0 =
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Example: Revisiting e™ with Chebyshev-Padé Approximation 3/5

1.155054 To(x) — 0.8549674 Ty (x) + 0.1561297 T»(x) — 0.01713502 T3(x) + 0.001066492 T4(x)
To(x) + 0.1964246628 T (x)

REE () =
1.050531166 To(x) — 0.6016362122 T1(x) + 0.07417897149 T,(x) — 0.004109558353 T3(x)
To(x) + 0.3870509565 T1(x) + 0.02365167312 T(x)
REE(x) =
0.9541897238 To(x) — 0.3737556255 T (x) + 0.02331049609 T, (x)
To(x) + 0.5682932066 T;(x) + 0.06911746318 T(x) + 0.003726440404 T3(x)
P
REa(0 =

0.8671327116 To(x) — 0.1731320271 T (x)
To(x) + 0.73743710 T (x) + 0.13373746 To(x) + 0.014470654 T3(x) + 0.00086486509 T4(x)
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Example:

Revisiting e with Chebyshev-Padé Approximation

4/5

-5 Error for Chebyshev-Pade-4-1 Approximation

x10

-5 Error for Chebyshev-Pade-3-2 Approximation

10-5 Error for Chebyshev-Pade-2-3 Approximation

El -05 [ 05
4 10°5ErTor for Chebyshev-Pade-1-4 Approximation

=1 -05 0 05
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Example: Revisiting e™ with Chebyshev-Padé Approximation 5/5

Error Comparison for 3-2 Approximations

—— Chebyshev-Pade
Pade

X107 Error Ce i for 4-1 { 3, 10

-05 0 05

10 EmorC for2-3 110" Error (‘Iomparison for 4 Approximations

o Chebyshev-Pade
—— Pade

-3.5] 1

4 i

45 Chebyshev-Pade
Pade o

-1 -0.5 0 05 1-1 -05 0 05 1
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The Bad News — It's Not Optimal!

The Chebyshev basis does not give an optimal (in the min-max
sense) rational approximation. However, the result can be used as
a starting point for the second Remez algorithm. It is an
iterative scheme which converges to the best approximation.

A discussion of how and why (and why not) you may want to use

the second Remez’ algorithm can be found in Numerical Recipes
in C: The Art of Scientific Computing (Section 5.13). [You can
read it for free on the web(*) — just Google for it!]

(*) The old 2nd Edition is Free, the new 3rd edition is for sale...
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