Numerical Analysis and Computing

Lecture Notes #13
— Approximation Theory —
Rational Function Approximation

Peter Blomgren, \langle blomgren.peter@gmail.com \rangle

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Fall 2014

Outline

- Approximation Theory
 - Pros and Cons of Polynomial Approximation
 - New Bag-of-Tricks: Rational Approximation
 - Padé Approximation: Example #1
- Padé Approximation
 - Example #2
 - Finding the Optimal Padé Approximation

Advantages of Polynomial Approximation:

[1] We can approximate any continuous function on a closed interval to within arbitrary tolerance. (Weierstrass approximation theorem)

Advantages of Polynomial Approximation:

- [1] We can approximate any continuous function on a closed interval to within arbitrary tolerance. (Weierstrass approximation theorem)
- [2] Easily evaluated at arbitrary values. (e.g. Horner's method)

Advantages of Polynomial Approximation:

- [1] We can approximate any continuous function on a closed interval to within arbitrary tolerance. (Weierstrass approximation theorem)
- [2] Easily evaluated at arbitrary values. (e.g. Horner's method)
- [3] Derivatives and integrals are easily determined.

Advantages of Polynomial Approximation:

- [1] We can approximate any continuous function on a closed interval to within arbitrary tolerance. (Weierstrass approximation theorem)
- [2] Easily evaluated at arbitrary values. (e.g. Horner's method)
- [3] Derivatives and integrals are easily determined.

Disadvantage of Polynomial Approximation:

[1] Polynomials tend to be oscillatory, which causes errors. This is sometimes, but not always, fixable: — *E.g.* if we are free to select the node points we can minimize the interpolation error (*Chebyshev polynomials*), or optimize for integration (*Gaussian Quadrature*).

Moving Beyond Polynomials: Rational Approximation

We are going to use rational functions, r(x), of the form

$$r(x) = \frac{p(x)}{q(x)} = \frac{\sum_{i=0}^{n} p_i x^i}{1 + \sum_{j=1}^{m} q_i x^j}$$

and say that the degree of such a function is N = n + m.

Moving Beyond Polynomials: Rational Approximation

We are going to use rational functions, r(x), of the form

$$r(x) = \frac{p(x)}{q(x)} = \frac{\sum_{i=0}^{n} p_i x^i}{1 + \sum_{j=1}^{m} q_i x^j}$$

and say that the degree of such a function is N = n + m.

Since this is a richer class of functions than polynomials — rational functions with $q(x) \equiv 1$ are polynomials, we expect that rational approximation of degree N gives results that are at least as good as polynomial approximation of degree N.

Caveat Emptor!

We take a fairly simplistic view of Rational / Padé approximation in what follows.

More details, theory, warnings, and best practices are found in:

Reference

LLYOD N. TREFETHEN, Approximation Theory and Approximation Practice. Chaper 27: Padé Approximation; and Chapter 26: Rational Interpolation and Linearized Least-Squares.

Padé Approximation

Extension of **Taylor expansion** to rational functions; selecting the p_i 's and q_i 's so that $r^{(k)}(x_0) = f^{(k)}(x_0) \ \forall k = 0, 1, ..., N$.

$$f(x) - r(x) = f(x) - \frac{p(x)}{q(x)} = \frac{f(x)q(x) - p(x)}{q(x)}.$$

Padé Approximation

Extension of **Taylor expansion** to rational functions; selecting the p_i 's and q_i 's so that $r^{(k)}(x_0) = f^{(k)}(x_0) \ \forall k = 0, 1, ..., N$.

$$f(x) - r(x) = f(x) - \frac{p(x)}{q(x)} = \frac{f(x)q(x) - p(x)}{q(x)}.$$

Now, use the Taylor expansion $f(x) \sim \sum_{i=0}^{\infty} a_i (x - x_0)^i$, for simplicity $x_0 = 0$:

$$f(x) - r(x) = \frac{\sum_{i=0}^{\infty} a_i x^i \sum_{i=0}^{m} q_i x^i - \sum_{i=0}^{n} p_i x^i}{q(x)}.$$

Padé Approximation

Extension of **Taylor expansion** to rational functions; selecting the p_i 's and q_i 's so that $r^{(k)}(x_0) = f^{(k)}(x_0) \ \forall k = 0, 1, ..., N$.

$$f(x) - r(x) = f(x) - \frac{p(x)}{q(x)} = \frac{f(x)q(x) - p(x)}{q(x)}.$$

Now, use the Taylor expansion $f(x) \sim \sum_{i=0}^{\infty} a_i (x - x_0)^i$, for simplicity $x_0 = 0$:

$$f(x) - r(x) = \frac{\sum_{i=0}^{\infty} a_i x^i \sum_{i=0}^{m} q_i x^i - \sum_{i=0}^{n} p_i x^i}{q(x)}.$$

Next, we choose p_0, p_1, \ldots, p_n and q_1, q_2, \ldots, q_m so that the numerator has no terms of degree $\leq N$.

Padé Approximation: The Mechanics.

For simplicity/implementation we (sometimes) define the "indexing-out-of-bounds" coefficients:

$$\begin{cases} p_{n+1} = p_{n+2} = \cdots = p_N = 0 \\ q_{m+1} = q_{m+2} = \cdots = q_N = 0, \end{cases}$$

so we can express the **coefficients of** x^k in

$$\sum_{i=0}^{\infty} a_i x^i \sum_{i=0}^{m} q_i x^i - \sum_{i=0}^{n} p_i x^i = 0,$$

as

$$\sum_{i=0}^{k} a_i q_{k-i} = p_k, \quad k = 0, 1, \dots, N.$$

Find the Padé approximation of f(x) of degree 5, where $f(x) \sim a_0 + a_1 x + \dots a_5 x^5$ is the Taylor expansion of f(x) about the point $x_0 = 0$.

The corresponding equations are:

Note: $p_0 = a_0!!!$ (This reduces the number of unknowns and equations by one (1).)

We get a linear system for p_1, p_2, \ldots, p_N and q_1, q_2, \ldots, q_N :

$$\begin{bmatrix} a_0 & & & & \\ a_1 & a_0 & & & \\ a_2 & a_1 & a_0 & & \\ a_3 & a_2 & a_1 & a_0 & \\ a_4 & a_3 & a_2 & a_1 & a_0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \end{bmatrix} - \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \end{bmatrix} = - \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}.$$

$$\begin{bmatrix} a_0 & & & & \\ a_1 & a_0 & & & \\ a_2 & a_1 & \mathbf{a_0} & & \\ a_3 & a_2 & \mathbf{a_1} & \mathbf{a_0} \\ a_4 & a_3 & \mathbf{a_2} & \mathbf{a_1} & \mathbf{a_0} \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} - \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ 0 \\ \mathbf{0} \end{bmatrix} = - \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}.$$

We get a linear system for p_1, p_2, \ldots, p_N and q_1, q_2, \ldots, q_N :

$$\begin{bmatrix} a_0 & & & & & \\ a_1 & a_0 & & & & \\ a_2 & a_1 & a_0 & & & \\ a_3 & a_2 & a_1 & a_0 & & \\ a_4 & a_3 & a_2 & a_1 & a_0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \end{bmatrix} - \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \end{bmatrix} = - \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}.$$

$$\begin{bmatrix} a_0 & -\mathbf{1} \\ a_1 & a_0 \\ a_2 & a_1 & \mathbf{0} \\ a_3 & a_2 & \mathbf{0} & a_0 \\ a_4 & a_3 & \mathbf{0} & a_1 & a_0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ \mathbf{p_1} \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} \mathbf{0} \\ p_2 \\ p_3 \\ 0 \\ 0 \end{bmatrix} = - \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}.$$

We get a linear system for p_1, p_2, \ldots, p_N and q_1, q_2, \ldots, q_N :

$$\begin{bmatrix} a_0 & & & & \\ a_1 & a_0 & & & \\ a_2 & a_1 & a_0 & & \\ a_3 & a_2 & a_1 & a_0 & \\ a_4 & a_3 & a_2 & a_1 & a_0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \end{bmatrix} - \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \end{bmatrix} = - \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}.$$

$$\begin{bmatrix} a_0 & -1 & & \\ a_1 & a_0 & -\mathbf{1} & \\ a_2 & a_1 & 0 & \\ a_3 & a_2 & 0 & \mathbf{0} \\ a_4 & a_3 & 0 & \mathbf{0} & a_0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ p_1 \\ \mathbf{p_2} \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ \mathbf{0} \\ p_3 \\ 0 \\ 0 \end{bmatrix} = - \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}.$$

We get a linear system for p_1, p_2, \ldots, p_N and q_1, q_2, \ldots, q_N :

$$\begin{bmatrix} a_0 & & & & \\ a_1 & a_0 & & & \\ a_2 & a_1 & a_0 & & \\ a_3 & a_2 & a_1 & a_0 & \\ a_4 & a_3 & a_2 & a_1 & a_0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \end{bmatrix} - \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \end{bmatrix} = - \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}.$$

$$\begin{bmatrix} a_0 & -1 & & & \\ a_1 & a_0 & -1 & & \\ a_2 & a_1 & 0 & -1 \\ a_3 & a_2 & 0 & 0 \\ a_4 & a_3 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = - \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}.$$

We get a linear system for p_1, p_2, \ldots, p_N and q_1, q_2, \ldots, q_N :

$$\begin{bmatrix} a_0 & & & & \\ a_1 & a_0 & & & \\ a_2 & a_1 & a_0 & & \\ a_3 & a_2 & a_1 & a_0 & \\ a_4 & a_3 & a_2 & a_1 & a_0 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \end{bmatrix} - \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \end{bmatrix} = - \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}.$$

$$\begin{bmatrix} a_0 & & -1 & & \\ a_1 & a_0 & & -1 & \\ a_2 & a_1 & & -1 \\ a_3 & a_2 & & \\ a_4 & a_3 & & \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} = - \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix}.$$

Padé Approximation: Concrete Example, e^{-x}

1 of 4

The Taylor series expansion for e^{-x} about $x_0 = 0$ is $\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} x^k$, hence $\{a_0, a_1, a_2, a_3, a_4, a_5\} = \{1, -1, \frac{1}{2}, \frac{-1}{6}, \frac{1}{24}, \frac{-1}{120}\}$.

Padé Approximation: Concrete Example, e^{-x}

1 of 4

The Taylor series expansion for e^{-x} about $x_0=0$ is $\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} x^k$, hence $\{a_0,a_1,a_2,a_3,a_4,a_5\}=\{1,-1,\frac{1}{2},\frac{-1}{6},\frac{1}{24},\frac{-1}{120}\}$.

$$\begin{bmatrix} 1 & & -1 & & \\ -1 & 1 & & -1 & \\ 1/2 & -1 & & -1 \\ -1/6 & 1/2 & & & \\ 1/24 & -1/6 & & & \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} = - \begin{bmatrix} -1 \\ 1/2 \\ -1/6 \\ 1/24 \\ -1/120 \end{bmatrix},$$

which gives $\{q_1,q_2,p_1,p_2,p_3\}=\{2/5,\ 1/20,\ -3/5,\ 3/20,\ -1/60\}$

The Taylor series expansion for e^{-x} about $x_0 = 0$ is $\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} x^k$, hence $\{a_0, a_1, a_2, a_3, a_4, a_5\} = \{1, -1, \frac{1}{2}, \frac{-1}{6}, \frac{1}{24}, \frac{-1}{120}\}$.

$$\begin{bmatrix} 1 & & -1 & & \\ -1 & 1 & & -1 & \\ 1/2 & -1 & & -1 \\ -1/6 & 1/2 & & & \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ p_1 \\ p_2 \\ 1/24 & -1/6 \end{bmatrix} = - \begin{bmatrix} -1 \\ 1/2 \\ -1/6 \\ 1/24 \\ -1/120 \end{bmatrix},$$

which gives $\{q_1,q_2,p_1,p_2,p_3\}=\{2/5,\ 1/20,\ -3/5,\ 3/20,\ -1/60\},$ i.e.

$$r_{3,2}(x) = \frac{1 - \frac{3}{5}x + \frac{3}{20}x^2 - \frac{1}{60}x^3}{1 + \frac{2}{5}x + \frac{1}{20}x^2}.$$

□ ▶ ◀례 ▶ ◀불 ▶ ◀불 ▶ · 불 · 쒸오

Padé Approximation: Concrete Example, e^{-x}

All the possible Padé approximations of degree 5 are:

$$r_{5,0}(x) = 1 - x + \frac{1}{2}x^2 - \frac{1}{6}x^3 + \frac{1}{24}x^4 - \frac{1}{120}x^5$$

$$r_{4,1}(x) = \frac{1 - \frac{4}{5}x + \frac{3}{10}x^2 - \frac{1}{15}x^3 + \frac{1}{120}x^4}{1 + \frac{1}{5}x}$$

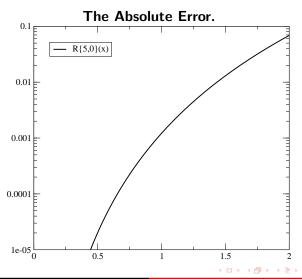
$$r_{3,2}(x) = \frac{1 - \frac{3}{5}x + \frac{3}{20}x^2 - \frac{1}{60}x^3}{1 + \frac{2}{5}x + \frac{1}{20}x^2}$$

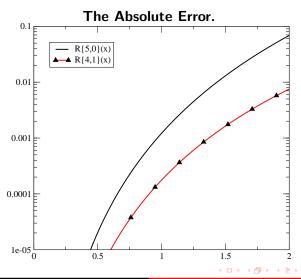
$$r_{2,3}(x) = \frac{1 - \frac{2}{5}x + \frac{1}{20}x^2}{1 + \frac{3}{5}x + \frac{3}{20}x^2 + \frac{1}{60}x^3}$$

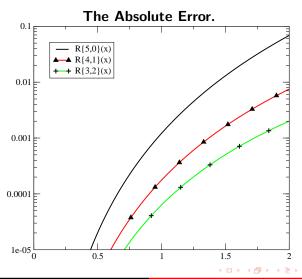
$$r_{1,4}(x) = \frac{1 - \frac{1}{5}x}{1 + \frac{4}{5}x + \frac{3}{10}x^2 + \frac{1}{15}x^3 + \frac{1}{120}x^4}$$

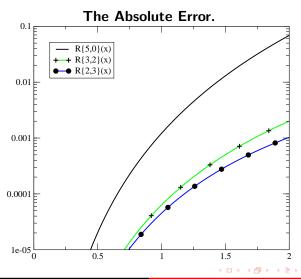
$$r_{0,5}(x) = \frac{1}{1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5}$$

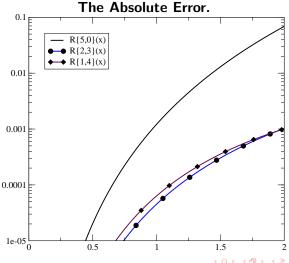
Note: $r_{5,0}(x)$ is the Taylor polynomial of degree 5.

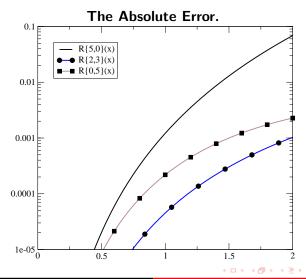


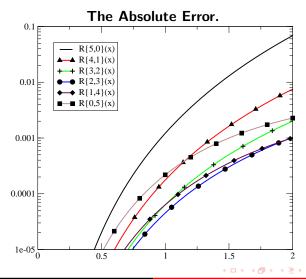












Maybe we should worry about division by zero? After all, the polynomials in the denominators have roots.

- $r_{5,0}(x)$: q(x) = 1 has no roots.
- $r_{4,1}(x)$: $q(x) = 1 + \frac{1}{5}x$ has the root -5.
- $r_{3,2}(x)$: $q(x) = 1 + \frac{2}{5}x + \frac{1}{20}x^2$ has the roots $-4 \pm 2i$.
- $r_{2,3}(x)$: $q(x) = 1 + \frac{3}{5}x + \frac{3}{20}x^2 + \frac{1}{60}x^3$ has the roots -3.6378, $-2.6811 \pm 3.0504i$.
- $r_{1,4}(x)$: $q(x) = 1 + \frac{4}{5}x + \frac{3}{10}x^2 + \frac{1}{15}x^3 + \frac{1}{120}x^4$ has the roots $-1.2357 \pm 3.4377i$, -2.7643 + 1.1623i.
- $r_{0,5}(x)$: $q(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5$ has the roots -2.1806, $0.2398 \pm 3.1283i$, $-1.6495 \pm 1.6939i$

For now we sweep such "minor" details under the rug; but keep in mind that troublesome things may happen, and there are potential limits to the usefulness of a particular rational expression.

Padé Approximation: Matlab Code.

The algorithm in the book looks frightening! If we think in term of the matrix problem defined earlier, it is easier to figure out what is going on:

```
% The Taylor Coefficients, a_0, a_1, a_2, a_3, a_4, a_5
a = \begin{bmatrix} 1 & -1 & 1/2 & -1/6 & 1/24 & -1/120 \end{bmatrix}
N = length(a); A = zeros(N-1,N-1);
% m is the degree of q(x), and n the degree of p(x)
m = 3; n = N-1-m;
% Set up the columns which multiply q_1 through q_m
for i=1:m
   A(i:(N-1).i) = a(1:(N-i)):
end
% Set up the columns that multiply p_1 through p_n
A(1:n,m+(1:n)) = -eve(n)
% Set up the right-hand-side
b = -a(2:N);
% Solve
c = A \setminus b:
Q = [1]; c(1:m)]; % Select <math>q_0 through q_m
P = [a_0; c((m+1):(m+n))]; \% Select p_0 through p_n
```

Optimal Padé Approximation?

	One Point	Optimal Points
Polynomials	Taylor	Chebyshev
Rational Functions	Padé	???

From the example e^{-x} we can see that Padé approximations suffer from the same problem as Taylor polynomials – they are very accurate near one point, but away from that point the approximation degrades.

"Chebyshev-placement" of interpolating points for polynomials gave us an optimal (uniform) error bound over the interval.

Can we do something similar for rational approximations???

Chebyshev Basis for the Padé Approximation!

We use the **same** idea — instead of expanding in terms of the basis functions x^k , we will use the **Chebyshev polynomials**, $T_k(x)$, as our basis, *i.e.*

$$r_{n,m}(x) = \frac{\sum_{k=0}^{n} p_k T_k(x)}{\sum_{k=0}^{m} q_k T_k(x)},$$

where N = n + m, and $q_0 = 1$.

Chebyshev Basis for the Padé Approximation!

We use the **same** idea — instead of expanding in terms of the basis functions x^k , we will use the **Chebyshev polynomials**, $T_k(x)$, as our basis, *i.e.*

$$r_{n,m}(x) = \frac{\sum_{k=0}^{n} p_k T_k(x)}{\sum_{k=0}^{m} q_k T_k(x)},$$

where N = n + m, and $q_0 = 1$.

We also need to expand f(x) in a series of Chebyshev polynomials:

$$f(x) = \sum_{k=0}^{\infty} a_k T_k(x),$$

so that

$$f(x) - r_{n,m}(x) = \frac{\sum_{k=0}^{\infty} a_k T_k(x) \sum_{k=0}^{m} q_k T_k(x) - \sum_{k=0}^{n} p_k T_k(x)}{\sum_{k=0}^{m} q_k T_k(x)}.$$

The Resulting Equations

Again, the coefficients p_0, p_1, \ldots, p_n and q_1, q_2, \ldots, q_m are chosen so that the numerator has zero coefficients for $T_k(x)$, $k = 0, 1, \ldots, N$, i.e.

$$\sum_{k=0}^{\infty} a_k T_k(x) \sum_{k=0}^{m} q_k T_k(x) - \sum_{k=0}^{n} p_k T_k(x) = \sum_{k=N+1}^{\infty} \gamma_k T_k(x).$$

We will need the following relationship:

$$T_i(x)T_j(x) = \frac{1}{2} [T_{i+j}(x) + T_{|i-j|}(x)].$$

Also, we must compute (maybe numerically)

$$a_0 = rac{1}{\pi} \int_{-1}^1 rac{f(x)}{\sqrt{1-x^2}} \, dx \quad ext{and} \quad a_k = rac{2}{\pi} \int_{-1}^1 rac{f(x) T_k(x)}{\sqrt{1-x^2}} \, dx, \quad k \geq 1.$$

The 8^{th} order Chebyshev-expansion (ALL PRAISE MAPLE) for e^{-x} is

$$\begin{array}{lll} P_8^{\rm CT}(x) & = & 1.266065878 \ T_0(x) - 1.130318208 \ T_1(x) + 0.2714953396 \ T_2(x) \\ & & -0.04433684985 \ T_3(x) + 0.005474240442 \ T_4(x) \\ & & -0.0005429263119 \ T_5(x) + 0.00004497732296 \ T_6(x) \\ & & -0.000003198436462 \ T_7(x) + 0.0000001992124807 \ T_8(x), \end{array}$$

and using the same strategy — building a matrix and right-hand-side utilizing the coefficients in this expansion, we can solve for the Chebyshev-Padé polynomials of degree $(n+2m) \leq 8$:

Next slide shows the matrix set-up for the $r_{3,2}^{CP}(x)$ approximation.

Note: Due to the "folding", $T_i(x)T_j(x)=\frac{1}{2}\left[T_{i+j}(x)+T_{|i-j|}(x)\right]$, we need n+2m Chebyshev-expansion coefficients. (Burden-Faires(8th) do not mention this, but it is "obvious" from algorithm 8.2; Example 2 (p. 519) is broken, – it needs $\tilde{P}_7(x)$.)

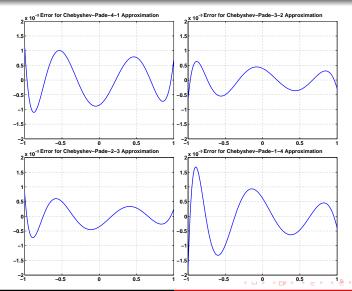
$$R_{4,1}^{CP}(x) = \frac{1.155054 \ T_0(x) - 0.8549674 \ T_1(x) + 0.1561297 \ T_2(x) - 0.01713502 \ T_3(x) + 0.001066492 \ T_4(x)}{T_0(x) + 0.1964246628 \ T_1(x)}$$

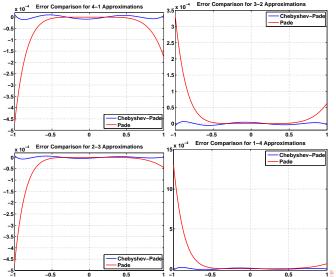
$$R_{3,2}^{\mathsf{CP}}(x) = \\ \frac{1.050531166\ T_0(x) - 0.6016362122\ T_1(x) + 0.07417897149\ T_2(x) - 0.004109558353\ T_3(x)}{T_0(x) + 0.3870509565\ T_1(x) + 0.02365167312\ T_2(x)}$$

$$R_{2,3}^{\mathsf{CP}}(x) = \frac{0.9541897238 \ T_0(x) - 0.3737556255 \ T_1(x) + 0.02331049609 \ T_2(x)}{T_0(x) + 0.5682932066 \ T_1(x) + 0.06911746318 \ T_2(x) + 0.003726440404 \ T_3(x)}$$

$$R_{1,4}^{\mathsf{CP}}(x) =$$

$$\frac{0.8671327116\ T_0(x)-0.1731320271\ T_1(x)}{T_0(x)+0.73743710\ T_1(x)+0.13373746\ T_2(x)+0.014470654\ T_3(x)+0.00086486509\ T_4(x)}$$





The Bad News — It's Not Optimal!

The Chebyshev basis does not give an optimal (in the min-max sense) rational approximation. However, the result can be used as a starting point for **the second Remez algorithm**. It is an iterative scheme which converges to the best approximation.

A discussion of how and why (and why not) you may want to use the second Remez' algorithm can be found in Numerical Recipes in C: The Art of Scientific Computing (Section 5.13). [You can read it for free on the web(*) — just Google for it!]

(*) The old 2nd Edition is Free, the new 3rd edition is for sale...