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Recap: Last Lecture

Last Lecture: Quick Review

Euler’'s Method:

@ Analysis: Local Truncation Error (LTE), Consistency,
Accuracy, Stability (Region of Stability), Convergence

Improvements:
@ Higher order Taylor Series Methods

@ Multi-Point Methods

@ Heun’s Method
o Euler's "Midpoint Method”
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Q Recap: Last Lecture

Q Finding Stability Regions
@ Euler's Method
@ Taylor Series Methods

e Runge-Kutta Methods
@ Introduction
® s-stage RK-methods
@ Types of RK-methods
@ Derivation
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Recap: Last Lecture

Stability Regions Revisited

Recall: Euler's Method
Ynt1 = Yn + hf(tn,¥n), y(to) =0

applied to

gives
Yn+1 = Yn + h)\yn = (]_ + h/\))/n — (1 + h)\)"+1yo.
The stability criterion is (non-exponential growth):

1+ h\ <1
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Euler’s Method

Finding Stability Regions Terite St M s

Euler’s Method

Finding Stability Regions Taylor Series Methods

Finding the Stability Region
How do we find the stability region from the expression
|1+ hA| < 1.
The boundary of the region is given by

1+hr=¢e o h=e%—-1, 0ec]0,2n)

- ~ Euler’ sMethod

2 -
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Euler’'s Method

Finding Stability Regions Taylor Series Methods

Stability Regions for Higher Order Taylor Series Methods

Stability Regions for Higher Order Taylor Series Methods

Consider

y(tiv1) = Z (k)(

k=

- (n 1) _ L
(+1) &), & e [t ti]

Now, with y’(t) = Ay(t) we have
y"(t) = A/ (t) = Ny(t)
So
y(t) = Ay(2)

And it follows that

n k n+1
y(tivn) =) %Y(D) + %y("ﬂ)(fi), &i € [ti, tita]
K .
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Euler’s Method

Finding Stability Regions Taylor Series Methods

Plotting the Boundary of the Stability Region

The stability criterion is given by the relation

n L1+
y(tiv1) = y(to) [Z %]

k=0
i.e.

<1

" (hN)K
> EF <

k=0

Again, the boundary is given by

T (h\)k ,
>

k=0
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For n = 4 we have
(WA (BN | (hA)?
24 + 6 + 2
matlab)) z=roots([1/24 1/6 1/2 1 1-exp(i*#)])

Now, vary 6 in the interval [0,27), collect all the roots, and plot in
the complex plane (x =real(z), y =imag(z)) —

+ (M) +1-€?=0

T T T T T T T T T
41— Euler's Method
o i
Figure: The circle corresponding
o 1 to Euler's Method is included for
AL | comparison.
o i
1 L | | L
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Euler’s Method

Finding Stability Regions Taylor Series Methods

Some Comments on Higher Order Taylor Series Methods

In the cases where the derivative(s) f(¥)(t,y) can be computed,
higher order (n > 1) Taylor series method are superior to Euler's
method (Taylor order 1) for two reasons:

@ The local truncation error is smaller ~ O(h")
@ The region of stability is larger(!), allowing for (slightly) larger

step-sizes h.

Next slide shows the stability regions for Taylor's Method of orders
1 through 8.
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Regions of Stability for Taylor's Method (n=1,2,...,8)

\ \ \ 5 \
4 - Euler's Method
O - Taylor (n=2)
L - Taylor (n=3) |
- Taylor (n=4)
2 - Taylor (n=5) 4
- Taylor (n=6)
- Taylor (n=7) |4
- Taylor (n=8)
0 I —
2+ _
4 O i
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Improving Euler's Method: Alternatives

When the derivative(s) of f(t,y) cannot be computed — f may be
a result of measurements — and/or is too expensive to

compute/evaluate, we need alternative approaches to improve on
Euler's Method.

We are going to explore the following approaches:
@ Runge-Kutta Methods

@ Linear Multistep Methods
@ Predictor-Corrector Methods

There is significant overlap between these different approaches,
hence we will “re-discover” some methods in several contexts.
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Runge Kutta Methods

Runge-Kutta (RK) methods

@ One-step methods — moving from time t, to time t,1: Still
easy to build adaptive methods if/when necessary (step-length
changes on-the-fly are “easy.”)

@ Breaks/complicates linearity — the structure of the local error
becomes more complicated.

Catch-22: Easy to change step-size since it is a one-step method,
but hard(er) to tell when it is needed (local error com-
plicated).
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Linear Multistep Methods: Reverse Catch-22
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When we look at Linear Multistep Methods (which use multiple

points ¥n, Yn—1, ---, Yn—k in order to compute y,t1), we will see
that they have the reverse problem: —

@ for this class of methods it is easy to estimate the local error
(= easy to know when a change in step-size is necessary to
maintain a certain level of local accuracy),

@ but the multistep structure makes it hard to change the
step-size...
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A General s-stage RK method

A general s-stage RK method for the problem

y'(t)=1f(t,y), y(to) = yo
is defined by

S
Yntl = Yn+ hz biki
i=1
where the k;s are multiple estimates of the right-hand-side (¢, y)

s
ki="f tn—l-C,'h,yn—I—hZa,"jkj , 1=1,2...,s
j=1

with the following row-sum condition

S
C,':E aj j i:1,2,...,5
j=1
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Example: Heun's Method is an RK 2-stage Method

kl = f(tnayn)
ky = f(th+hyn+hki)) = c=1, a1=1 a5=0

=c =0, 31J:0

ki + ko

Yn+1 = Yn+h|: 9

1
] :>b1:b2:§

The Butcher Array describing Heun's Method

C1| a1 a2 0 O 0
C | a1 a2 = 1 1 0
| by b 11/2 1/2
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Example: Euler's Midpoint Method

kl = f(tn,yn) = (] = 0, arj = 0

2 2
Ynt1 = Yn+ hka = b =0, =1

h  kih
ke = f(tn+—,yn+1_) =G =3 &1=3 22=0

The Butcher Array describing Euler's Midpoint Method

€ |a11 3172 0 0 0
C | d21 4d22 = 1/2 1/2 0
| by b 0 1
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The Butcher Array
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3 Types of RK-methods, I/IlI

The Butcher array for a general s-stage RK method is

c1|ayl a2 - ais
C| a1 ap -+ axs
Cs | ds1 ds2 - dss

bl b2 e bs

We define the s-dimensional vectors B € and the s x s-matrix A:

B:[b17b27"-7bs]—r, E: |:C]_,C2,...,CS]T7 A: [alyJ]IS,j:].
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3 Types of RK-methods, I1/Il1

@ Semi-implicit*

o If Ais lower-triangular with non-zero entries on the diagonal,
then each k; is defined by a non-linear system:

k,':f tn+Cih7yn+Zai,jkj ) I.:].72,...,S
j=1

We have to solve s non-linear (but uncoupled) systems of
equations in each iteration...

* Butcher (1965) calls these methods “Semi-implicit,” Norsett
(1974) “Semi-explicit,” and Alexander (1977) “Diagonally
Implicit RK" or DIRK methods.
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o Explicit (e.g. Heun's and Midpoint):

o If each k; only depends on previously computed k; (i < j),
then the method is explicit, and the matrix A is strictly lower
triangular (i.e. the elements on and above the diagonal are
zero).
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3 Types of RK-methods, II1/11]

o Implicit:

@ If Ais a general matrix (non-zeros above the diagonal) then
each k; is defined by a non-linear system:

S
ki=f | tatcihyn+ Y aijki|, i=12...s
j=1

We have to solve s non-linear coupled systems of equations in
each iteration... This can be a daunting computational task
(see Math 693a); most of the time we will try to avoid going
this route!
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A Remark on RK-methods — One Point of View

RK-methods constitute a sensible idea. The unique solution to a
well posed initial value ODE problem

y'(t) = f(t,y),

is a single curve in (t, y)-space. Solutions to the same ODE with
(slightly) different initial conditions form a family of solutions:

YO =y +2t-1, y(©0)=1

y(to) = yo

4
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Deriving Explicit 1-stage RK-methods
The Butcher array for an 1-stage RK method has the form:

¢ | art
by

If we want an explicit scheme, then a;; = 0, and since

1 . )
c = Zj:1 ais, we have ¢c; = 0. Further consistency™ requires

that ) b; =1, so by = 1. We are left with

00
1
kl - f(tm)/n)

Yn+1 = Yn + hky = yn + hf(tm)/n)v

* We have yet to prove this condition.

or

Euler’'s Method!
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A Remark on RK-methods — One Point of View

Due to numerical errors — truncation, and roundoff errors — any
numerical solution “wanders off” the exact solution curve. The
numerical solution is affected by neighboring solutions.

RK-methods gather information information about this “family” of
solution curves.

An explicit RK-method sends out “feelers” into solution space,
gathering samples of the derivative, and then decides in what
direction to take the final Euler-like step.

Paraphrased from J.D. Lambert, “Numerical Solutions for Ordinary
Differential Systems: the Initial Value Problem.”

Peter Blomgren, (blomgren.peter@gmail.com) Stability Regions Revisited & RK-Methods

Introduction
s-stage RK-methods
Types of RK-methods

Runge-Kutta Methods Derivation

Deriving Explicit 2-stage RK-methods, 1/l

The Butcher array for a 2-stage explicit RK method has the form:

00 O 010 0
Co 3271 0 ~ Co | C2 0
| b1 b b 1- b

Hence,
kl - f(trh yn)

ko = f(tn + oh,y, + Cthl)
Yn+1 =Yn+h [blkl + (1 - bl)k2]
describes all possible explicit 2-stage RK-methods.

How do we choose the parameters ¢, and b;777?
— Taylor Expansion, of course!

Stability Regions Revisited & RK-Methods
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Introduction Introduction

s-stage RK-methods s-stage RK-methods
Runge-Kutta Methods 'I:I;);[iie‘;:)iifK—methods Runge-Kutta Methods '[I;)g:ievsatoir)':?K-methods
Deriving Explicit 2-stage RK-methods, 11/l Deriving Explicit 2-stage RK-methods, 111/11l
With the following Taylor expansions: We have
_ h? 21 3 — ﬁ 2 2 . _ g g . 2
y,ﬂlzl = );,7 + hf, + 5, + O(h°) LTE(h) = 5 {mfnqt ayf,, f,,] bacoh [atf,,+ 8yf,, fo| + O(h%)
1 — n .
ko = f(tn + oh,yn + C2hk1) Now, if h
= o+ (@h) §eF(tn,yi) + (C2hfa) & F(ta, o) + O(H?) 7 heh=0 e2bha=1
We can define the Local Truncation Error we get LTE(h) ~ O(h?), i.e. our 2-stage RK-method is second
LTE(R) = 272279 bk — (1— by)ko order.
h The corresponding family of Butcher arrays is
h ! 2
= [fn+2fn+0(h )} 0 0 0
0 0 C2 ) 0
i |:b1fn—(1—b1) <fn+(c2h) |:8tfn+ayfnfn:|>:| ‘ 1—1/(2C2) 1/(2C2)
_ h [afn + gfn ) fn:| — byooh [afn + gfn . fn} + O(H?) Sanity check: ¢, = 1/2 gives Euler's Midpoint Method, and ¢; =1
2 [0t " Oy ot~ Oy gives Heun's Method.
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Runge-Kutta Methods

Deriving Explicit Higher Order RK-methods Example: 3-stage RK-method

We can use the same approach — Taylor expansion and parameter
matching, to find higher order explicit RK-methods. €1|4a11 912 a13 010 0 0
C2 | a1 422 a3 . 1/2 1/2 0 0
Natural question: Is this the best way of deriving the RK- c3|as1 a2 as3 - 1 | =1 2 0
methods? by by b3 1/6 2/3 1/6

Answer: There are more elegant methods for deriving the RK-

methods. Most of the work was done by Butcher starting ki = f(tn,yn)

in the mid-1960s. The methods depend on defining the ky = f <tn Ayt %)

Frechet derivative and also requires some basic under-

standing of graph theory (“rooted trees.”) ks = f(tn+h,yn— hki + 2hks)

h

Butcher, J.C. (1987), The Numerical Analysis of Ordinary Differential Ynt1 = Ynte (kl ke o+ k3)
Equations: Runge-Kutta and General Linear Methods, Wiley, Chichester. (See next slide for visualization.)
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Runge-Kutta Methods

Example: 3-stage RK-method

One Step . 4-stage RK-method (Attributed to Runge)

€1 | a1 a2 ai3 aia 0 0 0 0 0
. . ; C2 a1 a2 323 a4 /2112 0 0 0
o c3|as1 a2 as3 a4 = 12/ 0 1/2 0 0
4 L 4

T s 0 St T T S Ca | @41 As2 as3 asy 1170 0 1 0
T T T L by by b3 by 1/6 1/3 1/3 1/6

3 E E
°
23 23 24 .

. e . ~ . A
R T~ 1 ky = f

f (tmyn)
th+ 5, ¥+ m)
¥ =t y2)2

: y . | ko= F(tat w“+&>
f(tn

Figure: Different “stages” of one
2 step of the 3-stage RK method. ky = + h, yn + hkz)

. 7
Vi1 = Yo+ B(ki+ 2ko + 2k + kg)

1 1
1s5 2 202 204 206 208 21 212 Tes 2 202 204 206 208 21 212

Toa 2 202 204 206 208 21 212
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Runge-Kutta Methods

Example: Runge's 4-stage method Example: 4-stage RK-method (Attributed to Kutta)

€1 |a11 a2 ai3 adia 0 0 0 0 0

. i ) C2| a1 a2 a3 aa 131 1/3 0 0 0

1o T Tt cs|as1 a2 a3 a4 = 2/3|-1/3 1 0 O

P T T P T P Ca | @41 As2 ar3 asy 1 1 -1 1 0
Y =" y@1=2 Y =t y2)=2 ¥ =", y@2=2

] ] ] by by b3 by 1/8 3/8 3/8 1/8

. | . = f(tyn)

4o AR 4 _ hk

e St VS S e S f - SEE— k2 — f < 3 ) )/n + _1)

a2 Yy =ty y2)=2 a2 Y =ty y2)=2 a2 ¥ =t y2)=2 h k

3 / 3 Y a ks = F(ta+ Zoyn— 8+ ko)

; ; : ki = f(ta+h,yn+ hky — hko + hk

24 /// 24 ; ;// 2 4 ( +n,y,+ 1 2+ 3)

1~ 1 ] Yn+1 = Yo+ glki + 3k + 3ks + ka)
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Example: Kutta's 4-stage method

YO =1 y@)=2

4o

L
Ton 2 202 204 206 208 21 212

v =" @2

A
;o

Tes 2 2oz 204 206 208 21 212
v =t y2)=2

A
IR

Toa 2 202 204 206 208 21 212

YO =t y@=2

P

1
Ten 2 202 204 206 208 21 212

v =t @22

yd

o~
e

Tos 2 202 20 206 206 21 232
YO =t ye)2

P

T8 2 202 204 206 208 21 212

-

Yo=Y y@2

o

One Step

1
Ten 2 200 204 206 208

-

YO =t y@)=2

H

21 21

Tee 2 20z 208 206 208
YO =t vz

21 212

Tes 2 202 204 206 208

21 212
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Next Lecture — Residual Issues

We have some important residual issues related to Runge-Kutta
methods to clear up next time:

o Consistency condition: The requirement > b; = 1.

@ Error estimation (using Richardson’s Extrapolation).

@ Stability Analysis.

@ Some more examples of RK-methods in action.

Future topic:

@ Deriving RK-methods using rooted trees.
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