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Last Lecture: Quick Review

Euler’'s Method:

@ Analysis: Local Truncation Error (LTE), Consistency,
Accuracy, Stability (Region of Stability), Convergence

Improvements:

@ Higher order Taylor Series Methods

@ Multi-Point Methods

@ Heun's Method
@ Euler's “Midpoint Method”
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Stability Regions Revisited

Recall: Euler’'s Method

Yn+1 :)/n+hf(tn7YH)a Y(tO):)/O

applied to
y'(t) = Ay(t)

gives
Ynt1 = Yn + hAyn = (14 bA)yn = (14 hX)" 1y,
The stability criterion is (non-exponential growth):

|1+ hA <1
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Finding the Stability Region

How do we find the stability region from the expression
|1+ h\| < 1.
The boundary of the region is given by

1+ =€’ o h=¢€%—1, 6e]0,2n)

o

2 4
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Stability Regions for Higher Order Taylor Series Methods

Consider
n hk hn+1 ,
y(tiv1) = Z Fy(k)(fi) + (nTl)'y( &), & et ti]
k=0 '

Now, with y'(t) = Ay(t) we have
y"() = 2y'(8) = Ny (t)

So
y(t) = A"y (t)
And it follows that

2 (hA)* hA)™
o) = 32 Uyt + L@, &€l
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Stability Regions for Higher Order Taylor Series Methods

The stability criterion is given by the relation

n PR
y(tiy1) = y(to) [Z (h:\!) ]

k=0
ie.
~ (hA)
k!

<1

k=0

Again, the boundary is given by

i (hN)K o0
kKl
k=0
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Plotting the Boundary of the Stability Region

For n = 4 we have

(hA)*

(W)

(h\)?

6

5 + (M) +1—-¢€?=0

matlab)) z=roots([1/24 1/6 1/2 1 1-exp(i*f)]1)

Now, vary 6 in the interval [0, 27), collect all the roots, and plot in
the complex plane (x =real(z), y =imag(z)) —

4

2

0

- Edler'sMethod
- Taylor (n=4)

Figure: The circle corresponding
to Euler’s Method is included for
comparison.
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Some Comments on Higher Order Taylor Series Methods

In the cases where the derivative(s) f()(t,y) can be computed,
higher order (n > 1) Taylor series method are superior to Euler's
method (Taylor order 1) for two reasons:

© The local truncation error is smaller ~ O(h")

© The region of stability is larger(!), allowing for (slightly) larger
step-sizes h.

Next slide shows the stability regions for Taylor's Method of orders
1 through 8.
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Regions of Stability for Taylor's Method (n=1,2,...,8)
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Improving Euler's Method: Alternatives

When the derivative(s) of f(t,y) cannot be computed — f may be
a result of measurements — and/or is too expensive to

compute/evaluate, we need alternative approaches to improve on
Euler's Method.

We are going to explore the following approaches:

® Runge-Kutta Methods
@ Linear Multistep Methods

@ Predictor-Corrector Methods

There is significant overlap between these different approaches,
hence we will “re-discover” some methods in several contexts.
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Runge Kutta Methods

Runge-Kutta (RK) methods

@ One-step methods — moving from time ¢, to time t,.1: Still
easy to build adaptive methods if/when necessary (step-length
changes on-the-fly are “easy.”)

@ Breaks/complicates linearity — the structure of the local error
becomes more complicated.

Catch-22: Easy to change step-size since it is a one-step method,

but hard(er) to tell when it is needed (local error com-
plicated).
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Linear Multistep Methods: Reverse Catch-22

When we look at Linear Multistep Methods (which use multiple
points ¥n, Yn—1, --., Yn—k in order to compute y,+1), we will see
that they have the reverse problem: —

@ for this class of methods it is easy to estimate the local error
(= easy to know when a change in step-size is necessary to
maintain a certain level of local accuracy),

@ but the multistep structure makes it hard to change the
step-size...
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A General s-stage RK method

A general s-stage RK method for the problem

Y'(t)=1(t,y), y(to) =0
is defined by

S
Ynt1=Ynt h Z bik;
i=1
where the k;s are multiple estimates of the right-hand-side f(t, y)

s
ki=f t,,+c,~h,y,,+hZa;,jkj , 1=12,...s
j=1

with the following row-sum condition

s
C,':E aj j i:1,2,...,5
j=1
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Example: Heun's Method is an RK 2-stage Method

ki = f(tn,¥n) =a=0 a,;=0
ky = f(ta+hyn+hk)) = =1 a1=1, a3=0
ki + k 1
Yn+1 = yn+h|:12:| :>b1:b2:§

The Butcher Array describing Heun's Method

€| a1 a2 0| O 0
Co 3271 8272 = 1 1 0
| b1 b 1/2 1/2
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Example: Euler’'s Midpoint Method

ki = f(tn,yn) =a=0, a,=0
h ki h
Yn+1 = Yn+hk2 :>b1:07b2:1

The Butcher Array describing Euler's Midpoint Method

€| a1 a2 0 0 O
C | a1 422 = 1/2 1/2 0
| b b 0 1
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The Butcher Array

The Butcher array for a general s-stage RK method is

€| a11 a12 al,s
C | a1 a2 as
Cs | ds,1 ds2 ds,s

by b2 bs

We define the s-dimensional vectors 5 € and the s X s-matrix A:

B: [blab27"'abS]T7

c= [C17C27"'aCS]T? A= [ai,j]lij':l

Stability Regions Revisited & RK-Methods — (17/34)



3 Types of RK-methods, 1/111

e Explicit (e.g. Heun's and Midpoint):

@ If each k; only depends on previously computed k; (i < j),
then the method is explicit, and the matrix A is strictly lower
triangular (i.e. the elements on and above the diagonal are

zero).
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3 Types of RK-methods, 11/11I

o Semi-implicit*

@ If Ais lower-triangular with non-zero entries on the diagonal,
then each k; is defined by a non-linear system:

i
ki=f t,,—l—c,-h,y,,—ﬁ—Za;ka , Ii=1,2,...,s
j=1
We have to solve s non-linear (but uncoupled) systems of

equations in each iteration...

* Butcher (1965) calls these methods “Semi-implicit,” Norsett
(1974) "Semi-explicit,” and Alexander (1977) "Diagonally
Implicit RK” or DIRK methods.
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3 Types of RK-methods, I11/111

o Implicit:

s If Ais a general matrix (non-zeros above the diagonal) then
each k; is defined by a non-linear system:

S
ki="f t,7+c;h,y,,+z.a,-7jkj , =12 ...s
j=1

We have to solve s non-linear coupled systems of equations in
each iteration... This can be a daunting computational task
(see Math 693a); most of the time we will try to avoid going
this route!
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A Remark on RK-methods — One Point of View /1

RK-methods constitute a sensible idea. The unique solution to a
well posed initial value ODE problem

y'(t)=f(t,y), y(to) = yo

is a single curve in (t,y)-space. Solutions to the same ODE with
(slightly) different initial conditions form a family of solutions:

YO =y +2*t-1, y(0)=1

%

0 0.2 0.4 0.6 0.8 1
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A Remark on RK-methods — One Point of View /1

Due to numerical errors — truncation, and roundoff errors — any
numerical solution “wanders off” the exact solution curve. The
numerical solution is affected by neighboring solutions.
RK-methods gather information information about this “family” of
solution curves.

An explicit RK-method sends out “feelers” into solution space,
gathering samples of the derivative, and then decides in what
direction to take the final Euler-like step.

Paraphrased from J.D. Lambert, “Numerical Solutions for Ordinary
Differential Systems: the Initial Value Problem.”
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Deriving Explicit 1-stage RK-methods

The Butcher array for an 1-stage RK method has the form:

c | aia
by

If we want an explicit scheme, then a; ; = 0, and since
c = 2}21 ais, we have ¢; = 0. Further consistency™ requires
that > bj =1, so by = 1. We are left with

00
1
ki = f(tn,yn)

Yn+1 = Yn + hki = yn + hf(ts,yn), Euler’'s Method!

or

* We have yet to prove this condition.
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Deriving Explicit 2-stage RK-methods, /11l

The Butcher array for a 2-stage explicit RK method has the form:

ojo o
~ Cy | C 0
| b1 1—b

Hence,
kl = f(tna )/n)

ko = f(tn + c2h, yn + c2hki)
Y1 = Yn + h[brky + (1 — b1)ko]

describes all possible explicit 2-stage RK-methods.

How do we choose the parameters ¢, and b;?77
— Taylor Expansion, of course!
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Deriving Explicit 2-stage RK-methods, 11/11I

With the following Taylor expansions:
Ynt1 = Yn+hfs+ %2f,: + O(hs)
kl - fn
ky = f(t,, + C2h,)/n + C2hk1)
= fo+ (C2h) 5 (tn, yn) + (c2hf) & F (tn, ya) + O(H?)
We can define the Local Truncation Error

LTE(h) = % — biky — (1= by)ko

= {fn + gfn’ + 0(h2)] -

_[blfn—(l—bl) (fn+(Czh) [aaf aa fo fD]
0

_ g[afn+afn f] bZCQh[af oy f}+(’)(h2)

at" " oy P
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Deriving Explicit 2-stage RK-methods, I11/I11

We have
_h[oO 0 0 0 )
LTE(h) = 5 [atfn + @fn : fn} bacyh [&fn + @fn : f,,} + O(h?)
Now, if

g—b2C2h:0 & 2byoy =1
we get LTE(h) ~ O(h?), i.e. our 2-stage RK-method is second
order.
The corresponding family of Butcher arrays is
0 0 0

(&} o) 0
[1-1/2c) 1/(2c)

Sanity check: ¢; = 1/2 gives Euler's Midpoint Method, and ¢; =1
gives Heun's Method.
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Deriving Explicit Higher Order RK-methods

We can use the same approach — Taylor expansion and parameter
matching, to find higher order explicit RK-methods.

Natural question: Is this the best way of deriving the RK-
methods?

Answer: There are more elegant methods for deriving the RK-
methods. Most of the work was done by Butcher starting
in the mid-1960s. The methods depend on defining the
Frechet derivative and also requires some basic under-
standing of graph theory (“rooted trees.”)

Butcher, J.C. (1987), The Numerical Analysis of Ordinary Differential
Equations: Runge-Kutta and General Linear Methods, Wiley, Chichester.
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Example: 3-stage RK-method

C1|ad,1 a2 a3 0 0 0 0
C | a1 a2 a3 o 1/2 1/2 0 0
c3|as1 az2 asz 1 /-1 2 0
by by b3 |1/6 2/3 1/6
ki = f(tny}/n)
k2 = f<tn+g7}/n+%)

ks = f(tn+h,yn—hk1+2hk2)
Yn+y1 = }’n+g(k1+4k2+k3)

(See next slide for visualization.)
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Example: 3-stage RK-method One Step

YO =t y2=2 YO =t =2 YO =t vz
a2 3z 3z
E 3 E
28] 2] 2]
26 24f 26f
24 24 24]

4 4 4 -

PP S S S N SN S SR SN S P S S S S S S S S PP S S SR S N S S S
ToB 2 202 204 206 208 21 212 Tos 2 202 204 205 208 21 212 T 2 202 204 206 208 21 212
Y =ty y2)=2 YO =t y2)=2 YO =, y@)=2

az 3z 3z
3 3 E
°
28] 2] 2] .
26 24f 24f
24 24 24

ot g Ao

TR 2 202 208 206 208 21 212 Toa 2 202 204 205 208 21 212 Toa 2 202 200 206 208 21 212
Y0 =t vz

N / Figure: Different “stages” of one

2 7 step of the 3-stage RK method.

TR 5 2w 2ta 206 20 21 217
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Example: 4-stage RK-method (Attributed to Runge)

C1 3171 31,2 3173 31,4 0 0 0 0 0
C | a1 a2 423 a4 1/2 1/2 0 0 0
€3 |4d31 4832 433 434 = 1/2 0 1/2 0 0
Cq | @41 442 4dA43 da4 1 0 0 1 0
by by b3 by |1/6 1/3 1/3 1/6
kl = f(tnayn)
ky = f(t 2,y,, m)
k3 = (t 2,yn @>
Yoy1 = +5(k1+2k2+2k3+k4)
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Example: Runge's 4-stage method One Step

Y0 =t y2=2 YO =%, 22 YO =%, o2
a2 3z 3z
E 3 E
28] 2] 2]
26 24f 26f
24 24 24]

4 - Lo

U2 y@p=2 ¥ =" y2)=2 YO =", y@2)=2
| 4 )
29 24 29 .
24 24 /
22| / 2.2} o /
o do
i -
YO =1, y2)=2
I 2
| |
26 / 24
29 29
24 / 24
22 1 / 22)
e 2
W - N
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Example: 4-stage RK-method (Attributed to Kutta)

Cc1 2171 31,2 2173 31,4 0 0 0 0 0
C a1 a22 a3 a4 1/3 1/3 0 0 0
C3 a371 3372 a373 3374 = 2/3 —1/3 1 0 0
Cq | Aa1 4a42 aa3 444 1 1 -1 1 0
by by b3 by | 1/8 3/8 3/8 1/8

kl == f (tnayn)

k2 = f ( 37)’n m)

ks = f(tn+3,y,,—m+hk>

ky = (t + h,y, + hky — hko + hk3)

Ynt1 = Ynt g(kl + 3ko + 3ks + k4)
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Example: Kutta's 4-stage method One Step

2 VA @2
a2 3z 3z
E 3 E
28] 2] 2]
26 24f 26f
24 24 24]
22 22| o 22| /
[ o [ g do
1l 1l 14l
o 202 204 206 208 21 212 o8 202 204 206 208 21 212 Toe 202 201 206 208 21 212
Y0 =ty y@=2 v =y VO =t 2
az 3z 3z
3 3 E
28] 24f 2| o
24f
24
22|
E
PP S S S S NS S S S U
T 2 22 204 206 208 21 212
YO =1, y(21=2
32
E
2
2]
24
22|
E
PP S S S N SN S SR S S P S S S SN S S S S P S S S SN N S S S
TR 5 2w 2ta 206 20 21 217 TR 5 20 204 20h 20 21 212 T 5 ot o4 s0a 208 21 217
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Next Lecture — Residual Issues

We have some important residual issues related to Runge-Kutta
methods to clear up next time:

@ Consistency condition: The requirement ) b; = 1.

@ Error estimation (using Richardson's Extrapolation).

o Stability Analysis.

@ Some more examples of RK-methods in action.

Future topic:

@ Deriving RK-methods using rooted trees.
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