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Outline

@ Introduction and Recap
@ Linear Multistep Methods, Historical Overview
@ Zero-Stability

© Limitations on Achievable Order
@ The First Dahlquist Barrier
@ Example: 2-step, Order 4 — Simpson’s Rule

© Stability Theory
@ Model Problem ~~ Stability Polynomial
@ Visualization: The Boundary Locus Method
@ Backward Differentiation Formulas
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Quick Review, Higher Order Methods for y'(t) = f(t,y)

Chronology

Taylor When the Taylor series for f(t, y) is available, we can use
the expansion to build higher accurate methods.

RK If the Taylor series is not available (or too expensive), but
f(t,y) easily can be computed, then RK-methods are a
good option. RK-methods compute / sample / measure
f(t,y) in a neighborhood of the solution curve and use
those a combination of the values to determine the final

step from (tp, ¥n) to (tnt+1, Ynt1)-

LMM If the Taylor series is not available, and f(t, y) is expensive
to compute (could be a lab experiment?), then LMMs are
a good idea. Only one new evaluation of f(t,y) needed
per iteration. LMMs use more of the history
{(tn—k; ¥Yn—k); k=0,...,s} to build up the step.
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Methods

1883 Adams and Bashforth introduce the idea of improving the Euler
method by letting the solution depend on a longer “history” of
computed values. (Now known as Adams-Bashforth schemes)

1925 Nystrom proposes another class of LMM methods,
p(¢) = ¢k — ¢F2, explicit.

1926 Moulton developed the implicit version of Adams and Bashforth's
idea. (Now known as Adams-Moulton schemes)

1952 Curtiss and Hirschenfelder — Backward difference methods.
1953 Milne's methods, p(¢) = ¢k — ¢*=2, implicit.

Modern Theory

1956 Dahlquist

1962 Henrici
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Introducing Zero-Stability (Review)

Defining Zero-Stability (Review)

Consider the LMM applied to a noise-free problem:

K k
D oiynej =h)_ Bifa;
Jj=0 j=0
y}i:n#(h),ﬂzo,l,...,k—l

and the same LMM applied to a slightly perturbed system

k k
Z Qjyntj = h Z Bjfntj + Ontk
Jj=0 j=0
Yu=nu(h)+ 0, p=0,1,....k—1
Perturbations are typically due to discretization and round-off.
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Definition (Zero-stability)

Let {0,,n=0,1,...,N} and {6},n=0,1,..., N} be any two
perturbations of the LMM, and let {y,,n=20,1,...,N} and
{y¥,n=0,1,..., N} be the resulting solutions. If there exists
constants S and hg such that, for all h € (0, hg],

lyn —yi]| < Se, 0<n<N

whenever
|0n — 05| <€, 0<n<N

the method is said to be zero stable.
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Interpreting Zero-Stability

(Formalized)

A Simple Criterion for Zero-Stability (Review)

Applying the LMM to z, =y, — y;, 6 =0p — 0% gives:

k
E QjZntj = Optk
j=0

ZH:ZS\#, uw=0,1,....k—1

Interpretation

That is, zero-stability guarantees that a zero-forced system (with
zero starting-values) produces errors bounded by the round-off
noise.

In infinite precision, the solution stays at zero.
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If the roots of the characteristic polynomial
k
> ajynj=0, & p(¢)=0
j=0

satisfies the root criterion
Gl <1, =12,k
then the method is zero-stable.

Theorem (Convergence)

The method is convergent if and only if it is consistent and
zero-stable.
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The First Dahlquist Barrier, I/IlI Statement The First Dahlquist Barrier, I1/111 Newton-Cotes Errors

Theorem (Germund Dahlquist, 1956)

The first Dahlquist barrier reminds us of something from Math 541:
No zero-stable s-step method can have order exceeding (s + 1)

when s is odd, and (s + 2) when s is even. Theorem (Errors for Newton-Cotes Integration Formulas)
' ” Suppose that >__, a;f(x;) denotes the (n+ 1) point closed
Definition Newton-Cotes formula with xo = a, x, = b, and h = (b — a)/n. Then
A zero-stable s-step method is said to be optimal if it is of order there exists £ € (a, b) for which
(s +2). hn+3f(n+2) n

’ / dX—Za, Xi) 2)(6)/ t2(t —1)---(t — n)dt,
Observation a (n+2t Jo

Simpson'’s rule is optimal (to be shown...) ifn is even and f € C™2[a, b], and

h hn+2f(n+1)(€) n
Ynt2 = Yn = 2 |fat2 + fay1 + / _ / (e —
n+ n= 3|+ n+ n ) x)dx = Zafx, CESN ; t(t—1)---(t — n)dt,

Note: Zero-stability does not give us the whole picture; see ab-
solute stability... (coming right up!)

ifnis odd and f € C™[a, b].

ot
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The First Dahlquist Barrier, 111/11I Comments Simpson's Rule, yn11 —Yn-1= %[fn“ + 4f, + f,_1]
For notational convenience, the points have been re-numbered
@ For the Newton-Cotes’ formulas: when n is an even integer, (index lowered by one), and we expand around the center point
the degree of precision (higher order polynomial for which the (tn: yn):
formula is exact) is (n 4+ 1). When n is odd, the degree of P " 4) | S ( )
precision is only n. Yn+1 ~ Yot hyp + 2 TYn T 6 yn + 24y" + 15gyn . +O(h°)
~ —hy! + i (4)_h_(5) O(h®
Yn—1 Yn Yn + 2 .Vn TYn T 24y oYn  + (h°)

@ For zero-stable s-step LMMSs: when s is even, the order is at
most (s + 2); when s is odd, the order is at most (s + 1).

LHS ~ 2hy, + 3y;,”+60y,§5)+0(h7)

Coincidence? — Unlikely! foi1 ~ fy—hfl + %27(: _ %3);’;// i g_:fn(4) 120 f(5) + (’)(h6)

The LMMs get the next y,,1 by integrating over the solution 4~ 4y 2 2 W ) 5)

history; and the Newton-Cotes’ formulas give the (numerical) for1 ~ fothfg+ S+ 6+ 5 + 120f +O(h°)
. . 4 (4

integral over an interval. RHS ~ g 6f, + h2f" + f_2fn( ) 4+ O(h%)
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Simpson's Rule, yni11—Yn_1= %[fn+1 + 4f, + 1], 1l

Linear Stability Theory for LMMs

LHS ~ 2hy,+ 2y 4 B8 L o(h7)
RHS ~ 4 l6f, + m2f7 + 269 4 o)

Use the equation y/(t) = f(t,y) < yk(t) = FK(¢,y):

As we did for RK-methods we apply our LMMs to the problem

y'(t) = Ay (1),

and search for the region h = (hX\) where the LMM does not grow
exponentially.

Re(\) <0

LHS ~ 2hf, + %zfn" + %f,,(j) +O(h") We get...
RHS ~ 2hf,+ 27+ B L o) . . )
LHS — RHS 4 Do aynri=hY Bifari=hD BAynrs
LHS — RHS - g [& — A1 69 + 0(h®) =0 =0 =0
Thus...
Simpson’s Rule — Local Truncation Error i
[o — hBjA] ynij = 0
LT Esimpson(h) = O (h*) J =0
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Linear Stability Theory for LMMs, Il Linear Stability Theory: Absolute Stability
We have
k Definition (Absolute Stability)
_Z [ = h5iAlyn+j =0 A linear multistep method is said to be absolutely stable for a
=0 given h, if for that h all the roots of the stability polynomial
A general solution of this difference equation is m(r, h) satisfy |rj] <1,j=12,...,s and to be absolutely
unstable for that h otherwise.
Yn=ror"
where r is a root of the characteristic polynomial Definition (Region of Absolute Stability)
K The LMM is said to have the region of absolute stability R4,
0= Z [oj — hBA P = p(r) — 71\0'([’) = 7(r, E) where R 4 is a region in the complex h-plane, if it is absolutely
=0 stable for all h € R . The intersection of R4 with the real axis is
R called the interval of absolute stability.
m(r, h) is called the stability polynomial. '
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The Boundary Locus Method

The Region of Absolute Stability for Simpson’s Method

The boundary of R4, denoted _aRA is given by the points where
one of the roots of 7(r, h) is e’

OR, is h such that

(e, h) = p(e”) — ho(e®) =0, 6 € [0,2n)
Solving for h gives

Method: Boundary Locus

h(6) = p(‘:iie) 0 < [0,2n)
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Consider Simpson's Rule, and its characteristic polynomials

h
Yn42 — Yn = § [fn+2 + 4fpy1 + fn]

AO=C-1, o(Q) =3[ +4C+1]

The OR 4 is given by

hoy=3 S -1 g el-e _ Gisinf _ 3isinf
e + 4el? 41 el 444 e 442cosf 24 cosf

Hence OR 4 is the segment [—i/3, iv/3] of the imaginary axis.
Simpson’s Rule has a zero-area region of absolute stability
(Bummer).
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Optimal Methods are not so Optimal after all...

Stability Regions for Adams-Bashforth Methods

@ All optimal methods have regions of absolute stability which
are either empty, or essentially useless — they do not contain
the negative real axis in the neighborhood of the origin.

@ By squeezing out the maximum possible order, subject to
zero-stability, the region of absolute stability get squeezed flat.

@ “Optimal” methods are essentially useless.
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Adams-Bashforth Methods Adams-Bashforth Methods Adams-Bashforth Methods
Stability Regions Stability Regions Stability Regions

T T T T T T T T T T T T T T T T T T T T T T
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Adams-Bashforth Methods Adams-Bashforth Methods Adams-Bashforth Methods
Stability Regions Stability Regions Stability Regions

T T T T T T T T T T T T T T T T T T T T T T T
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o — o o —
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Stability Regions for Adams-Bashforth Methods

|r,| > 1 count

Stability Regions for Adams-Moulton Methods

Adams-Bashforth, order 1 Adams-Bashforth, order 2 Adams-Bashforth, order 3
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Adams-Moulton Methods Adams-Moulton Methods Adams-Moulton Methods

Stability Regions. Stability Regions. Stability Regions.
T T T T T T T T T T T
3 3k 3k -
20 2 2 B
1 1 1 B
P oF D ~
1S 1k —Hak B
2f —2F —2f -
3 3 3k B
-4 —ak —at ]
B B S B ey
The exterior of the circle! The left half plane!
Adams-Moulton Methods Adams-Moulton Methods Adams-Moulton Methods
Stability Regions Stability Regions Stability Regions
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Absolute Stability Matters!

Backward Differentiation Formulas

So far we have seen (only) two methods which produce bounded
solutions to the ODE

y'(t) = Ay(t)
for all A : Re(\) < O:
Implicit Euler (Adams-Moulton, n = 1)

Yn+1 = Yn + hfn—i—l

Trapezoidal Rule (Adams-Moulton, n = 2)

h
Yntl = Yn t 5 |:fn+1 + fn:|
The size of the stability region located in the left half plane tends
to shrink as we require higher order accuracy — requiring a
smaller stepsize h.
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Can we find high order methods with large stability regions?!?
Yes!

The class of Backward Differentiation Formulas (BDF) defined by

k
> ajynij = hBifask
j=0

have large regions of absolute stability.

Note that the right-hand side is simple, but the left-hand side is
more complicated (the opposite of Adams-methods).
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Deriving BDF l/1IV Deriving BDF /v
The kth order BDF is der|Yed by constructing the polynomial Newton’s Backward Difference Formula (Math 541) comes in
interpolant through the points . . . .

handy. We can write the interpolating polynomial

(tn+17)/n+1)7 (tnu}/n)a ey (tn—k—|—17)/n—k+1)7 k s
. : : P.(t i1 + sh) = + —1y( T \w
i.e. (after re-numbering the points: 0,1,..., k) (tn+1 ) = Yot Jz_;( ) <j ) Yt

k k . :
t—ty where Newton's divided differences are
Pe(t) = Ynimlim(t), where L m(t) = ][ ra—
m=0 (=0,6#m " 1
" Vyni1 = |:y,,+1 - }/n} ) v2)/n+1 = 2 |:V.yn+1 - v)/n}
and then computing the derivative of this polynomial at the point
corresponding to t,+1 and setting it equal to f,1.
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Deriving BDF /v Deriving BDF V/IV

The binomial coefficient is given by
-5 —s(—s—1)---(-s—j+1 s(s+1)---(s+/5—-1
( _): ( ) _ ( J ):(_1)1 ( ) ( J ) We now have
J J! J! Koq o
In order to compute Pj(t,+1) we need to compute Z J—.VJYnH = hfpi1
d (—s =t
ds < J ) s=0 Making sure that the coefficient for is 1:
Massive application of the product rule gives us & Yat1 '
d(—s ( 1)J-(j—l)!_(—l)f k4 1o 1. K 4 -1
ds\ j )|eso Y Yozl D Van=h|) 2| fan
, —j| = — j
That is /= /= =
k k
—1)% 1
hPy(tni1) = Z ( ) Vyni1 = Z =V yni1
= =17
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BDFs, k=1,2,...,6 Stability Regions for BDF Methods
BDF Methods BDF Methods BDF Methods
Stability Regions Stability Regions Stability Regions
k BDF LTE S = =B
1
1 Yn+1 = Yn = hfpi1 _§h @
4 1 2 2,2
2 Yn+1 — 3¥n + 3Yn-1 = §hfn+1 _§h
18 9 2 _ 6 343
3 Ynt1 = 11¥n+ ig¥n-1— 11¥n—2 =  hf1 | —%h
4 1 -8y 3y Oy ot 2y, s = Lhf, | —2p 0 0 .,
Yot 25yn 25 % 25 Yn 25yn 257t 125 The exterior(s) / Parts of Left Half Plane
300 300 200
5 Y1 — 37¥n + 37Yn—1 — 37Yn—2 B e B s e
5 _ 12 _ 60 _ 1045 — | |
TigYn-3 —i3¥o—a = phfn 137/ =i
360 450 400
6 Yn+1 — 37 Y¥n + 1a7Yn—1 = 147Yn-2
225 72 10 _ 60 20 16 o {
T3Yn—3 = iaYn—a+t i5Yn-s5 =  1zhfar1 | —353h O O
These are all zero-stable. BDFs for kK > 7 are not zero-stable. v / ‘
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