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Quick Review, Higher Order Methods for y ′(t) = f (t, y)

Taylor When the Taylor series for f (t, y) is available, we can use
the expansion to build higher accurate methods.

RK If the Taylor series is not available (or too expensive), but
f (t, y) easily can be computed, then RK-methods are a
good option. RK-methods compute / sample / measure
f (t, y) in a neighborhood of the solution curve and use
those a combination of the values to determine the final
step from (tn, yn) to (tn+1, yn+1).

LMM If the Taylor series is not available, and f (t, y) is expensive
to compute (could be a lab experiment?), then LMMs are
a good idea. Only one new evaluation of f (t, y) needed
per iteration. LMMs use more of the history
{(tn−k , yn−k); k = 0, . . . , s} to build up the step.
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Chronology

Methods

1883 Adams and Bashforth introduce the idea of improving the Euler
method by letting the solution depend on a longer “history” of
computed values. (Now known as Adams-Bashforth schemes)

1925 Nyström proposes another class of LMM methods,
ρ(ζ) = ζk − ζk−2, explicit.

1926 Moulton developed the implicit version of Adams and Bashforth’s
idea. (Now known as Adams-Moulton schemes)

1952 Curtiss and Hirschenfelder — Backward difference methods.

1953 Milne’s methods, ρ(ζ) = ζk − ζk−2, implicit.

Modern Theory

1956 Dahlquist

1962 Henrici
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Introducing Zero-Stability (Review)

Consider the LMM applied to a noise-free problem:

k∑

j=0

αjyn+j = h

k∑

j=0

βj fn+j

yµ = ηµ(h), µ = 0, 1, . . . , k − 1

and the same LMM applied to a slightly perturbed system

k∑

j=0

αjyn+j = h

k∑

j=0

βj fn+j + δn+k

yµ = ηµ(h) + δµ, µ = 0, 1, . . . , k − 1

Perturbations are typically due to discretization and round-off.
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Defining Zero-Stability (Review)

Definition (Zero-stability)

Let {δn, n = 0, 1, . . . ,N} and {δ∗n, n = 0, 1, . . . ,N} be any two
perturbations of the LMM, and let {yn, n = 0, 1, . . . ,N} and
{y∗n , n = 0, 1, . . . ,N} be the resulting solutions. If there exists
constants S and h0 such that, for all h ∈ (0, h0],

‖yn − y∗n‖ ≤ Sǫ, 0 ≤ n ≤ N

whenever
‖δn − δ∗n‖ ≤ ǫ, 0 ≤ n ≤ N

the method is said to be zero stable.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear Multistep Methods — (6/30)



Introduction and Recap
Limitations on Achievable Order

Stability Theory

Linear Multistep Methods, Historical Overview
Zero-Stability

Interpreting Zero-Stability (Formalized)

Applying the LMM to zn = yn − y∗n , δ̂n = δn − δ∗n gives:

k∑

j=0

αjzn+j = δ̂n+k

zµ = δ̂µ, µ = 0, 1, . . . , k − 1

Interpretation

That is, zero-stability guarantees that a zero-forced system (with
zero starting-values) produces errors bounded by the round-off
noise.

In infinite precision, the solution stays at zero.
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A Simple Criterion for Zero-Stability (Review)

If the roots of the characteristic polynomial

k∑

j=0

αjyn+j = 0, ⇔ ρ(ζ) = 0

satisfies the root criterion

|rj | ≤ 1, j = 1, 2, . . . , k

then the method is zero-stable.

Theorem (Convergence)

The method is convergent if and only if it is consistent and

zero-stable.
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The First Dahlquist Barrier, I/III Statement

Theorem (Germund Dahlquist, 1956)

No zero-stable s-step method can have order exceeding (s + 1)
when s is odd, and (s + 2) when s is even.

Definition

A zero-stable s-step method is said to be optimal if it is of order
(s + 2).

Observation

Simpson’s rule is optimal (to be shown...)

yn+2 − yn =
h

3

[
fn+2 + 4fn+1 + fn

]

Note: Zero-stability does not give us the whole picture; see ab-
solute stability... (coming right up!)
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The First Dahlquist Barrier, II/III Newton-Cotes Errors

The first Dahlquist barrier reminds us of something from Math 541:

Theorem (Errors for Newton-Cotes Integration Formulas)

Suppose that
∑n

i=0 ai f (xi ) denotes the (n + 1) point closed
Newton-Cotes formula with x0 = a, xn = b, and h = (b − a)/n. Then
there exists ξ ∈ (a, b) for which

∫ b

a

f (x)dx =

n∑

i=0

ai f (xi ) +
hn+3f(n+2)(ξ)

(n + 2)!

∫ n

0

t2(t − 1) · · · (t − n)dt,

if n is even and f ∈ C n+2[a, b], and

∫ b

a

f (x)dx =

n∑

i=0

ai f (xi ) +
hn+2f(n+1)(ξ)

(n + 1)!

∫ n

0

t(t − 1) · · · (t − n)dt,

if n is odd and f ∈ C n+1[a, b].
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The First Dahlquist Barrier, III/III Comments

For the Newton-Cotes’ formulas: when n is an even integer,
the degree of precision (higher order polynomial for which the
formula is exact) is (n + 1). When n is odd, the degree of
precision is only n.

For zero-stable s-step LMMs: when s is even, the order is at
most (s + 2); when s is odd, the order is at most (s + 1).

Coincidence? — Unlikely!

The LMMs get the next yk+1 by integrating over the solution
history; and the Newton-Cotes’ formulas give the (numerical)
integral over an interval.
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Simpson’s Rule, yn+1 − yn−1 = h
3 [fn+1 + 4fn + fn−1]

For notational convenience, the points have been re-numbered
(index lowered by one), and we expand around the center point
(tn, yn):

yn+1 ∼ yn + hy ′n +
h2

2 y
′′
n + h3

6 y
′′′
n + h4

24y
(4)
n + h5

120y
(5)
n +O(h6)

yn−1 ∼ yn − hy ′n +
h2

2 y
′′
n − h3

6 y
′′′
n + h4

24y
(4)
n − h5

120y
(5)
n +O(h6)

LHS ∼ 2hy ′n +
h3

3 y
′′′
n + h5

60y
(5)
n +O(h7)

fn−1 ∼ fn − hf ′n +
h2

2 f
′′
n − h3

6 f
′′′
n + h4

24 f
(4)
n − h5

120 f
(5)
n +O(h6)

4fn ∼ 4fn

fn+1 ∼ fn + hf ′n +
h2

2 f
′′
n + h3

6 f
′′′
n + h4

24 f
(4)
n + h5

120 f
(5)
n +O(h6)

RHS ∼ h
3

[
6fn + h2f ′′n + h4

12 f
(4)
n +O(h6)

]
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Simpson’s Rule, yn+1 − yn−1 = h
3 [fn+1 + 4fn + fn−1], II

LHS ∼ 2hy ′n +
h3

3 y
′′′
n + h5

60y
(5)
n +O(h7)

RHS ∼ h
3

[
6fn + h2f ′′n + h4

12 f
(4)
n +O(h6)

]

Use the equation y ′(t) = f (t, y) ⇔ y (k+1)(t) = f (k)(t, y):

LHS ∼ 2hfn +
h3

3 f
′′
n + h5

60 f
(4)
n +O(h7)

RHS ∼ 2hfn +
h3

3 f
′′
n + h5

24 f
(4)
n +O(h7)

LHS − RHS
h

= h4
[
1
60 − 1

24

]
f
(4)
n +O(h6)

Simpson’s Rule — Local Truncation Error

LTESimpson(h) = O
(
h4
)
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Linear Stability Theory for LMMs

As we did for RK-methods we apply our LMMs to the problem

y ′(t) = λy(t), Re(λ) ≤ 0

and search for the region ĥ = (hλ) where the LMM does not grow
exponentially.

We get...

k∑

j=0

αjyn+j = h

k∑

j=0

βj fn+j = h

k∑

j=0

βjλyn+j

Thus...
k∑

j=0

[αj − hβjλ] yn+j = 0
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Linear Stability Theory for LMMs, II

We have
k∑

j=0

[αj − hβjλ] yn+j = 0

A general solution of this difference equation is

yn = r0r
n

where r is a root of the characteristic polynomial

0 =
k∑

j=0

[αj − hβjλ] r
j = ρ(r)− ĥσ(r) = π(r , ĥ)

π(r , ĥ) is called the stability polynomial.
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Linear Stability Theory: Absolute Stability

Definition (Absolute Stability)

A linear multistep method is said to be absolutely stable for a
given ĥ, if for that ĥ all the roots of the stability polynomial
π(r , ĥ) satisfy |rj | < 1, j = 1, 2, . . . , s, and to be absolutely

unstable for that ĥ otherwise.

Definition (Region of Absolute Stability)

The LMM is said to have the region of absolute stability RA,
where RA is a region in the complex ĥ-plane, if it is absolutely
stable for all ĥ ∈ RA. The intersection of RA with the real axis is
called the interval of absolute stability.
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The Boundary Locus Method

The boundary of RA, denoted ∂RA is given by the points where
one of the roots of π(r , ĥ) is e iθ.

∂RA is ĥ such that

π(e iθ, ĥ) = ρ(e iθ)− ĥσ(e iθ) = 0, θ ∈ [0, 2π)

Solving for ĥ gives

Method: Boundary Locus

ĥ(θ) =
ρ(eiθ)

σ(eiθ)
, θ ∈ [0, 2π)
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The Region of Absolute Stability for Simpson’s Method

Consider Simpson’s Rule, and its characteristic polynomials

yn+2 − yn =
h

3

[
fn+2 + 4fn+1 + fn

]

ρ(ζ) = ζ2 − 1, σ(ζ) =
1

3

[
ζ2 + 4ζ + 1

]

The ∂RA is given by

ĥ(θ) = 3
e2iθ − 1

e2iθ + 4e iθ + 1
= 3

e iθ − e−iθ

e iθ + 4 + e−iθ
=

6i sin θ

4 + 2 cos θ
=

3i sin θ

2 + cos θ

Hence ∂RA is the segment [−i
√
3, i

√
3] of the imaginary axis.

Simpson’s Rule has a zero-area region of absolute stability
(Bummer).

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Linear Multistep Methods — (18/30)



Introduction and Recap
Limitations on Achievable Order

Stability Theory

Model Problem  Stability Polynomial
Visualization: The Boundary Locus Method
Backward Differentiation Formulas

Optimal Methods are not so Optimal after all...

All optimal methods have regions of absolute stability which
are either empty, or essentially useless — they do not contain
the negative real axis in the neighborhood of the origin.

By squeezing out the maximum possible order, subject to
zero-stability, the region of absolute stability get squeezed flat.

“Optimal” methods are essentially useless.
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Stability Regions for Adams-Bashforth Methods
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Stability Regions for Adams-Bashforth Methods |rν | > 1 count

Adams−Bashforth, order 1
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Stability Regions for Adams-Moulton Methods
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The exterior of the circle! The left half plane!
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Absolute Stability Matters!

So far we have seen (only) two methods which produce bounded
solutions to the ODE

y ′(t) = λy(t)

for all λ : Re(λ) < 0:

Implicit Euler (Adams-Moulton, n = 1)

yn+1 = yn + hfn+1

Trapezoidal Rule (Adams-Moulton, n = 2)

yn+1 = yn +
h

2

[
fn+1 + fn

]

The size of the stability region located in the left half plane tends
to shrink as we require higher order accuracy — requiring a
smaller stepsize h.
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Backward Differentiation Formulas

Can we find high order methods with large stability regions?!?

Yes!

The class of Backward Differentiation Formulas (BDF) defined by

k∑

j=0

αjyn+j = hβk fn+k

have large regions of absolute stability.

Note that the right-hand side is simple, but the left-hand side is
more complicated (the opposite of Adams-methods).
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Deriving BDF I/IV

The kth order BDF is derived by constructing the polynomial
interpolant through the points

(tn+1, yn+1), (tn, yn), . . . , (tn−k+1, yn−k+1),

i.e. (after re-numbering the points: 0, 1, . . . , k)

Pk(t) =
k∑

m=0

yn+mLk,m(t), where Lk,m(t) =
k∏

ℓ=0,ℓ6=m

t − tℓ

tm − tℓ

and then computing the derivative of this polynomial at the point
corresponding to tn+1 and setting it equal to fn+1.
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Deriving BDF II/IV

Newton’s Backward Difference Formula (Math 541) comes in
handy. We can write the interpolating polynomial

Pk(tn+1 + sh) = yn+1 +
k∑

j=1

(−1)j
(−s

j

)
∇jyn+1

where Newton’s divided differences are

∇yn+1 =

[
yn+1 − yn

]
, ∇2yn+1 =

1

2

[
∇yn+1 −∇yn

]
, . . .
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Deriving BDF III/IV

The binomial coefficient is given by
(−s

j

)
=

−s(−s − 1) · · · (−s − j + 1)

j!
= (−1)j

s(s + 1) · · · (s + j − 1)

j!

In order to compute P ′
k(tn+1) we need to compute

d

ds

(−s

j

)∣∣∣∣
s=0

Massive application of the product rule gives us

d

ds

(−s

j

)∣∣∣∣
s=0

= (−1)j
(j − 1)!

j!
=

(−1)j

j

That is

hP ′
k(tn+1) =

k∑

j=1

(−1)2j

j
∇jyn+1 =

k∑

j=1

1

j
∇jyn+1
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Deriving BDF IV/IV

We now have
k∑

j=1

1

j
∇jyn+1 = hfn+1

Making sure that the coefficient for yn+1 is 1:




k∑

j=1

1

j



−1

k∑

j=1

1

j
∇jyn+1 = h




k∑

j=1

1

j



−1

fn+1
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BDFs, k = 1, 2, . . . , 6

k BDF LTE

1 yn+1 − yn = hfn+1 − 1
2h

2 yn+1 − 4
3yn +

1
3yn−1 = 2

3hfn+1 − 2
9h

2

3 yn+1 − 18
11yn +

9
11yn−1 − 2

11yn−2 = 6
11hfn+1 − 3

22h
3

4 yn+1 − 48
25yn +

36
25yn−1 − 16

25yn−2 +
3
25yn−3 = 12

25hfn+1 − 12
125h

4

5 yn+1 − 300
137yn +

300
137yn−1 − 200

137yn−2

+ 75
137yn−3 − 12

137yn−4 = 60
137hfn+1 − 10

137h
5

6 yn+1 − 360
147yn +

450
147yn−1 − 400

147yn−2

+ 225
147yn−3 − 72

147yn−4 +
10
147yn−5 = 60

147hfn+1 − 20
343h

6

These are all zero-stable. BDFs for k ≥ 7 are not zero-stable.
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Stability Regions for BDF Methods

0

0

k=1
k=2

BDF Methods
Stability Regions

0

0

k=1
k=3

BDF Methods
Stability Regions

0

0

k=1
k=4

BDF Methods
Stability Regions

The exterior(s) / Parts of Left Half Plane

0

0

k=1
k=5

BDF Methods
Stability Regions

0

0

k=1
k=6

BDF Methods
Stability Regions

0

0

k=1
k=2
k=3
k=4
k=5
k=6

BDF Methods
Stability Regions
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