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Implicit Linear Multistep Methods

Fixed Point Iteration for Implicit LMMs

Suppose we want to solve y'(t) = f(t,y), y(to) =
implicit linear multistep method.

Yo by an

At each step we have to solve the implicit system

Za‘j)/n—h/ + hZ/Bj n+j

Usually this is done by the fixed point iteration

Z QjYnyj + h Z Bjfntj

Yn+k — hBkf (tntks Ynik)

v+1
YL:k] = hpk f(tn+kayn+k

(0]

where y, [, is arbitrary (but typically y, k1)
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The fixed point iteration™"**

provided that

converges to the unique solution

< 1
|Bk|L

where L is the Lipschitz constant of f with respect to y, i.e.

If(t,y) —f(t,y +¢€)|| < Le €>0.

This is usually not very restrictive. In most cases accuracy places
tighter constraints on h.
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Convergence of Fixed Point Iteration

Predictor-Corrector Methods

@ Although the fixed point iteration will converge for arbitrary

ing values y!¥ be slow (li
starting values Ynik» €convergence may be slow ( Inear

unless we are extremely lucky.)
@ Obviously, it would help to have a good initial guess!

@ We will obtain the good initial guess from an explicit Linear
Multistep Method.

@ The explicit method is called the predictor, and the implicit
method the corrector. Together they are a
predictor-corrector pair.
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It is an advantage to have the predictor and corrector to be
accurate to the same order.

This usually means the step-number for the explicit predictor is
greater than that of the implicit corrector, e.g.

(3fat1 — fn)
(fn+2 + fn—l—l)

(P) Yn+2 — Yn+1 =

(€) Yni2 = Yoy1 =

N> N>

is regarded a PC-method with step-number 2, even though the
corrector is a 1-step method (and, as written, it also violates
lao| + |Bo| # 0, i.e. it does not have any term on the n-level).
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A General Predictor-Corrector Pair

Predictor-Corrector Modes l/IV

We write a general k-step PC-method:

k k—1
(P) Z O‘;f)/n-i-j =h Z 6; fn-i—j
(¢) Z%yﬂﬂ hZBJ n+j

We will look at different types of predictor-corrector pairs, initially
we will be concerned with predictors of Adams-Bashforth type, and
correctors of Adams-Moulton type.

Predictor-Corrector Methods — (7/30)

Remember:

We are using the predictor to get an initial guess for the fixed
point iteration for the corrector method. How many fixed
point steps should we take???

[Mode] Correcting to convergence:
In this mode we iterate until

+1
yn+k n+k € || [l,_|_1]| €,
n+k

where ¢ usually is of the order of machine-precision (round-off
error).
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Predictor-Corrector Modes /v Predictor-Corrector Modes Hi/Iv
[Mode] Fixed number of Fixed-Point Corrections:
In this mode we perform a fixed number of FP-iteration at each
[Mode] Correcting to convergence: step — usually 1 or 2.
In this mode the predictor plays a very small role. The local The local truncation error and the linear stability properties
truncation error and the linear stability characteristics of the of the PC—m_ethod depen.d both on the predictor and corrector
PC-pair are those of the corrector alone. (more complicated analysis — more work for us!)
This mode is not very attractive since we cannot a priori predict ) .
. L . : . We will use the following short-hand
how many fixed-point iterations will be needed. In a real-time
system (e.g. the auto-pilot in an aircraft), this may be danger- P — Apply the predictor once
ous. E — Evaluate f given t and y
C — Apply the corrector once
The methods described above are PEC and P(EC)?.
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Predictor-Corrector Modes vV/IV P(EC)~E!
] S el N gt
. 0] _ * L * pn—1+t
At the end of P(EC)? we have the values y@, for y,, and P: Ynik == 20y ) Bih
for f(tnik, Ynik), SOmetimes we want to update the value of f by J=0 J=0
performing a fu.rther evaluation fn[i]k = f(t,7+k,y,[12ik); this mode ( fn[:—]k = f(tn"!‘k’-yr[:ﬂk)
would be described as P(EC)2E.
The two classes of modes can be written as k-1 k-1
(EC)": [v+1] [1] vl [i—1+¢]
Yok = T Z QYniit hBifpiy + h Z ijnﬂ'
P(EC)*E!, n>1, t € {0,1}. j=0 j=0
\ v=0,1,...,0—1
Et: M = oy, ife=1
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Error Analysis of P(EC)*E*

[Lambert 105-107]

Milne's Error Estimate

If the predictor is a p*-order method and the corrector a p-order
method, then (using notationally non-consistent LTEs)

(p) LTE*(h) = C*hPHyl ih(er) + O(h""12)
(c)  LTE(h) ChPHLyPH () + O(hP12)

The local truncation error for P(EC)“Et is C**hP™"+1, where:

k%

(i) if p > por(p" < pand p > p—p*), p = p and
c* = CyP ()

(i) if p* <pand pu=p-—p*, p™* =p, but C** # CyPT(¢)

(iii) if p* <pand p<p—p* p™* =p"+u<p.

If p* = p it is possible to get an estimate of the leading part of the
local truncation error with two subtractions and a multiplication.
— Something for (almost) nothing!

(p) LTE*(h) = C' () = y(tnik) -y, + O(hP+2)
y(task) = y2l + O(hP+2)

(c) LTE(h) ChPt1y(PHD)(t,)

Subtraction gives
(€ =)ty () = M, — 1, 4 o(ret2)

Hence (multiply by CC_—C)

LTE(h) ~ Chp+1y(p+1)(tn) — % |:y[lL] y[O] ]

n+k ~ Yn+k
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Local Extrapolation P(EC)~LE!
[o] N el NS i1
, 0 « w lu—1+¢
P Ynik == D05yt h ) B
c.f. Richardson Extrapolation."? > j=0 j=0
Now that we have an estimate for the error... Why not use that fn[i]k = f(tn+k7}/,[,i]k)
estimate as another correction of the solution?!?
k—1 k—1
It is really a case of being greedy and trying to eat the cake and (EC)H: [v+1] [ v [u—1+1]
: : : . Y, = =D oy, thBf L +h ) Bt
still have it. However, local extrapolation (symbol: L) is an ik J.Z; s ik jz(:) S
accepted feature in many modern codes.
v=0,1,...,u—1
It can be applied in more than one way: P(ECL)*E!, or
P(EC)*LE". [
) p]  update c (1] C [0]
L: Yotk [1 + C*fc} Ytk = [C*fc] Yotk
Et. f[ﬂ] = f(t (1] ft=1
. n+k — ( ”+k’yn+k)’ I -+
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P(ECL)~E!

Linear Stability Analysis for Predictor-Corrector Methods

T L R
fn[i]k = f(tn+k,y,[1ﬂk)
k-1
il = —Zafy#ﬂﬁhﬂkf[” +hy Bl
(ECL)'u j=0 j

v=201,...,0—1

By applying our methods to the linear model problem

y'(t) = MAy(t), y(to) = yo

we can again find the region in h = h\ space where the method
produces non-exponentially growing solutions.

The idea and framework is the same as in our previous cases
(LMMs, Runge-Kutta methods), but the algebra involved becomes
“somewhat” tedious.

v+1 update v+1 0
Y,E+k ! = [1 + C* } yr[w:Z - [CL} yr[H]rk _ _
Here, we will summarize some of the key results.
Et: I = Ftays, v, ift=1.
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Linear Stability Analysis: Notation Some Stability Polynomials
~ P(EC)*: (order 2k polynomial)
h = h\
N k T *
7(r,h) = Ber* | o) = ho(r)| + Mu(H) [0" (o (r) = p(r)o™ (1))
= hpx
Adding an extra evaluation changes the stability polynomial quite a
HH(1—-H it
P(EC)"E: (order k polynomial)
W = ¢ T N * T %
T _C n(r,h) = p(r) — ho(r) + M,(H) |p*(r) — ha™(r)
. We notice that (in general) the stability polynomials are non-linear
Notice: in h, which means plotting the region of absolute stability R4 or
lim M,(H) =0, when |H|<1 n plOtHng & . YA
p—>00 its boundary, becomes a challenge. [One exception...]
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Stability Polynomial in PEC mode

Stability Polynomials with Local Extrapolation

In PEC mode the stability polynomial is linear in h:

w(r, B) = Bir* [o(r) = Bo(r)] + Bih [0* (o () = ()" (1)

These are easy to plot, but the regions of stability are not great.
— In fact PEC of order k has a smaller stability region than
explicit Adams-Bashforth of the same order!

In general we have to solve a non-linear equation to find the roots
of m(r, h) — using e.g. Newton's method"*"**.

Adding local extrapolation to the picture makes the stability
polynomial more “interesting...”

P(ECL)"E:

7(r,B) = (1+W) [p(r) = Bo(r)| +[M(H + WH) = W] [0"(r) = B ()]
P(ECL)":

w(rh) = Burk {(1 + W) [p(r) —Za(r)} W [p*(r) —Ea*(r)}}
+M,(H + WH) [p*(r)a(r) = p(r)o™(r)]

P(EC)~LE:

7(r,h) = (14 W) |p(r) = ho(r) | +[Mu(H) + (H = )W] |p*(r) = o (r)]
P(EC)~L:

w(rh) = Bk {(1+ W) |p(r) = ho(n)] = W [p7(r) = o ()] }
+ [Mu(H) + HW] [p* (1)o (r) = p(r)o* (1))
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Stability Regions, PE, PEC, PECE order k=1 Stability Regions, PE, P(EC)2, P(EC)2E k=1
2 I 2 I I I
- PE - PE
- | - PEC I | PEOZ |
) - P(EC)2E
— 1
— 0 ]
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) | | | | | 2 | | | | |
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Stability Regions, PE, P(EC)3, P(EC)3E k=1|| Stability Regions, PE, P(EC)®, P(EC)°E k=1
2 T I T I T I T T T 2 T I T I T I T T T
- PE
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] 0 —
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Stability Analysis when k =1

Stability Analysis when kK =1

Predictor, p*(r) =r—1, 0*(r)=1,C*=1/2
Yn+1 — Yn = hf,
Corrector, p(r)=r—1,0(r)=r,C=-1/2

Yn+1 — Yn = hfn—f—l

he(1 — h) 1

w=-2=
1—hr 7’

M, = >
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P(EC)*

h(1 — h)

w(r,h) = r((r —1) — hr) + ﬁ((r —Dr—(r—1)1)

Multiply through by 1 — h* and solve

(1—-m)y((r—1)—=hr)+ (1 —-h)((r—1)r—(r—1)1)=0
pH+2 [r2 —(r— 1)2}—i-h“4r1 [(r —

Now we can use matlab’s friendly roots command to solve for h!

1) — r(r—1)]=hr*+r(r—1) =0
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Stability Analysis when kK =1

Homework #4, Due 3/20/2015

P(EC)“E

h(1 — h)

m(r,h) = (r=1) = hr + ——=[(r = 1) — h]

Multiply through by 1 — h* and solve

(1—hm)((r—=1)=hr)+ @1 —=h)[(r—1)—h =0
2 —th+(r—1)=0

Now we can use matlab’s friendly roots command to solve for h!
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Pick your favorite Adams-Bashforth (P)redictor (order p*), and
Adams-Moulton (C)orrector (order p) methods, and plot the
stability regions for

P(ECL)E
P(ECL)%E
P(EC)LE
P(EC)2LE
Note: The problem is least challenging for p* = p=1...

Project Idea? — Write a piece of code which can plot the stability
regions for any PC-method, as described by P(ECL¥)‘L™E",
(k+m<1, kmne {0,1}).
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