

— (4/30)

Stiff ODEs: Introduction, II

Our solution

$$y(t) = -rac{1}{1+\lambda^2}\cos(t) - rac{\lambda}{1+\lambda^2}\sin(t), \quad t > T_c$$

is a very well-behaved 2π -periodic function.

- The larger (in magnitude) the negative real part of λ is, the faster we settle into this solution.
- If for instance $\lambda = -1000$, then after 0.01s the size of $e^{\lambda t}$ is 0.000045. After 0.1s it is 10^{-44} ...
- We may think (but oh how wrong we would be) that a numerical method for this would require a step-size which resolves the periodic part of the solution, say $h = \frac{2\pi}{63} \approx 0.1$ should do the trick!?!

Stiff ODEs: Introduction, III

We have forgotten about stability!

Recall that $h\lambda$ must be inside the stability region!!!

Depending on what method we are using, this may impose a very restrictive step-size — assuming λ is real and negative we get the following:

Method	Stability Interval	Step-size
Explicit Euler	$-2 \leq h\lambda \leq 0$	$h < 2/ \lambda $
Implicit Euler	$-\infty \leq h\lambda \leq 0$	no restriction
RK (2nd order, explicit)	$-2 \leq h\lambda \leq 0$	$h < 2/ \lambda $
RK (3rd order, explicit)	$-2.5 \leq h\lambda \leq 0$	$h < 2.5/ \lambda $
RK (4th order, explicit)	$-2.785 \leq h\lambda \leq 0$	$h < 2.785/ \lambda $

Peter Blomgren, (blomgren.peter@gmail.com) Stiff ODEs - Multiscale Phenomena	Peter Blomgren, (blomgren.peter@gmail.com) Stiff ODEs - Multiscale Phenomena
Stiff ODEs and Multiscale Phenomena Dealing with Stiffness Introduction Stiffness in Systems	Stiff ODEs and Multiscale Phenomena Introduction Dealing with Stiffness Stiffness in Systems
Stiff ODEs: Introduction, IV	Real Sources of Stiffness — "Stiffness Happens!"
 Hence, if we used an explicit 4th-order RK-method we would need a step-size smaller than h < 0.0027 — which means more than 2250 points per 2π-period. A-ha!!! Now we see why we need to care about the size of the stability regions!!! Pseudo-Definition #1: Stiffness Stiffness occurs when some component(s) of the solution decay much more rapidly than others. 	 Chemically reacting systems — some reactions are very fast, others are slower. Computational Fluid Dynamics Book: "Fundamentals of CFD" Interacting Particle Systems Article: Implicit-Explicit Schemes

Stiff ODEs and Multiscale Phenomena Dealing with Stiffness Introduction Stiffness in Systems	Stiff ODEs and Multiscale Phenomena Dealing with Stiffness Introduction Stiffness in Systems
Stiffness in Systems of ODEs	Transients on various time-scales
For an $(n \times n)$ -system	
$ ilde{\mathbf{y}}'(t) = A ilde{\mathbf{y}}(t) + ilde{\phi}(t),$	If we order the eigenvalues so that
the solution is of the form	$ {\it Re}(\lambda_1) \geq {\it Re}(\lambda_2) \geq \cdots \geq {\it Re}(\lambda_n) ,$
$\mathbf{\widetilde{y}}(t) = \sum_{k=1}^{n} \kappa_k e^{\lambda_k t} \mathbf{\widetilde{v}}_k + \underbrace{\Psi(t)}_{ ext{Steady-state}},$	then λ_1 corresponds to the fastest, and λ_n to the slowest transient.
Transient Solution where κ_k are constants used to satisfy the initial conditions, $\tilde{\mathbf{v}}$ the eigenvectors of A and λ_k the eigenvalues of A .	 It is somewhat counter-intuitive that the part of the solution which decays the fastest will impose the most stringent step-size restriction due to stability concerns.
If $Re(\lambda_k) < 0 \ \forall k$ then the system settles into the steady-state solution $\Psi(t)$ after the exponential decay of the transient solution.	
Peter Blomgren, (blomgren.peter@gmail.com) Stiff ODEs - Multiscale Phenomena (9/30)	Peter Blomgren, (blomgren.peter@gmail.com) Stiff ODEs - Multiscale Phenomena
Peter Blomgren, (blomgren.peter@gmail.com) Stiff ODEs - Multiscale Phenomena	Peter Blomgren, (blomgren.peter@gmail.com) Stiff ODEs - Multiscale Phenomena
Peter Blomgren, (blomgren.peter@gmail.com) Stiff ODEs – Multiscale Phenomena — (9/30) Stiff ODEs and Multiscale Phenomena Introduction Stiffness Dealing with Stiffness Stiffness in Systems Stiffness in Systems	Peter Blomgren, (blomgren.peter@gmail.com) Stiff ODEs – Multiscale Phenomena — (10/30) Stiff ODEs and Multiscale Phenomena Introduction Stiffness in Systems Implications of the Stiffness ratio Stiffness ratio Stiffness ratio
Peter Blomgren, (blomgren.peter@gmall.com) Stiff ODEs - Multiscale Phenomena Dealing with Stiffness Introduction Stiffness in Systems Transients on various time-scales The stiffness ratio (c.f. condition number) $ Re(\lambda_1) $ $ Re(\lambda_n) $ is an intrinsic measure of how "resistant" the problem is to numerical solution (from our point of view). Or, rather, a measure of multi-scale behavior.	Peter Blomgren, (blomgren.peter@gmail.com)Stiff ODEs - Multiscale Phenomena— (10/3)Stiff ODEs and Multiscale Phenomena Dealing with StiffnessIntroduction Stiffness in SystemsImplications of the Stiffness ratioThe stiffness ratio really tells us how hard we have to work to solve the system numerically: λ_1 Imposes the step-size restriction $(h < C/ Re(\lambda_1))$. λ_n Tells us for how long a time we have to compute the solution in order to reach steady-state (this is usually what we are interested in — long-time behavior.) Since the slowest transient decays as $e^{- Re(\lambda_n) t}$ we must compute until $t > T_c$ where $T_c \sim \left \frac{\ln(TOL)}{Re(\lambda_n)} \right ,$

Stiff ODEs and Multiscale Phenomena Dealing with Stiffness Introduction Stiffness in Systems	Stiff ODEs and Multiscale Phenomena Dealing with Stiffness Introduction Stiffness in Systems
Implications of the Stiffness ratio, II	More Pseudo-definitions of Stiffness
Since the number of steps is inversely proportional to the step-size <i>h</i> , we get the total work as: $\frac{1}{h} \cdot \left \frac{\ln(TOL)}{Re(\lambda_n)} \right = \frac{ Re(\lambda_1) }{C} \cdot \left \frac{\ln(TOL)}{Re(\lambda_n)} \right = C^* \frac{ Re(\lambda_1) }{ Re(\lambda_n) }.$	Pseudo-Definition #3: Stiffness occurs when stability requirements, rather than those of accuracy constrain the step-length.
The bottom line: The larger the stiffness ratio, the more work we (our computer) have to do! Pseudo-Definition #2: A linear coefficient system is stiff if all of its eigenvalues have negative real part and the stiffness ratio is large.	Pseudo-Definition #4: A system is said to be stiff in a given interval of t if in that interval the neighboring solution curves approach the solution curve at a rate which is very large in comparison with the rate at which the solution varies in that interval.
Peter Blomgren, (blomgren.peter@gmail.com) Stiff ODEs - Multiscale Phenomena	Peter Blomgren, (blomgren.peter@gmail.com) Stiff ODEs - Multiscale Phenomena
Stiff ODEs and Multiscale Phenomena Dealing with Stiffness Introduction Stiffness in Systems	Stiff ODEs and Multiscale Phenomena Dealing with Stiffness A Closer Look at Stability Regions
More Pseudo-definitions of Stiffness II/II	Dealing with Stiffness
Pseudo-Definition #5: If a numerical method with a finite region of absolute stability, applied to a system with any initial conditions, is forced to use a — in a certain interval of integration — step-length which is excessively small in relation to the smoothness of the exact solution in that interval, then the system is said to be stiff in that interval. Each pseudo-definition represents a different point of view, and is useful/meaningful in different scenarios.	 At this point we have a good idea what stiffness means, and some of its sources. The question that begs to be asked is: what are we going to do about stiffness??? We have some options: Give up and go home. Pick a small <i>h</i>, start the computer, and come back in 3 weeks. Think some more. Take a wild guess at what route we are going?!?

— (16/30)

Dealing with Stiffness	Dealing with Stiffness
Dealing with Stiffness: Stability Regions	Linear Stability for Stiff Problems: A-stability
 Clearly we are going to have to pay even closer attention to the size of the stability regions. Since the stability regions for explicit methods tend to be very limited, it is very likely we are going to have to take a closer look at some implicit methods. First, we introduce some additional stability definitions that are needed in the context of stiffness. 	Definition (A-stability) A method is said to be A-stable if its the region of absolute stability contains the left-half-plane: $\mathcal{R}_A \supseteq \{\hat{h} : Re(\hat{h}) < 0\}$.
Peter Blomgren, (blomgren.peter@gmail.com) Stiff ODEs - Multiscale Phenomena	Peter Blomgren, (blomgren.peter@gmail.com) Stiff ODEs - Multiscale Phenomena (18/30)
Stiff ODEs and Multiscale Phenomena Dealing with Stiffness A Closer Look at Stability Regions	Stiff ODEs and Multiscale Phenomena Dealing with Stiffness A Closer Look at Stability Regions
Linear Stability for Stiff Problems: L-stability	Linear Stability for Stiff Problems: $A(\alpha)$ -stability
Definition (L-stability) A one-step method is said to be L-stable , if it is A-stable — $\mathcal{R}_A \supseteq \{\hat{h} : Re(\hat{h}) < 0\}$, and in addition , when applied to the test equation $y'(t) = \lambda y(t)$, $Re(\lambda) < 0$, it yields $y_{n+1} = R(\hat{h})y_n$, where $ R(\hat{h}) \to 0$ as $Re(\hat{h}) \to -\infty$.	Definition (A(α)-stability) A method is said to be A(α)-stable, $\alpha \in (0, \pi/2)$ if $\mathcal{R}_A \supseteq \{\hat{h} : -\alpha < \pi - \arg(\hat{h}) < \alpha\}$; it is said to be A(0)-stable if it is A(α)-stable for some $\alpha \in (0, \pi/2)$.

Stiff ODEs and Multiscale Phenomena

Stiff ODEs and Multiscale Phenomena

Stiff ODEs and Multiscale Phenomena Dealing with Stiffness A Closer Look at Stability Regions	Stiff ODEs and Multiscale Phenomena Dealing with Stiffness A Closer Look at Stability Regions
Stability, Stability, Stability II	Is A-stability really too restrictive?
 A(α)-stability is clearly a relaxation which fits the BDF methods. A(0)-stability just says that there is an α for which the method is A(α)-stable. A₀-stability is just concerned with real eigenvalues (λ). Stiff stability divides the eigenvalues into two classes — ones far away from the origin (fast transients) and ones clustered near the origin (slower transients, long-time behavior). 	It can be argued that A-stability is not restrictive enough! Consider the trapezoidal rule, which is A-stable (the region of absolute stability is exactly the left half plane): $y_{n+1} - y_n = \frac{h}{2} \Big[f_{n+1} + f_n \Big]$ We apply trapezoidal rule to the test equation $y'(t) = Ay(t)$ where A is an $(n \times n)$ -matrix with distinct eigenvalues λ_k , satisfying $Re(\lambda_k) < 0$.
Peter Blomgren, (blomgren.peter@gmail.com) Stiff ODEs - Multiscale Phenomena	Peter Blomgren, (blomgren.peter@gmail.com) Stiff ODEs - Multiscale Phenomena (26/30)
Stiff ODEs and Multiscale Phenomena Dealing with Stiffness A Closer Look at Stability Regions	Stiff ODEs and Multiscale Phenomena Dealing with Stiffness A Closer Look at Stability Regions
Is A-stability really too restrictive?	Is A-stability really too restrictive?
After a bit of massaging (linear algebra ^{Math 524}), we get the following system of difference equations $y_{n+1} = By_n, B = (I - hA/2)^{-1}(I + hA/2)$ Let $\overline{\lambda}$ be the eigenvalue which has the largest (in absolute value) real part. It can be shown (Linear Algebra) that B must have an eigenvalue $\overline{\mu} = \frac{1 + h\overline{\lambda}/2}{1 - h\overline{\lambda}/2}$	With $\overline{\mu} \sim -1 + \left[\frac{2}{h\overline{\lambda}}\right]^2$. there will be (at least) one mode of the numerical solution which oscillates $(+, -, +, -, +,)$ and is slowly damped . The exact solution with respect to that mode is a quickly decaying exponential solution. Thus A-stability is not restrictive enough (in some circumstances)

Now if $|h\overline{\lambda}|$ is large (remember, we want to take semi-long steps h), then

$$\overline{\mu} \sim -1 + \left[rac{2}{h\overline{\lambda}}
ight]^2.$$

complex plane.

This is why we need the concept of $\ensuremath{\mathsf{L}}\xspace$ -stability — it deals with the

behavior of the numerical method when we have $h\lambda$ far left in the

— (28/30)

Stiff ODEs and Multiscale Phenomena Dealing with Stiffness A Closer Look at Stability Regions	Stiff ODEs and Multiscale Phenomena Dealing with Stiffness A Closer Look at Stability Regions
Trapezoidal Rule is still useful!	Next
From the previous discussion, we may think that trapezoidal rule is an unsafe method. It is very useful indeed, but care must be taken — in order to avoid oscillations we must implement an adaptive version, where the step-size is changed to keep the error at a reasonable level. Initially (while the transients are still "alive") the step-size will be small, but as the transients decay away, the step-size can safely be increased.	The implications of stiffness on the use of Linear Multistep Methods and Runge-Kutta Methods.
Moral of the story: Never compute with a fixed step-size, especially not for stiff problems!	
Peter Blomgren, blomgren.peter@gmail.com Stiff ODEs - Multiscale Phenomena (29/30)	Peter Blomgren, <pre> blomgren.peter@gmail.com</pre> Stiff ODEs - Multiscale Phenomena - (30/30)