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Stiff ODEs: Introduction, I

Consider the simple ODE:

y ′(t) = λy(t) + sin(t), y(0) = y0,

which has the solution

y(t) =

[
y0 +

1

1 + λ2

]
eλt − 1

1 + λ2
cos(t)− λ

1 + λ2
sin(t).

If Re(λ) is negative, then after some finite time (say Tc) the
solution is pretty much independent of the initial conditions:

y(t) = − 1

1 + λ2
cos(t)− λ

1 + λ2
sin(t), t > Tc ,

(the dependence on the initial condition is exponentially small).
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Stiff ODEs: Introduction, I.ii
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Figure: Illustration of how rapidly different initial
conditions converge to the “forced oscillation.”
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Stiff ODEs: Introduction, II

Our solution

y(t) = − 1

1 + λ2
cos(t)− λ

1 + λ2
sin(t), t > Tc ,

is a very well-behaved 2π-periodic function.

The larger (in magnitude) the negative real part of λ is, the
faster we settle into this solution.

If for instance λ = −1000, then after 0.01s the size of eλt is
0.000045. After 0.1s it is 10−44...

We may think (but oh how wrong we would be) that a
numerical method for this would require a step-size which
resolves the periodic part of the solution, say h = 2π

63 ≈ 0.1
should do the trick!?!
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Stiff ODEs: Introduction, III

We have forgotten about stability!

Recall that hλ must be inside the stability region!!!

Depending on what method we are using, this may impose a very
restrictive step-size — assuming λ is real and negative we get the
following:

Method Stability Interval Step-size
Explicit Euler −2 ≤ hλ ≤ 0 h < 2/|λ|
Implicit Euler −∞ ≤ hλ ≤ 0 no restriction
RK (2nd order, explicit) −2 ≤ hλ ≤ 0 h < 2/|λ|
RK (3rd order, explicit) −2.5 ≤ hλ ≤ 0 h < 2.5/|λ|
RK (4th order, explicit) −2.785 ≤ hλ ≤ 0 h < 2.785/|λ|
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Stiff ODEs: Introduction, IV

Hence, if we used an explicit 4th-order RK-method we would need
a step-size smaller than h < 0.0027 — which means more than
2250 points per 2π-period.

A-ha!!! Now we see why we need to care about the size of the
stability regions!!!

Pseudo-Definition #1: Stiffness

Stiffness occurs when some component(s) of the solution decay
much more rapidly than others.
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Real Sources of Stiffness — “Stiffness Happens!”

Chemically reacting systems — some reactions are very fast,
others are slower.

Computational Fluid Dynamics
Book: “Fundamentals of CFD”

Interacting Particle Systems
Article: Implicit-Explicit Schemes
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Stiffness in Systems of ODEs

For an (n × n)-system

ỹ′(t) = Aỹ(t) + φ̃(t),

the solution is of the form

ỹ(t) =
n∑

k=1

κke
λk t ṽk

︸ ︷︷ ︸
Transient Solution

+ Ψ(t)︸︷︷︸
Steady-state

,

where κk are constants used to satisfy the initial conditions, ṽ the
eigenvectors of A and λk the eigenvalues of A.

If Re(λk) < 0 ∀k then the system settles into the steady-state
solution Ψ(t) after the exponential decay of the transient
solution.
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Transients on various time-scales

If we order the eigenvalues so that

|Re(λ1)| ≥ |Re(λ2) ≥ · · · ≥ |Re(λn)|,

then λ1 corresponds to the fastest, and λn to the slowest transient.

It is somewhat counter-intuitive that the part of the solution
which decays the fastest will impose the most stringent
step-size restriction due to stability concerns.
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Transients on various time-scales

The stiffness ratio (c.f. condition number)

|Re(λ1)|
|Re(λn)|

is an intrinsic measure of how “resistant” the problem is to
numerical solution (from our point of view). Or, rather, a measure
of multi-scale behavior.
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Implications of the Stiffness ratio

The stiffness ratio really tells us how hard we have to work to solve
the system numerically:

λ1 Imposes the step-size restriction (h < C/|Re(λ1)|).

λn Tells us for how long a time we have to compute the solution
in order to reach steady-state (this is usually what we are
interested in — long-time behavior.)
Since the slowest transient decays as e−|Re(λn)|t we must
compute until t > Tc where

Tc ∼
∣∣∣∣
ln(TOL)

Re(λn)

∣∣∣∣ ,

and TOL is the requirement on the decay of the transient so-
lution (this will depend on your application, maybe 10−8???)
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Implications of the Stiffness ratio, II

Since the number of steps is inversely proportional to the step-size
h, we get the total work as:

1

h
·
∣∣∣∣
ln(TOL)

Re(λn)

∣∣∣∣ =
|Re(λ1)|

C ·
∣∣∣∣
ln(TOL)

Re(λn)

∣∣∣∣ = C∗ |Re(λ1)|
|Re(λn)|

.

The bottom line: The larger the stiffness ratio, the more work
we (our computer) have to do!

Pseudo-Definition #2:

A linear coefficient system is stiff if all of its eigenvalues have
negative real part and the stiffness ratio is large.
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More Pseudo-definitions of Stiffness I/II

Pseudo-Definition #3:

Stiffness occurs when stability requirements, rather than those of
accuracy constrain the step-length.

Pseudo-Definition #4:

A system is said to be stiff in a given interval of t if in that interval
the neighboring solution curves approach the solution curve at a
rate which is very large in comparison with the rate at which the
solution varies in that interval.
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More Pseudo-definitions of Stiffness II/II

Pseudo-Definition #5:

If a numerical method with a finite region of absolute stability,
applied to a system with any initial conditions, is forced to use a
— in a certain interval of integration — step-length which is
excessively small in relation to the smoothness of the exact solution
in that interval, then the system is said to be stiff in that interval.

Each pseudo-definition represents a different point of view, and is
useful/meaningful in different scenarios.
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Dealing with Stiffness

At this point we have a good idea what stiffness means, and some
of its sources. The question that begs to be asked is: what are we
going to do about stiffness???

We have some options:

1 Give up and go home.

2 Pick a small h, start the computer, and come back in 3 weeks.

3 Think some more.

Take a wild guess at what route we are going?!?
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Dealing with Stiffness: Stability Regions

Clearly we are going to have to pay even closer attention to
the size of the stability regions.

Since the stability regions for explicit methods tend to be
very limited, it is very likely we are going to have to take a
closer look at some implicit methods.

First, we introduce some additional stability definitions that
are needed in the context of stiffness.
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Linear Stability for Stiff Problems: A-stability

Definition (A-stability)

A method is said to be A-stable if its the region of absolute
stability contains the left-half-plane: RA ⊇ {ĥ : Re(ĥ) < 0}.
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Linear Stability for Stiff Problems: L-stability

Definition (L-stability)

A one-step method is said to be L-stable, if it is A-stable —
RA ⊇ {ĥ : Re(ĥ) < 0}, and in addition, when applied to the test
equation y ′(t) = λy(t), Re(λ) < 0, it yields yn+1 = R(ĥ)yn, where
|R(ĥ)| → 0 as Re(ĥ) → −∞.
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Linear Stability for Stiff Problems: A(α)-stability

Definition (A(α)-stability)

A method is said to be A(α)-stable, α ∈ (0, π/2) if
RA ⊇ {ĥ : −α < π− arg(ĥ) < α}; it is said to be A(0)-stable if it
is A(α)-stable for some α ∈ (0, π/2).
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Linear Stability for Stiff Problems: A0-stability

Definition (A0-stability)

A method is said to be A0-stable, if
RA ⊇ {ĥ : Re(ĥ) < 0, Im(ĥ) = 0}.
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Linear Stability for Stiff Problems: Stiff-stability

Definition (Stiff stability)

A method is said to be stiffly stable, if RA ⊇ R1 ∪ R2 where
R1 = {ĥ : Re(ĥ) < −a}, and
R2 = {ĥ : −a ≤ Re(ĥ) < 0,−c ≤ Im(ĥ) ≤ c} where a and c are
positive real numbers.
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Linear Stability for Stiff Problems: Stability Hierarchy

We have the following relations between the different types of
stability:

L-stability ⇒
A-stability ⇒

Stiff stability ⇒
A(α)-stability ⇒

A(0)-stability ⇒
A0-stability

Do we really need all these classifications???
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Stability, Stability, Stability...

Clearly, L-stability and A-stability are very restrictive — particularly
for Linear Multistep Methods. Hence we need more fine-tuned
tools to classify out methods.

Recall the Backward Differentiation Formula methods:

0

0

k=1
k=2
k=3
k=4
k=5
k=6

BDF Methods
Stability Regions
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Stability, Stability, Stability... II

A(α)-stability is clearly a relaxation which fits the BDF
methods.

A(0)-stability just says that there is an α for which the
method is A(α)-stable.

A0-stability is just concerned with real eigenvalues (λ).

Stiff stability divides the eigenvalues into two classes — ones
far away from the origin (fast transients) and ones clustered
near the origin (slower transients, long-time behavior).
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Is A-stability really too restrictive? I/III

It can be argued that A-stability is not restrictive enough!
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Consider the trapezoidal rule, which is A-stable (the region of
absolute stability is exactly the left half plane):

yn+1 − yn =
h

2

[
fn+1 + fn

]

We apply trapezoidal rule to the test equation y ′(t) = Ay(t)
where A is an (n × n)-matrix with distinct eigenvalues λk ,
satisfying Re(λk) < 0.
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Is A-stability really too restrictive? II/III

After a bit of massaging (linear algebraMath 524), we get the following
system of difference equations

yn+1 = Byn, B = (I − hA/2)−1(I + hA/2)

Let λ be the eigenvalue which has the largest (in absolute value)
real part. It can be shown (Linear Algebra) that B must have an
eigenvalue

µ =
1 + hλ/2

1− hλ/2

Now if |hλ| is large (remember, we want to take semi-long steps
h), then

µ ∼ −1 +

[
2

hλ

]2
.
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Is A-stability really too restrictive? III/III

With

µ ∼ −1 +

[
2

hλ

]2
.

there will be (at least) one mode of the numerical solution which
oscillates (+,−,+,−,+, . . . ) and is slowly damped.

The exact solution with respect to that mode is a quickly decaying
exponential solution.

Thus A-stability is not restrictive enough (in some
circumstances).

This is why we need the concept of L-stability — it deals with the
behavior of the numerical method when we have hλ far left in the
complex plane.
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Trapezoidal Rule is still useful!

From the previous discussion, we may think that trapezoidal rule is
an unsafe method.

It is very useful indeed, but care must be taken — in order to avoid
oscillations we must implement an adaptive version, where the
step-size is changed to keep the error at a reasonable level.

Initially (while the transients are still “alive”) the step-size will be
small, but as the transients decay away, the step-size can safely be
increased.

Moral of the story: Never compute with a fixed step-size,
especially not for stiff problems!
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Next...

The implications of stiffness on the use of Linear Multistep
Methods and Runge-Kutta Methods.
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