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Stiff ODEs: Introduction, |

Consider the simple ODE:

Y'(t) = My(t) +sin(t), y(0) = yo,
which has the solution

A
14 )2

cos(t) sin(t).

£ — At
y(t) [m+1+AJe 1+ 22

If Re()\) is negative, then after some finite time (say T.) the
solution is pretty much independent of the initial conditions:

1

t) = —— t) — ———

sin(t), t> Tg,
(the dependence on the initial condition is exponentially small).
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Stiff ODEs: Introduction, L.ii

lambda = -1/8, y(0) in {1.0, 1.1, ..., 2.0}

3.5

o 5 10 15 20
Figure: lllustration of how rapidly different initial
conditions converge to the “forced oscillation.”
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Stiff ODEs: Introduction, Il

Our solution

1

t)=——— cos(t) — ——
y(t) =1t - 15z

sin(t), t> T,
is a very well-behaved 27-periodic function.

@ The larger (in magnitude) the negative real part of A is, the
faster we settle into this solution.

@ If for instance A = —1000, then after 0.01s the size of e is
0.000045. After 0.1s it is 107%44...

@ We may think (but oh how wrong we would be) that a
numerical method for this would require a step-size which
resolves the periodic part of the solution, say h = 2% ~ 0.1

63
should do the trick!?!
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Stiff ODEs: Introduction, Il

We have forgotten about stability!
Recall that hA must be inside the stability region!!!

Depending on what method we are using, this may impose a very
restrictive step-size — assuming A is real and negative we get the
following:

Method Stability Interval Step-size
Explicit Euler —2<hA<0 h <2/
Implicit Euler —o00 < hA <0 no restriction
RK (2nd order, explicit) —2 < hA <0 h <2/

RK (3rd order, explicit) —2.5<hA <0 h < 25/|\|
RK (4th order, explicit) —2.785 < hA <0 h < 2.785/|)|
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Stiff ODEs: Introduction, IV

Hence, if we used an explicit 4th-order RK-method we would need
a step-size smaller than h < 0.0027 — which means more than
2250 points per 27-period.

A-ha!ll  Now we see why we need to care about the size of the
stability regions!!!

Pseudo-Definition #1: Stiffness

Stiffness occurs when some component(s) of the solution decay
much more rapidly than others.
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Real Sources of Stiffness — “Stiffness Happens!”

@ Chemically reacting systems — some reactions are very fast,
others are slower.

@ Computational Fluid Dynamics
@ Book: “Fundamentals of CFD"

@ Interacting Particle Systems

@ Article: Implicit-Explicit Schemes
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http://www.cfd-online.com/Books/show_book.php?book_id=258
http://www.gris.uni-tuebingen.de/publics/paper/Eberhardt-2000-ImplicitExplicit.pdf

Stiffness in Systems of ODEs

For an (n x n)-system

§'(t) = A§(t) + é(t),

the solution is of the form

n
(1) =D meM T+ W(t)
k=1 ,  Steady-
eady-state

Transient Solution

where k) are constants used to satisfy the initial conditions, v the
eigenvectors of A and A\, the eigenvalues of A.

If Re(Ax) < 0 Vk then the system settles into the steady-state
solution W(t) after the exponential decay of the transient
solution.
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Transients on various time-scales

If we order the eigenvalues so that
|Re(A1)] = [Re(A2) = -+ > [Re(An)],
then A1 corresponds to the fastest, and A, to the slowest transient.
@ |t is somewhat counter-intuitive that the part of the solution

which decays the fastest will impose the most stringent
step-size restriction due to stability concerns.
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Transients on various time-scales

The stiffness ratio (c.f. condition number)

[Re(M)

|Re(An)]

is an intrinsic measure of how “resistant” the problem is to
numerical solution (from our point of view). Or, rather, a measure
of multi-scale behavior.
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Implications of the Stiffness ratio

The stiffness ratio really tells us how hard we have to work to solve
the system numerically:

A1 Imposes the step-size restriction (h < C/|Re(A1)]).

An  Tells us for how long a time we have to compute the solution
in order to reach steady-state (this is usually what we are
interested in — long-time behavior.)
Since the slowest transient decays as
compute until t > T, where

e~ |Re(n)lt \we must

In(TOL)

Re(\n)

~

Cc 9

and TOL is the requirement on the decay of the transient so-
lution (this will depend on your application, maybe 1078777)
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Implications of the Stiffness ratio, I

Since the number of steps is inversely proportional to the step-size
h, we get the total work as:

In(TOL)
Re(An)

_ [Re(M)| |
C

1 In(TOL)‘ . [Re(M\)|
> vy

Re(\n) | |Re(Mn)l’

The bottom line: The larger the stiffness ratio, the more work
we (our computer) have to do!

Pseudo-Definition #2:

A linear coefficient system is stiff if all of its eigenvalues have
negative real part and the stiffness ratio is large.
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More Pseudo-definitions of Stiffness /1

Pseudo-Definition #3:
Stiffness occurs when stability requirements, rather than those of
accuracy constrain the step-length.

Pseudo-Definition #4:

A system is said to be stiff in a given interval of t if in that interval
the neighboring solution curves approach the solution curve at a
rate which is very large in comparison with the rate at which the
solution varies in that interval.

Stiff ODEs — Multiscale Phenomena — (14/30)



More Pseudo-definitions of Stiffness /1

Pseudo-Definition #5:

If a numerical method with a finite region of absolute stability,
applied to a system with any initial conditions, is forced to use a
— in a certain interval of integration — step-length which is
excessively small in relation to the smoothness of the exact solution
in that interval, then the system is said to be stiff in that interval.

v

Each pseudo-definition represents a different point of view, and is
useful /meaningful in different scenarios.
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Dealing with Stiffness

At this point we have a good idea what stiffness means, and some
of its sources. The question that begs to be asked is: what are we
going to do about stiffness???

We have some options:

© Give up and go home.
©Q Pick a small h, start the computer, and come back in 3 weeks.

© Think some more.

Take a wild guess at what route we are going?!?
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Dealing with Stiffness: Stability Regions

@ Clearly we are going to have to pay even closer attention to
the size of the stability regions.

@ Since the stability regions for explicit methods tend to be
very limited, it is very likely we are going to have to take a
closer look at some implicit methods.

@ First, we introduce some additional stability definitions that
are needed in the context of stiffness.
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Linear Stability for Stiff Problems: A-stability

Definition (A-stability)

A method is said to be A-stable if its the region oanbsqute
stability contains the left-half-plane: R4 O {h: Re(h) < 0}.
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Linear Stability for Stiff Problems: L-stability

Definition (L-stability)

A one-step method is said to be L-stable, if it is A-stable —
Ra 2 {h: Re(h) < 0}, and in addition, when applied to the test
equation y'(t) = Ay(t), Re(\) <0, it yields yn1 = R(h)y,,, where
|R(h)| — 0 as Re(h) — —oo.

Stiff ODEs — Multiscale Phenomena — (19/30)



Linear Stability for Stiff Problems: A(a)-stability

Definition (A(«)-stability)

A method is said to be A(a)-stable, o € (0,7/2) if
Ra2{h:—a<m—arg(h) < a}; it is said to be A(0)-stable if it
is A(«)-stable for some «a € (0,7/2).

A
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Linear Stability for Stiff Problems: Ag-stability

Definition (Aq-stability)
A method is said to be Aq-stable, if
Ra 2 {h: Re(h) <0,Im(h)=0}.

A
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Linear Stability for Stiff Problems: Stiff-stability

Definition (Stiff stability)

A method is sa|d to be stiffly stable, if R4 O Ry U Ry where
Ry = {h Re(h) < —a}, and

Ry ={h:—a< Re(h) <0,—c < Im(h) < c} where a and c are
positive real numbers.
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Linear Stability for Stiff Problems: Stability Hierarchy

We have the following relations between the different types of
stability:

L-stability =
A-stability =
Stiff stability =
A(w)-stability =
A(0)-stability =
Ag-stability

Do we really need all these classifications???
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Stability, Stability, Stability...

Clearly, L-stability and A-stability are very restrictive — particularly
for Linear Multistep Methods. Hence we need more fine-tuned
tools to classify out methods.

Recall the Backward Differentiation Formula methods:

BDF Methods
Stability Regions

RN

1
PR S o
0
Joaswne

v
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Stability, Stability, Stability... Il

o A(«)-stability is clearly a relaxation which fits the BDF
methods.

@ A(0)-stability just says that there is an « for which the
method is A(a)-stable.

@ Ap-stability is just concerned with real eigenvalues ().

@ Stiff stability divides the eigenvalues into two classes — ones
far away from the origin (fast transients) and ones clustered
near the origin (slower transients, long-time behavior).
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Is A-stability really too restrictive? [/

It can be argued that A-stability is not restrictive enough!

Consider the trapezoidal rule, which is A-stable (the region of
absolute stability is exactly the left half plane):

h
Y41 — Yn = 5 |:fn+l + fn:|

We apply trapezoidal rule to the test equation y'(t) = Ay(t)
where A is an (n x n)-matrix with distinct eigenvalues A,
satisfying Re(\x) < 0.
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Is A-stability really too restrictive? 1n/m

After a bit of massaging (linear algebra*">?*), we get the following
system of difference equations

Yo+1 = Byn, B =(I—hA/2)7 (I + hA/2)

Let X be the eigenvalue which has the largest (in absolute value)
real part. It can be shown (Linear Algebra) that B must have an
eigenvalue

__14hX)2

T2

Now if |[h)| is large (remember, we want to take semi-long steps

h), then
512
: [m]
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Is A-stability really too restrictive? i/

With

hA
there will be (at least) one mode of the numerical solution which
oscillates (+,—,+, —,+,...) and is slowly damped.

2 2
ST

The exact solution with respect to that mode is a quickly decaying
exponential solution.

Thus A-stability is not restrictive enough (in some
circumstances).

This is why we need the concept of L-stability — it deals with the
behavior of the numerical method when we have hA far left in the
complex plane.
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Trapezoidal Rule is still useful!

From the previous discussion, we may think that trapezoidal rule is
an unsafe method.

It is very useful indeed, but care must be taken — in order to avoid
oscillations we must implement an adaptive version, where the
step-size is changed to keep the error at a reasonable level.

Initially (while the transients are still “alive”) the step-size will be
small, but as the transients decay away, the step-size can safely be
increased.

Moral of the story: Never compute with a fixed step-size,
especially not for stiff problems!
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Next...

The implications of stiffness on the use of Linear Multistep
Methods and Runge-Kutta Methods.
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