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Recall: Stability Analysis for Explicit RK-methods Recall: Stability of Heun's Method 1/11

By applying the RK-methods to the scalar test-problem
y'(t) = A\y(t), y(to) = yo we will find the regions of stability for
the methods.

E.g. Heun's Method

C1| a1 a2 0 O 0
C | a1 a2 = 1 1 0
| by b 11/2 1/2

Hence

kl - f(tm)/n) - >\}/n
ko = f(tn + h,yn + hk1) = Myn + hki) = Ayn + hX2y,
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Yot1=Yn [1+ 5 [2X+ hA?]] :yn[l—i-h)\—l—( 2) }
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The iteration is given by
Yn+1 = R(hA)yn,

and the stability region is given by

<1

\RMMM:P+WA+UQV

We find the boundary of the region by find the complex roots of

, h)\)?
1—e’9+hA+%:o,

for all values of 6 € [0, 27).
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Recall: Stability of Heun's Method /1

Recall: Stability Regions for General RK-methods 1/11

We find the boundary of the region by find the complex roots of

) 2
1—e’9+hA+@:0,

. V6 € [0, 2n).

T T T T T T
41— - Euler'sMethod
- Heun's Method

2 —

For notational convenience we absorb h\ — h.

Using the A from the Butcher array, we can write the k;'s

ky 1

- ko .~ ~

k=1 . | =y.1+hAk, wherel=| _ |,
ks 1

thus, we can solve for k:
k= (I — hA) iy,
Further,

Ynt1 =Y+ b k =y, + ZBT(I - ﬂA)‘liyn.
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Recall: Stability Regions for General RK-methods /1 The Stability Function R(F)
We have As we have seen, the stability functions for explicit RK-methods
N . R . are polynomials... Lets consider the stability analysis for a
Y1 =Yn+ hbTk =y, + hbT (I — hA) 1y, semi-implicit method defined by the following Butcher array:
Thus, the stability function is ci|ain O
R C a1 a2
Stability Function, R(h) | by b
R(h) =1+ hb" (I — hA) 1. We get
As usual, the method is stable for h such that |R(F)] <1. ki = f(tn + c1h, yn + hkia1,1) = AVn+ ﬁa171k1
For explicit methods, A strictly lower triangular, the quantity ko = f(tn + c2h, yn + hkiaz1 + hkoas2) = Ayn + h(az1ki + a2 ko)
d= (/- hA), 1 1— hay1 — ha,
Sl o e G T S YT "
is easily computable using forward substitution. — a1l (1= hay1)(1 — hazp)
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The Stability Function R(h) — Semi Implicit RK

Summarizing...

/11

With these values of ki, ko:

1 1—hai1—h
k= |———| Ayn ko= AL TR |y,
1-— hal,l (1 — hal,l)(l — haz,z)

the final step becomes

Yn [1 + hbi ki + hbs kz]

b1 4 b2(]. — //;3171 — //;3271)
1-— h3171 (1 — ha171)(1 — hag’g)

~~

R(h)

Yn+1 =

-~

1+ h

= Yn

.

Clearly, R(F) is a rational function.

We have seen that when we apply an RK-method to the test
equation y’(t) = Ay(t), we get the discrete iteration

Vor1 = R(h)yn, h=h\ XeC,

where
o for explicit RK-methods R(E) is a polynomial, and

@ for semi- (and fully) implicit RK-methods it is a rational
function.
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Summarizing... /11 Polynomial Approximations to the Exponential
Clearly the truncation error
The exact solution to the test equation is R 11+ R =
LTE(R) = [eh - R(h)} Yo =0 (hp)
y(t) = Ke™, K constant (initial conditions) -
only depends on how well R(E) approximates the expo-
hence, the exact solution to the iteration is SRR
nential e” 1!
Vi = eMy, = elly,. Hence, |f'we know how to find a good .appro>f|mat|on to the
exponential, we can back-track and build a high-order scheme
We can express the truncation error as: (hopefully with good stability properties).
1 The optimal polynomial approximations come directly from the
-~ 1 ™ ~ A~ . T
LTE(h) = % = [eh — R(h)] yn=0 <h”> : Taylor expansion of e':
> Ls
th R
for a p™ order method. Z k
k:
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Rational Approximations to the Exponential 1/11

Rational Approximations to the Exponential /11

We are now motivated to look at Rational Approximations to
the Exponential"" >

Value-Add (Strong Connection to Stability)

The value-add is that we are working directly with the stability
function. Once we find high-order approximations to e/ with
desirable stability properties we go back and identify coefficients to
build the corresponding finite-difference scheme.

>

Let
) 5 AN T AN
Rﬁ@:ﬁ?jaﬁl/ > bih| ag=by=1as5#0,br#0
i=0 j=0

denote a rational approximation of e”.

The maximum order of approximation of the exponential for a
rational function R3(h) is T + S:

-~

e" — R2(h) = O(WP*), p<T+S

if p=S+ T then R75-(E) is called a Padé Approximation of eh.

Butcher (1987) figured out what the coefficients for the Padé
approximations (of €*) are:
St (S+T-i)

S N D TR TC TR L

U (54 T—))
(S+T) (T =)’

by = (—1Y j=12,...,T
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Examples: Some Padé Approximations — Order 3 The Associated Stability Regions
.
RO(/I;) == 2 B 2 4
3 =~—1= =
— 1p2 143
1—h+3 6 i ] 0 ]
14l
R2(h) = T 1/\2 2= B 2 B
1-2h+1
2/\ 1/\2 6 743 Arz -0 .2 4 6 -4 272/\ 0 ] 2 ) 4
5 1+ §h + ah R3(h) — interior R} (h) — interior
Rl(h) = 170 4 T T 4 T T
1—3h
3 > 1 1oy T 1 ]
R(h)=1+h+Sh+ Zh
As usual, the boundaries of the stability regions are given by i
R7(h) =e”, 6€0,27) L T T
R3(h) — exterior RY(h) — exterior
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The Associated Stability Regions with Magnitude Order 3 The Associated Stability Regions with Magnitude Order 4
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The Associated Stability Regions with Magnitude Order 5 Definition: Acceptability of Approximation

log(abs(R[5,0](2))) log(abs(R[4,1](2))) log(@bs(R[3.2/) 0

Definition (Ehle, 1969)

0

&

A rational approximation R(h) to el is said to be:

IS

&

© A-acceptable if |R(h)| < 1 whenever Re(h) < 0.

&

@ Ag-acceptable if |R(h)| < 1 whenever h is real and negative.

© L-acceptable if it is A-acceptable, and |R(F)| — 0 as
Re(h) — —o0.

~

&

A

Clearly the associated numerical methods are A-stable, Ag-stable,
and L-stable.

&

&
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Theorems: Acceptability of Padé Approximations

Theorems — Visualized

Theorem (Varga, 1961)
If T >S, then R-,S-(F) is Ag-acceptable.

Theorem (Birkhoff and Varga, 1965)
If T =S5, then R?(ﬁ) is A-acceptable.

Theorem (Ehle, 1969)
IfT=S+10r T =5+2 then R?-(ﬁ) is L-acceptable.

Theorem (Wanner, Hairer, Ngrsett, 1978)

R?(/h\) is A-acceptable if and only if T —2< S < T.
(“The Ehle Conjecture” 1965)

v

Guaranteed A -acceptability of R 3(h), Varga 1961

11

Guaranteed A-acceptability of R 3(h), Birkhoff and Varga 1965
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Theorems — Note Implicit RK-methods Suitable for Stiff Systems
Given the preceding detour into approximation of the ex-
2.; ponential, we are now ready to take another look at RK- -
15} methods.
A
0sl Given an RK-method, with its associated Butcher array
o
05 c|l A
4 o
-15 b
2
e ‘ we recall that we can express the stability function as
-0.5 0 05
. ; o(h (7 : T — TeT(1 _ Aav-19
Note: Even though limp .7 |R3(h)| — 0, R3(h) is not L- R(h) =1+ hb" (I — hA)""1,
acceptable, since it is not A-acceptable; — The left-half-
plane of the region of absolute stability has two small “cut- or n T
L ~  det[/ —h(A—1b")]
outs." It is A(a)-acceptable, where o ~ 7 — 0.031. R(h) = — :
det[/ — hA]
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Finding the RK-method from R(h)

Gauss(-Legendre) Methods 1/111

@ Whereas it is possible, in some cases (but extremely tedious,
in all cases) to take a rational function R(h) and “reverse
engineer” a numerical method, this is not the path we will
take.

@ We are going to look at the fully implicit Gauss or
Gauss-Legendre Methods:

@ By optimally selecting the points where f is evaluated (the
entries in the matrix A which occurs in the Butcher array), an
s-stage Gauss method achieves order 2s.

Since there is a unique Rg(ﬁ) rational approximation to order 2s
of ef', namely the Padé approximation, it follows that the stability
function for the Gauss methods must be the Padé approximation.

Since S = T all Gauss methods are A-stable (Birkhoff-Varga).

Example (“Implicit Mid-point Rule.")

The “Implicit Mid-point Rule” is a 1-stage 2nd-order Gauss
method: )
2

| Nl=

Note: The optimal placement of the (time, &) points 11
p. P . ( . ) P . Yn+1 :}/n+hf tn+_h7_()/n+)/n—l—1)
comes directly from the analysis for Gaussian numerical 2 2
integration™* >,
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Gauss(-Legendre) Methods [/m Gauss(-Legendre) Methods (/i
Example (3-stage 6th order Gauss method)
5—/15 5 10—-3v15 25-61/15
10 36 45 180
1 10+3v/15 2 10-3v/15
Example (2-stage 4th order Gauss method) 2 72 9 72
54415 | 2546415 10+3+/15 5
3-v3 1 3-2v3 10 180 45 36
6 4 12 . 2 .
3+v3 | 3+2v3 1 = 5 =
6 12 4 18 9 18 )
1 i
2 2
’ Ponder how much fun would it be to reverse engineer this 3-6
method from the Padé approximation
1 1732 173
3 1_Llprlp2_ Lp3
2 10 120
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Gauss(-Legendre) Methods

Stability

Gauss(-Legendre) Methods — The Final Wish

log(abs(RI[1,1](2))) log(abs(R[2,2](2)))

Runge-Kutta Methods for Stiff ODEs

& 4 & & b b b A& ©

— (29/36)

@ If want to find something “wrong” with the Gauss methods, it
would be that they are not L-stable.

@ It turns out we can trade one order of approximation for
L-stability. The Radau I-A and Radau II-A s-stage methods
are order (2s — 1) and L-stable.

@ The Radau I-A methods are derived just like the Gaussian
methods, but require the left endpoint to be part of the
interval (c; =0).

@ The Radau II-A methods require the right endpoint to be part
of the interval (c; = 1).
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Radau I/1I-A Methods

Examples I/Il

Radau I/1I-A Methods Examples I1/11

Example (1-stage 1st order Radau II-A L-stable method)

Runge-Kutta Methods for Stiff ODEs
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Example (3-stage 5th order Radau I-A L-stable method)

0 1 -1-+6 —1+v6
9 18 18
66 | 1 8847v6 88-43V6
10 9 360 360
6+v6 | 1 88+43v/6 88—7V6
10 9 360 360
1 16+v6 16—v6
9 36 36
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Radau Methods — Some Stability Regions Visualized

RK-methods — Wrap-up 1/11

Radau II-A (s=1, p=1)

Radau 1A (522, p=3) . Radau I-A (s=3, p=5)

8
6
4
2
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-2
4
6
8
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@ Clearly, constructing A- or L-stable implicit RK-methods is not
an insurmountable task.

@ Further, implementing the methods is also quite
straight-forward.

@ Either with the help of Richardson Extrapolation or by
RKF45-like methods we can get good error estimates, and
thus construct adaptive algorithms that change the step-size h
on the fly.
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RK-methods — Wrap-up

/1

Next couple of lectures...

@ These methods will work and can be designed to be very
robust.

@ However, in terms of efficiency they fall short of fine-tuned
BDF (LMM) methods.

@ To make RK-methods competitive, the computational
handling of the implicitness must be cut down. There are a

number of “tricks” — transformations that can be applied to

reduce the computational burden.
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@ Linear Multistep Methods for Stiff ODEs.

Review and examples.

Hybrid Methods.

Tie up loose ends.

Start thinking about projects....
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