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IntrOdUCtion It's from Wikipedia, so it must be true '™

The van der Pol oscillator was originally “discovered” by the Dutch
electrical engineer and physicist Balthasar van der Pol (27 January
1889 — 6 October 1959).

Van der Pol found stable oscillations, now
known as limit cycles, in electrical circuits em-
ploying vacuum tubes. When these circuits are
driven near the limit cycle they become en-
trained, i.e. the driving signal pulls the current
along with it.

Figure: An RCA 808
vacuum tube
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Introduction It's from Wikipedia, so it must be true '™

Van der Pol and his colleague van der Mark reported in Nature!
that at certain drive frequencies an irregular noise was heard. This
irregular noise was always heard near the natural entrainment
frequencies. This was one of the first discovered instances of
deterministic chaos.

The van der Pol equation has a long history of being used in both
the physical and biological sciences. For instance, in biology,

Fitzhugh and Nagumo extended the equation in a planar field as a
model for action potentials of neurons. The equation has also been
utilized in seismology to model the two plates in a geological fault.

!Balth van der Pol and J. van der Mark, Frequency Demultiplication,
Nature 120, 363-364 (10 September 1927); doi:10.1038,/120363a0
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The Van der Pol Oscillator

The Van der Pol equation —
y' =l =y)y +y=0,

is a model of a non-linear electrical circuit, and the solution has a
limit cycle.

y is the position coordinate

14 is a scalar parameter indicating the strength of the nonlinear
damping.
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y'—p(l—=y?)y +y=0

Depending on the damping coefficient 11 we get varying behavior:

® When p < 0, the system will be damped, and
@ When p = 0, there is no damping, and we get a simple
harmonic oscillator.

@ When p > 0, the system will enter a limit cycle, where energy
continues to be conserved.

As usual we can transform a higher-order ODE into a system of
simultaneous ODEs (let y3 =y, y» = y/):

A1)
¥} —y1+pu(l—y2)ye
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The Van der Pol Equation Transformation, 1/I1

We can also introduce the (standard) transformation

3
x" =y’ = {using the z-expression} = z + (X - X)

3
and,
Z =y =y (1-y?)
= —p( =1y —y—p(l-x)y = -y =—x
From o
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The Van der Pol Equation Transformation, I1/11

This transformation puts the equation into the form:

)= E

which is a particular case of Lienard’s Equation

A7)
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Taking a Step Back: Where did the Equation Come From?77?

Consider the a simple circuit with a Resistor (R), a Capacitor (C),

and an Inductor (L):

Let ig, iz, and ic be the currents through the resistor, inductor,
and capacitor respectively.

Kirchhoff’s Current Law (KCL) says:
ip =i = —ic.
(Current into a node = current out of the node)
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Quick Reference: Electronic Components [/

@ R — A resistor is a two-terminal electrical or electronic
component that resists an electric current by producing a
voltage drop between its terminals in accordance with Ohm'’s
law (R = V//I). The electrical resistance is equal to the
voltage drop across the resistor divided by the current through
the resistor.
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Quick Reference: Electronic Components n/m

iLaas B

@ C — A capacitor is an electrical device that can store energy
in the electric field between a pair of closely-spaced
conductors (called 'plates’). When voltage is applied to the
capacitor, electric charges of equal magnitude, but opposite
polarity, build up on each plate. Capacitors are used as
energy-storage devices. They can also be used to differentiate
between high-frequency and low-frequency signals and this
makes them useful in electronic filters.
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Quick Reference: Electronic Components [/

@ L — Inductance is an effect which results from the magnetic
field that forms around a current carrying conductor.
Inductance is a measure of the generated
electro-magnetic-field for a unit change in current. The
inductance of a conductor is increased by coiling the
conductor such that the magnetic flux encloses all of the coils.

The Van der Pol Oscillator — (12/27)



Looking at the RCL circuit

Let o denote the lower left node, v the lower right node, and 3 the

top node in our circuit:

The voltage drop across each branch can be expressed as:
v = V(B) = V(a), vi=V(a)=V(y), ve=V(3)—-V().
Kirchhoff’s Voltage Law (KVL) says:

VR+VL—VC:0.
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Ohm'’s and Faraday's Laws

The Resistor branch — Ohm'’s Law

The relation between the current flowing through a resistor and the
voltage drop across the same resistor is governed by Ohms law,

(ir * R = vr) here we leave it as a general function:

f(ir) = vr.

The Inductor branch — Faraday’s Law
The relation between current and voltage in the inductor branch is
governed by Faraday's law:

di[_(l')

L = t
p” vi(t),

L > 0 is the inductance.
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More Physics

The Capacitor Branch
The relation between current and voltage in the capacitor branch is

governed by the following (nameless) law:

dv(t)

C
dt

= iC(t)7

C > 0 is the capacitance.
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Collecting the equations...

iR =i = —ic (KCL)

v + v —ve =0 (KVL)

f(ir) = vr (Ohm's Law)

Ldié(tt) = v, (t) (Faraday’s Law)
\ Cdvflgt) = ic(t)

For historical reasons, we elect to express our equations in terms of
(il_7 VC):

Ldilc'l(tt) =v, =ve—f(i)
cdvgit) —in(t) = —in (1)
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Almost there...

We have

By rescaling we can set L = C = 1, which with (x =i, z = v)
gives us Lienard’s Equation

{ X =z f(x)

7z = —x.

In the case f(x) = R - x (Linear Ohm’s Law), (x,z) = (0,0) is an
asymptotically stable equilibrium. (Every initial state tends to

(0,0)).
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Van der Pol's Equation (again)

If we have an active resistor which follows Ohm's Generalized Law

I'3
ve = R [g — iR] ,
3 . . .
then f(x) = u (% - x) in Lienard's Equation (1 = R).

= Van der Pol’s Equation.
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Van der Pol's Equation [Phase Plane]

Van der Pol, f(x)=1/3*x 3x
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Stability of the Origin

Linearizing around the origin gives us:

MR M

ptn/ p2—4
2

with eigenvalues Ay = , and eigenvectors

—2 -2
p—/p?—4 5o | mtVEr-4

e = y _

1 1
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Stability of the Origin: Eigenvalue Structure

I Ax Comment
[-00,0) Real(A+)< 0 Origin Stable
0 Ar ==£i Marginally Stable/Unstable

(0, 9] Real(A+)> 0  Origin Unstable

(0,2) Imag(A+)# 0
[2, 0] Imag(A+)=0

Also, as pt — o0

Ay ~u, and lim A_ — 0.

H—00

Leading to more “skew” in the solution...
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Code Fragments, 9-stage, 7th-order RK

f
y
whil
yn
k1
k2
k3
k4

inline(’ [y (2) + mu*y(1) - mu*xy(1)73/3; -y(1)1’,’mu’,’t’,’y’);

[o;

e(

k5 =

k6

k7

k8

k9

0.1]; ctr=0;

go ==1);

y(:,ctr+l);

f(mu,t, yn);

f(mu,t+h/6, yn + hxk1/6);

f(mu,t+h/3, yn + hxk2/3);

f(mu,t+h/2, yn + hx(k1/8+3%k3/8));

f (mu,t+2xh/11, yn + h*(148%k1/1331 + 150%k3/1331 - 56%k4/1331));

f(mu,t+2%h/3, yn + h*(-404%k1/243 - 170%k3/27 + 4024¥k4/1701 + ...

10648%k5/1701) ) ;
f(mu,t+6*%h/7, yn + hx(2466%k1/2401 + 1242xk3/343 - ...
19176%k4/16807 - 51909%k5/16807 + 1053%k6/2401));
f(mu,t, yn + h*(5xk1/154+96%k4/539-1815%k5/20384~ ...
405%k6/2464+49*k7/1144)) ;
f(mu,t+h, yn + h*(-113xk1/32 - 195%k3/22 + 32xk4/7 ...
+ 29403%k5/3584 -729%k6/512 + 1029%k7/1408 + 21xk8/16));

ynext = yn + h*(32%k4/105 + 1771561%k5/6289920 + 243%k6/2560 + ...

16807*k7/74880 + 77xk8/1440 + 11%k9/270);

y = [y ynext]; ctr = ctr+i;

end
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Limit Cycles for p =1

4~ [— VanderPol f(x) =x"3-x

b [— VanderPol f(x) =x"3-x

— Vander Pol f(x) =x"3- x

— Vander Pol f(x) =x"3-x
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Solutions for x € {0.0001, 0.01, 0.1, 1}

Limit Cycle, mu=0.000100

Limit Cycle, mu=0.010000
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Solutions for 1 € {2,4,8,16}

Limit Cycle, mu=2.000000 Limit Cycle, mu=4.000000
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Forced Oscillation

y” - :U’(l _y2)y/ +.y +A5in(wt) = 07 [//Jv A7 (,d] = [17 2’ 271'6]

p=1, forcing=2*sin(2 te*t)

25
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-0.5r

-1.5f
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Randomly Forced Oscillation

y'—u(1—y?)y'+y+Asin(wt)+W(t) = 0, [, A, w] = [0.001, 50, 27e]

p=1, forcing=2*sin(2 t*e*t), Wiener—forcing

-1.5f

25 I I I I
-2 -1 0 1 2 3

Where W(t) is a Wiener process.
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