	Outline
Numerical Solutions to Differential Equations Lecture Notes #16 — Hybrid Methods	Hybrid Methods A later dustion
Peter Blomgren, <pre></pre>	 Introduction Byrne-and-Lambert's Pseudo Runge-Kutta Methods Generalized Linear Multistep Methods
Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://terminus.sdsu.edu/	 General Linear Methods First Pass: GLM-lite GLM-lite: Old Methods, New Notation New Methods, New Notation
Spring 2015	
Lecture Notes #16 — Hybrid Methods — (1/25)	Lecture Notes #16 — Hybrid Methods — (2/25)
In the Rear-view Mirror I	In the Rear-view Mirror II
 So far we have looked at three strategies for improving on Euler's method Taylor Series Methods Best used when the Taylor expansion of f(t, y(t)) is available and cheap/easy to compute. Stiffness: Small stability region. Step-size h very restrictive. 	 Runge-Kutta Methods When the Taylor expansion of f(t, y(t)) is not easily computable (or prohibitively expensive), but multiple evaluation of f(t, y(t)) incur a reasonable amount of work, then RK-methods are a good choice. Stiffness: When the problem is stiff, we have to use fully implicit RK-methods. We have seen that there are A-stable s-stage 2s-order methods (Gauss-Legendre) for arbitrary s, as well as L-stable s-stage (2s-1)-order methods (Radau I-A, and II-A).
Lecture Notes #16 — Hybrid Methods — (3/25)	Lecture Notes #16 — Hybrid Methods — (4/25)

In the Rear-view Mirror III	Strategies
 Linear Multistep Methods Explicit LMMs only require one new function evaluation per step, making then very competitive (fast and cheap). Used in the predictor-corrector context P(EC)^μ, only (1+μ) evaluations per step are required. The main drawback is that LMMs are not self-starting, so we need an RK- or Taylor-series method (possibly with Richardson Extrapolation) to generate enough accurate starting information. Stiffness: If/when we can live with an A(α)-stable method, implementing efficient LMM-based stiff solvers is quite straight forward (at least up to order 6) 	We have 4 fundamental strategies on hand • Use more derivatives of $y(t)$, (Taylor series methods) • Use more past values, (Linear Multistep Methods) • Use more calculations per step, (Runge Kutta) • Use derivatives of $f(t, y(t))$, (not used so far*) Combinations in the literature: Obreshkov more (past values + derivatives of $y(t)$) $\sim LMM + Taylor$ Rosenbrock more (derivatives of $y(t)$, and $f(t, y(t)) + calculations per step)$ $\sim RK + Taylor + f$ -derivatives General Linear more (past values + calculations per step) $\sim LMM + RK$
Lecture Notes #16 — Hybrid Methods — (5/25)	Lecture Notes #16 — Hybrid Methods — (6/25)
History	Pseudo Runge-Kutta Methods, I Byrne-and-Lambert Byrne-and-Lambert's RK+LMM idea boils down to <i>s</i> standard RK-stages (1-2)
1960–1970 Combining Runge-Kutta and Linear Multistep Method ideas; use of stage-derivatives (the RK- <i>k</i> _i s) in previous steps in the formation of the final step. (Byrne and Lambert, 1966)	$Y_{i} = y_{n-1} + h \sum_{j=1}^{s} a_{ij} k_{j}^{[n]} $ (1) $k_{i}^{[n]} = f(t_{n-1} + hc_{i}, Y_{i}) $ (2)
 1964–1965 Hybrid Methods (Gragg and Stetter, 1964; Gear, 1965; Butcher, 1965); now <i>"modified multistep methods."</i> (Butcher) * The class of multivalue^{LMM}-multistage^{RK} methods are refered to as <i>General Linear Methods.</i> 	$y_n = y_{n-1} + h \left(\sum_{i=1}^{s} b_{i,0} k_i^{[n]} + \sum_{i=1}^{s} \overline{b}_{i,1} k_i^{[n-1]} \right) $ (3) followed by a modified step-assembly (3) using not only "current," but also past k_i -values. The associated Butcher array: $\frac{\overrightarrow{c} \mid A}{\overrightarrow{b_0^T}}$
Lecture Notes #16 — Hybrid Methods — (7/25)	Lecture Notes #16 — Hybrid Methods — (8/25)

-

Pseudo Runge-Kutta Methods, II	Byrne-and-Lambert	Pseudo Runge-Kutta Methods, III	Byrne-and-Lambert
or, in general $Y_{i} = y_{n-1} + h \sum_{j=1}^{s} a_{ij} k_{j}^{[n]}$ $k_{i}^{[n]} = f(t_{n-1} + hc_{i}, Y_{i})$ $y_{n} = y_{n-1} + h \left(\sum_{i=1}^{s} b_{i,0} k_{i}^{[n]} + \sum_{p=1}^{P} \left(\sum_{i=1}^{s} \overline{b}_{i}, \frac{\overline{c} \mid A}{\overline{b}_{0}^{T}} + \frac{\overline{b}_{0}^{T}}{\overline{b}_{1}^{T}} + \frac{\overline{b}_{0}^{T}}{$	$pk_i^{[n-p]}$))	The following (s = 3)-stage Pseudo-RK method $ \begin{array}{c c} 0 \\ \frac{1}{2} \\ 1 \\ -\frac{1}{3} \\ \frac{4}{3} \\ \hline 1 \\ -\frac{1}{3} \\ \frac{4}{3} \\ \hline \frac{111}{12} \\ \frac{1}{3} \\ \frac{4}{3} \\ \hline \frac{111}{12} \\ \frac{1}{3} \\ \frac{4}{3} \\ \hline \frac{1}{12} \\ -\frac{1}{3} \\ \frac{1}{4} \\ \hline \end{array} $ Recall (Lecture #5) Theorem (Butcher, 2008: p.187) If an explicit s-stage Runge-Kutta method has Lecture Notes #3	od is order ($p = 4$): s order p , then $s \ge p$. 16 — Hybrid Methods — (10/25)
Pseudo Runge-Kutta Methods, IV Note that Pseudo-RK methods "inherit" the non-se difficult-to-change-step-size properties from the LM Starting and step-size changes can be handled with RK-methods, whose order of course must match th method in use.	Byrne-and-Lambert elf-starting, and M framework. "classical" e Pseudo-RK	 Generalized Linear Multistep Methods, I a.k.a I Generalizes LMM Predictor-Corrector pair additional <i>predictors</i> Additional predictors, usually, at off-step Example (Off-step predictor at ⁸/₁₅ h - part 1) Predict the value at t = t_n-1 + ⁸/₁₅ h = t_n Predict the value at t = t_n - y^[p2]_n Correct the value at t = t_n - y^[c]_n 	Hybrid Methods / Modified LMMs rs, by inserting points $y = \frac{7}{17}h - y_{n-\frac{7}{15}}^{[p1]}$

Generalized Linear Multistep Methods, II a.k.a Hybrid Methods / Modified LMMs	General Linear Methods, I Butcher, 1966 / Burrage-and-Butcher, 1980
Example (Off-step predictor at $\frac{8}{15}h$ — part 2) $y_{n-\frac{7}{15}}^{[p1]} = -\frac{529}{3375}y_{n-1} + \frac{3904}{3375}y_{n-2} + h\left(\frac{4232}{3375}f_{n-1} + \frac{1472}{3375}f_{n-2}\right)$ $f_{n-\frac{7}{15}}^{[p1]} = f\left(t_n - \frac{7}{15}h, y_{n-\frac{7}{15}}^{[p1]}\right)$ $y_n^{[p2]} = \frac{152}{25}y_{n-1} - \frac{127}{25}y_{n-2} + h\left(\frac{189}{92}f_{n-\frac{7}{15}}^{[p1]} - \frac{419}{100}f_{n-1} - \frac{1118}{575}f_{n-2}\right)$ $f_n^{[p2]} = f\left(t_n, y_n^{[p2]}\right)$ $y_n^{[c]} = y_{n-1} + h\left(\frac{25}{168}f_n^{[p2]} + \frac{3375}{5152}f_{n-\frac{7}{15}}^{[p1]} + \frac{19}{96}f_{n-1} - \frac{1}{552}f_{n-2}\right)$	Given that r (d -dimensional) quantities are passed from step-to-step, one full step is completed once given the values $\vec{y}^{[n-1]}$ we have computed $\vec{y}^{[n]}$: $\vec{y}^{[n-1]} = \begin{bmatrix} y_1^{[n-1]} \\ y_2^{[n-1]} \\ \vdots \\ y_r^{[n-1]} \end{bmatrix} \rightarrow \vec{y}^{[n]} = \begin{bmatrix} y_1^{[n]} \\ y_2^{[n]} \\ \vdots \\ y_r^{[n]} \end{bmatrix}$ using an <i>s</i> -stage method, during the step we compute <i>s</i> stage-values (\vec{Y}_i), and <i>s</i> associated stage derivatives (\vec{F}_i) We let, \vec{Y} and \vec{F} be the "supervectors" that contain the respective Y_i and F_i sub-vectors.
Lecture Notes #16 — Hybrid Methods — (13/25)	Lecture Notes #16 — Hybrid Methods — (14/25)
General Linear Methods, II Butcher, 1966 / Burrage-and-Butcher, 1980	General Linear Methods, III Butcher, 1966 / Burrage-and-Butcher, 1980
 As for RK-methods, stages consist of linear combinations of stage-derivatives. Additional linear combinations are needed to express the dependence on the <i>input</i> information. and the <i>output</i> quantities depend linearly on both the stage derivatives, and the input quantities. 	The stage-computations are given by $Y_i = h \sum_{\substack{j=1 \ s}}^{s} a_{ij}F_j + \sum_{\substack{j=1 \ r}}^{r} u_{ij}y_j^{[n-1]}, i = 1, 2, \dots, s$ $y_i^{[n]} = h \sum_{\substack{j=1 \ s}}^{s} b_{ij}F_j + \sum_{\substack{j=1 \ r}}^{r} v_{ij}y_j^{[n-1]}, i = 1, 2, \dots, r$
All-in-all, we need 4 matrices to capture the computations of one stage: $A = [a_{ij}]_{s,s}, U = [u_{ij}]_{s,r}, B = [b_{ij}]_{r,s}, V = [v_{ij}]_{r,r}.$	or, in more compact notation $Y = h(A \otimes I_d)F + (U \otimes I_d)y^{[n-1]}$ $y^{[n]} = h(B \otimes I_d)F + (V \otimes I_d)y^{[n-1]}$

Old Methods, New Notation — V	Old Methods, New Notation — VI
2nd order Adams-Bashforth, and Adams-Moulton methods: $y_{n+1}^{AB} = y_n + \frac{h}{2} [3f_n - f_{n-1}]$ $y_{n+1}^{AM} = y_n + \frac{h}{2} [f_{n+1} + f_n]$ in GLM-notation: $\begin{bmatrix} 0 & 1 & \frac{3}{2} & -\frac{1}{2} \\ \hline 0 & 1 & \frac{3}{2} & -\frac{1}{2} \\ \hline 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 1 \\ \hline \frac{1}{2} & 1 \end{bmatrix}$	Uh?!? $\begin{bmatrix} 0 & 1 & \frac{3}{2} & -\frac{1}{2} \\ \hline 0 & 1 & \frac{3}{2} & -\frac{1}{2} \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \end{bmatrix}$ This means, $Y_{1} = y_{1}^{[n-1]} + \frac{3}{2} y_{2}^{[n-1]} - \frac{1}{2} y_{3}^{[n-1]}$ solution $y_{1}^{[n]} = y_{1}^{[n-1]} + \frac{3}{2} y_{2}^{[n-1]} - \frac{1}{2} y_{3}^{[n-1]}$ step-derivative $y_{2}^{[n]} = h F_{1} \equiv \mathbf{f}(\mathbf{Y}_{1})$ step-derivative $y_{3}^{[n]} = y_{2}^{[n-1]}$
Lecture Notes #16 — Hybrid Methods — (21/25)	Lecture Notes #16 — Hybrid Methods — (22/25)
Old Methods, New Notation — VII 2nd order Adams-Bashforth, and Adams-Moulton methods:	New Methods, New Notation — VII Byrne-Lambert's 4th order 3-stage Pseudo-RK: $\frac{0}{\frac{1}{2}}$ $\frac{1}{2}$ $\frac{1}{-\frac{3}{3}}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{3}$ $\frac{1}{10}$ $\frac{1}{0}$ $\frac{1}{10}$ <td< td=""></td<>

New Methods, Ne	ew Not	ation		— VIII				
Off-step predict	or at $\frac{8}{15}$, h —						
GLM:	$ \begin{bmatrix} 0 \\ \frac{189}{92} \\ \frac{3375}{5152} \\ \frac{3375}{5152} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} $	$ \begin{array}{c} 0 \\ 25 \\ 168 \\ 25 \\ 168 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	0 0 0 0 1 0	$ \begin{array}{r} -\frac{529}{3375} \\ \frac{152}{25} \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ \end{array} $	$ \begin{array}{r} \frac{3904}{3375} \\ -\frac{127}{25} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \frac{4232}{3375} \\ -\frac{419}{100} \\ \frac{19}{96} \\ \frac{19}{96} \\ 0 \\ 0 \\ 1 $	$ \begin{array}{c} \frac{1472}{3375} \\ -\frac{1118}{575} \\ -\frac{1}{552} \\ -\frac{1}{552} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	
The output qua $y_1^{[n]} \approx y(t_n),$ $y_2^{[n]} \approx y(t_{n-1}),$ $y_3^{[n]} \approx h y'(t_n),$ $y_4^{[n]} \approx h y'(t_n),$	ntities a 1), ,), ,-1).	are:						
	Lecture Notes #16 — Hybrid Methods — (25)							— (25/25)