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Recap
Rough Roadmap for This Lecture, and Beyond

Quick Recap — Boundary Value Problems

Last time:

• Physical motivation for boundary value problems — bending
beams (constructing bridges and buildings); cooling fins —
keeping those processors running!

• The shooting method — convert a BVP into a sequence of
IVPs and apply techniques from the first half of the semester!

• Variational approach — add ODEs for the sensitivity
variables.

• Finite difference approach — approximate the sensitivity
by differences of the results of different initial guesses.
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Recap
Rough Roadmap for This Lecture, and Beyond

Today’s Lecture... and Looking Forward

Theory

Generalize shooting methods to larger systems (n simultaneous
ODEs).

Example

Shooting for a 4th order ODE — Beam Bending.

Other Approaches

Finite Difference Methods (next time)

Higher Order Equations (FD)

Nonlinear Equations

“Topics”
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Generalizing Shooting to Systems of ODEs

Given a system of simultaneous ODEs





y ′1(x) = f1(x , y1, y2, . . . , yn)
y ′2(x) = f2(x , y1, y2, . . . , yn)

...
y ′n(x) = fn(x , y1, y2, . . . , yn)

x ∈ [a, b]

with boundary conditions

yi (b) = ybi , i = 1, 2, . . . , k
yi (a) = yai , i = k + 1, k + 2, . . . , n

In order to convert this to an initial value problem, we have to
replace the first k terminal conditions with k (guessed) initial
conditions.
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k-dimensional Initial Guesses

We want to find k initial guesses

yi (a) = Yi , i = 1, 2, . . . , k

so that the solution to the initial value problem




y ′1(x) = f1(x , y1, y2, . . . , yn)
y ′2(x) = f2(x , y1, y2, . . . , yn)

...
y ′n(x) = fn(x , y1, y2, . . . , yn)

x ∈ [a, b]

with initial conditions

yi (a) = Yi , i = 1, 2, . . . , k
yi (a) = yai , i = k + 1, k + 2, . . . , n

Satisfies the terminal conditions yi (b) = ybi , i = 1, 2, . . . , k .
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k-dimensional Discrepancy Functions

Let Ỹ = {Y1,Y2, . . . ,Yk}T be the vector of guessed initial
values.

Let yi (b; Ỹ), i = 1, 2, . . . , k be the terminal values.

Define hi (Ỹ) = yi (b; Ỹ)− ybi , i = 1, 2, . . . , k be the
discrepancy functions — measuring how far off the computed
terminal solutions are from the desired values of the terminal
conditions.

We are now looking for a correction ∆Ỹ to the guesses Ỹ, so
that the corrected initial conditions lead to a solution with
h(Ỹ +∆Ỹ) = 0.

We use our favorite mathematical tool — the Taylor
Expansion — to get an equation for the correction.
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Taylor Expanding and Truncating

We Taylor expand, and throw out terms of order ≥ 2 (just as in
the Taylor-derivation of Newton’s Method — Math 541):

0 = h(Ỹ +∆Ỹ) = hi (Ỹ) +
k∑

j=1

[
∂hi
∂Yj

∆Yj

]
, i = 1, 2, . . . , k

We end up with the following k × k system of equations
[
∂h1
∂Y1

]
∆Y1 +

[
∂h1
∂Y2

]
∆Y2 + · · ·+

[
∂h1
∂Yk

]
∆Yk = −h1(Ỹ)

[
∂h2
∂Y1

]
∆Y1 +

[
∂h2
∂Y2

]
∆Y2 + · · ·+

[
∂h2
∂Yk

]
∆Yk = −h2(Ỹ)

...
...

...

[
∂hk
∂Y1

]
∆Y1 +

[
∂hk
∂Y2

]
∆Y2 + · · ·+

[
∂hk
∂Yk

]
∆Yk = −hk(Ỹ)
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A Little Bit of Matrix Notation

Let ∆Ỹ = {∆Y1,∆Y2, . . . ,∆Yk}T be the vector of updates.

Let h̃(Ỹ) = {h1(Ỹ), h2(Ỹ), . . . , hk(Ỹ)}T be the vector of
discrepancy functions.

Let the matrix J(Ỹ, b) be the matrix the Jacobian, with
entries

Ji ,j =
∂hi
∂Yj

∣∣∣∣
x=b

Then the equation for the update becomes

∆Ỹ = −
[
J(Ỹ,b)

]−1
h̃(Ỹ)
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Computing the Entries of the Jacobian at x = b

The entries of the Jacobian are the partial derivatives of the
discrepancy functions with respect to the guessed initial values
computed at the terminal point.

As in the one-constraint problem we looked at last time, we have
to derive additional ODEs to get equations for the needed values.

We differentiate the ODEs we already have, with respect to the
guessed initial values; apply the chain rule, and the fact that we
can switch the order of differentiation... we get...

∂

∂Yj

[
dyi
dx

]
=

d

dx

[
∂yi
∂Yj

]
=

n∑

k=1

∂fi
∂yk

∂yk
∂Yj

where i = 1, 2, . . . , n and j = 1, 2, . . . , k .
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Equations for the Sensitivity Functions I/II

We define the sensitivity functions

gij =
∂yi
Yj

[
=

∂hi
∂Yj

]

and get the following set of n × k ODEs:

dgij
dx

=
n∑

k=1

[
gkj

∂fi
∂yk

]
, i = 1, 2, . . . , n, j = 1, 2, . . . , k
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Equations for the Sensitivity Functions II/II

The initial conditions for the sensitivity functions are

gij =

{
1 if i = j
0 if i 6= j

; i = 1, 2, . . . , n, j = 1, 2, . . . , k

This makes sense since at x = a there is no mixing of the guessed
values —

yi (a) ≡ Yi , i = 1, 2, . . . , k , and

yi (a) = yai , i = k + 1, k + 2, . . . , n.
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Putting the Pieces Together I/II

Now, we solve the following IVP consisting of (n + n × k)
simultaneous ODEs:




y ′1(x) = f1(x , y1, y2, . . . , yn)
y ′2(x) = f2(x , y1, y2, . . . , yn)

...
y ′n(x) = fn(x , y1, y2, . . . , yn)

g ′
ij =

∑n
k=1

[
gkj

∂fi
∂yk

]
, i = 1, 2, . . . , n, j = 1, 2, . . . , k

with initial conditions

yi (a) = Yi , i = 1, 2, . . . , k
yi (a) = yai , i = k + 1, k + 2, . . . , n

gij =

{
1 if i = j
0 if i 6= j

; i = 1, 2, . . . , n, j = 1, 2, . . . , k
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Putting the Pieces Together II/II

At the terminal point x = b, we compute the discrepancy functions
h̃(Ỹ), and the entries of the Jacobian Ji ,j = gi ,j(b).

If
‖h̃(Ỹ)‖ > tolerance,

(or other stopping criteria) then we update the guess

Ỹ(s+1) = Ỹ(s) −
[
J(Ỹ(s), b)

]−1
h̃(Ỹ(s)),

and start over.
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Comments...

We started with n ODEs.

The equations for the sensitivity functions added (n× k)
ODEs.

That can be a high price to pay! If n = 1000 and k = 500 (a
very reasonably sized problem), then the extended system has
501,000 equations!

The good news: The ODEs and initial conditions for the
additional equations are very easy to write down:

g ′
ij =

n∑

k=1

[
gkj

∂fi
∂yk

]
, i = 1, 2, . . . , n, j = 1, 2, . . . , k

gij(a) = δij
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The Numerical Alternative Suitable for Concurrency

If/When the price is too high, we can compute numerical
(difference) approximations of the terminal values of the
sensitivity functions.

Let Ỹǫ
j = ǫ{δ1j , δ2j , . . . , δkj}, i.e. the vector of all zeros, except

the value ǫ in the jth position.

If we solve the initial value problem for the two initial guesses
Ỹ and Ỹ + Ỹǫ

j we can compute the difference approximations

∂hi
∂Yj

∣∣∣∣
x=b

≈
hi (Ỹ + Ỹǫ

j )− hi (Ỹ)

ǫ
, i = 1, 2, . . . , k

Let j = 1, 2, . . . , k gives us approximations to all entries of the
Jacobian.

The price: Solving the system of n ODEs (k+ 1) times.
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Example: Shooting for the Euler-Bernoulli Beam Equation

Transverse deflection of a beam w(x) subject to distributed load,
p(x)

d2

dx2

[
E (x)I (x)

d2w(x)

dx2

]
= p(x).

Here, we will assume a uniform beam — i.e. E (x) and I (x) are
constant. For simplicity E (x)I (x) = 1.

We’ll let the beam have length L = 1, and be fixed at the end
points (like a book-shelf).

We use a non-uniform load function:

p(x) = e
(x−L/2)2

(L/8)2 .
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Shooting for Beam Bending: Equations

Our problem is:
d4w(x)

dx4
= e

(x−L/2)2

(L/8)2 ,

subject to
w(0) = w ′(0) = w(1) = w ′(1) = 0.

We introduce yi =
d i−1y(x)
dx i−1 , i = 1, 2, 3, 4 and get the following

system of ODEs:

d

dx




y1
y2
y3
y4


 =




y2
y3
y4

e
(x−L/2)2

(L/8)2


 ,





y1(0) = 0
y2(0) = 0
y1(1) = 0
y2(1) = 0
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Shooting for Beam Bending: IVP

We are going to solve the following IVP

d

dx




y1
y2
y3
y4


 =




y2
y3
y4

e
(x−L/2)2

(L/8)2


 ,





y1(0) = 0
y2(0) = 0
y3(0) = A
y4(0) = B

and numerically determine the parameters A and B so that the
terminal conditions y1(1) = 0 and y2(1) = 0.
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Code: RKF45 Shooting for Beam Bending I/V

Code: Shooting Segment #1

% Shooting for a uniform fixed Beam --- Octave Code [www.octave.org]

% E(x) = Constant, I(x) = Constant

clear all

% Length of the Beam

global L;

L = 1;

% The Load Function

function p = p(x)

global L

p = -exp(-(x-L/2).^2/(L/8)^2);

endfunction

% The Forcing Function of the System of ODEs

function rhs_rkf45 = rhs_rkf45(x,w)

rhs_rkf45 = [w(2:4); p(x)];

endfunction
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Code: RKF45 Shooting for Beam Bending II/V

Code: Shooting Segment #2
function [y,xv] = RKF45(y0,x0,L)

c = [0 1/4 3/8 12/13 1 1/2];

A = [0 0 0 0 0 0; 1/4 0 0 0 0 0; 3/32 9/32 0 0 0 0];

A = [A; 1932/2197 -7200/2197 7296/2197 0 0 0];

A = [A; 439/216 -8 3680/513 -845/4104 0 0];

A = [A; -8/27 2 -3544/2565 1859/4104 -11/40 0];

b1 = [ 25/216 0 1408/2565 2197/4104 -1/5 0];

b2 = [ 16/135 0 6656/12825 28561/56430 -9/50 2/55];

E = [ 1/360 0 -128/4275 -2197/75240 1/50 2/55];

h = L/16;

TOL = 1e-12;

y = y0; yN = y0; xv = x0; x = x0;

while( x < L )

if( x+h > L )

h = L-x;

end

k = zeros(4,6);

k(:,1) = rhs_rkf45( x+h*c(1), yN+h*(A(1,:)*k.’).’ );

k(:,2) = rhs_rkf45( x+h*c(2), yN+h*(A(2,:)*k.’).’ );

k(:,3) = rhs_rkf45( x+h*c(3), yN+h*(A(3,:)*k.’).’ );

k(:,4) = rhs_rkf45( x+h*c(4), yN+h*(A(4,:)*k.’).’ );

k(:,5) = rhs_rkf45( x+h*c(5), yN+h*(A(5,:)*k.’).’ );

k(:,6) = rhs_rkf45( x+h*c(6), yN+h*(A(6,:)*k.’).’ );
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Code: RKF45 Shooting for Beam Bending III/V

Code: Shooting Segment #3

yNext = yN + h*(b1*k.’).’;

yErr = h*(E*k.’).’;

yErrAbs = norm(yErr);

if( yErrAbs < TOL )

y = [y yNext];

yN = yNext;

xv = [xv x+h];

x = x+h;

if( yErrAbs*20 < TOL )

h = h*2;

end

else

h = h/2;

end

end

endfunction
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Code: RKF45 Shooting for Beam Bending IV/V

Code: Shooting Segment #4

% Initial initial Values

w0 = [0 0 0 0].’;

tol = 1e-8;

Perturb = 10*tol;

Err = 2 *tol;

while( Err > tol )

[y,xv] = RKF45(w0,0,L);

Y_nonperturbed = y;

Y_np_final = y(:,length(xv));

W1_discr = y(1,length(xv));

W2_discr = y(2,length(xv));

P_factor = min(diff(xv));

Err = norm([W1_discr W2_discr])

% Skip out of the loop when tolerance is met

if( Err <= tol ) break; end
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Code: RKF45 Shooting for Beam Bending V/V

Code: Shooting Segment #5

wA0 = w0; wA0(3) = wA0(3) + Perturb;

[y,xv] = RKF45(wA0,0,L);

Y_perturb_w3 = y;

Y_w3_final = y(:,length(xv));

wB0 = w0; wB0(4) = wB0(4) + Perturb;

[y,xv] = RKF45(wB0,0,L);

Y_perturb_w4 = y;

Y_w4_final = y(:,length(xv));

J11 = (Y_w3_final(1)-Y_np_final(1)) / (Perturb) ;

J12 = (Y_w4_final(1)-Y_np_final(1)) / (Perturb) ;

J21 = (Y_w3_final(2)-Y_np_final(2)) / (Perturb) ;

J22 = (Y_w4_final(2)-Y_np_final(2)) / (Perturb) ;

Ja = [J11 J12; J21 J22];

w0(3:4) = w0(3:4) - Ja\[W1_discr; W2_discr];

end
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Beam Bending: Numerical Results

Iteration Discrepancy
1 0.029003
2 1.7206e–11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 1: The distributed load.
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Beam Bending: Numerical Results — The Displacement

0 0.2 0.4 0.6 0.8 1
-0.002

-0.0015

-0.001

-0.0005

0

Figure 2: The displacement due to the load, w(x), [y1(x)].
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Beam Bending: Numerical Results — w ′(x)

0 0.2 0.4 0.6 0.8 1
-0.004

-0.002

0

0.002

0.004

Figure 3: w ′(x), [y2(x)].
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Beam Bending: Numerical Results — Curvature, w ′′(x) — Bending Moment

0 0.2 0.4 0.6 0.8 1
-0.03

-0.02

-0.01

0

0.01

0.02

Figure 4: w ′′(x), [y3(x)].
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Beam Bending: Numerical Results — w ′′′(x) — Shear Force

0 0.2 0.4 0.6 0.8 1
-0.2

-0.1

0

0.1

0.2

Figure 5: w ′′′(x), [y4(x)].
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Bending Moment Wikipedia

Bending Moment

A bending moment exists in a structural element when a moment is
applied to the element so that the element bends. Moments and torques
are measured as a force multiplied by a distance so they have as unit
newton-metres (N·m) , or foot-pounds force (ft·lbf).
Tensile stresses and compressive stresses increase proportionally with
bending moment, but are also dependent on the second moment of area
of the cross-section of the structural element. Failure in bending will
occur when the bending moment is sufficient to induce tensile stresses
greater than the yield stress of the material throughout the entire
cross-section. It is possible that failure of a structural element in shear
may occur before failure in bending, however the mechanics of failure in
shear and in bending are different.
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Shearing (physics)

Shearing in continuum mechanics refers to the occurrence of a
shear strain, which is a deformation of a material substance in
which parallel internal surfaces slide past one another. It is induced
by a shear stress in the material.

Often, the verb shearing refers more specifically to a mechanical
process that causes a plastic shear strain in a material, rather than
causing a merely elastic one. A plastic shear strain is a continuous
(non-fracturing) deformation that is irreversible, such that the
material does not recover its original shape. It occurs when the
material is yielding.
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