Math 542 Spring 2015 - Assignment \#5. Due 4/10/2015.

The n-Body Problem

The n-body problem is the problem of finding, given the initial positions, masses, and velocities of n bodies, their subsequent motions as determined by classical mechanics, i.e., Newton's laws of motion and Newton's law of gravity.

For given initial data $\vec{x}_{k}, k=1, \ldots, n$ we get the equations

$$
m_{j} \frac{d^{2}}{d t^{2}} \vec{x}_{j}=\gamma \sum_{k \neq j} \frac{m_{j} m_{k}\left(\vec{x}_{k}-\vec{x}_{j}\right)}{\left\|\vec{x}_{k}-\vec{x}_{j}\right\|^{3}}, \quad j=1, \ldots, n
$$

where m_{j} are the masses, and $\vec{x}_{j}=\left(x_{j}, y_{j}, z_{j}\right)$ are the positions of the objects. γ is the gravitational constant.

The ($n=2$)-body problem was completely solved by Johann Bernoulli (1667-1748). But for $n \geq 3$ no "easy" analytical solutions exist (in general). Even the ($n=3$)-body problem can give rise to chaotic solutions.

Your task is to simulate the three-body system corresponding to the Sun-Earth-Moon system, using a numerical scheme (of your choice) of at least order 4. Run the simulation for a time-interval corresponding to at least 5 years (and make sure no cosmic disasters occur!)

Talk about any "engineering" decisions you made in your code in terms of normalizing parameters, step-lengths, and on-line or off-line error analysis.

Note that this problem is sort of vague and open-ended, and this description does not include all the information you need to solve the problem. Just like the real-world. :-)

[^0]
[^0]: ${ }^{0}$ Resources:
 http://www.nasa.gov/
 http://www.jpl.nasa.gov/
 http://en.wikipedia.org/wiki/Sun
 http://en.wikipedia.org/wiki/Earth
 http://en.wikipedia.org/wiki/Earth's_orbit
 http://en.wikipedia.org/wiki/Moon
 http://en.wikipedia.org/wiki/Orbit_of_the_Moon

