# Numerical Solutions to Differential Equations Lecture Notes #11 — Runge-Kutta Methods for Stiff ODEs

Peter Blomgren, \( \text{blomgren.peter@gmail.com} \)

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2015



#### Outline

- Introduction
  - Review: Stability for Explicit Runge-Kutta Methods
  - Stability of Semi-Implicit RK-Methods
- 2 Approximations of  $e^x$ 
  - Optimal Polynomial Approximations
  - Optimal Rational (Padè) Approximations
  - Rational Approximations: Classification and Properties
- 3 Implicit RK-Methods for Stiff Problems
  - Examples: Gauss-Legendre Methods
  - Wishing for L-stability... The Radau Methods



### Recall: Stability Analysis for Explicit RK-methods

By applying the RK-methods to the scalar test-problem  $\mathbf{y}'(\mathbf{t}) = \lambda \mathbf{y}(\mathbf{t}), \ \mathbf{y}(\mathbf{t_0}) = \mathbf{y_0}$  we will find the regions of stability for the methods.

E.g. Heun's Method

$$\begin{array}{c|cccc} c_1 & a_{1,1} & a_{1,2} \\ c_2 & a_{2,1} & a_{2,2} \\ \hline & b_1 & b_2 \end{array} = \begin{array}{c|cccc} 0 & 0 & 0 \\ 1 & 1 & 0 \\ \hline & 1/2 & 1/2 \end{array}$$

Hence

$$k_{1} = f(t_{n}, y_{n}) = \lambda y_{n}$$

$$k_{2} = f(t_{n} + h, y_{n} + hk_{1}) = \lambda (y_{n} + hk_{1}) = \lambda y_{n} + h\lambda^{2}y_{n}$$

$$y_{n+1} = y_{n} \left[ 1 + \frac{h}{2} \left[ 2\lambda + h\lambda^{2} \right] \right] = y_{n} \underbrace{\left[ 1 + h\lambda + \frac{(h\lambda)^{2}}{2} \right]}_{\mathbf{R}(h\lambda)}$$

#### Recall: Stability of Heun's Method

The iteration is given by

$$y_{n+1}=R(h\lambda)y_n,$$

and the stability region is given by

$$|R(h\lambda)| = \left|1 + h\lambda + \frac{(h\lambda)^2}{2}\right| \leq 1.$$

We find the boundary of the region by find the complex roots of

$$1 - e^{i\theta} + h\lambda + \frac{(h\lambda)^2}{2} = 0,$$

for all values of  $\theta \in [0, 2\pi)$ .



#### Recall: Stability of Heun's Method

We find the boundary of the region by find the complex roots of

$$1 - e^{i\theta} + h\lambda + \frac{(h\lambda)^2}{2} = 0, \quad \forall \theta \in [0, 2\pi).$$



## Recall: Stability Regions for General RK-methods

For notational convenience we absorb  $h\lambda \to \widehat{h}$ .

Using the A from the Butcher array, we can write the  $k_i$ 's

$$\tilde{\mathbf{k}} = \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_s \end{bmatrix} = y_n \tilde{\mathbf{1}} + \widehat{h} A \tilde{\mathbf{k}}, \quad \text{where } \tilde{\mathbf{1}} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix},$$

thus, we can solve for  $\tilde{\mathbf{k}}$ :

$$\widetilde{\mathbf{k}}=(I-\widehat{h}A)^{-1}\widetilde{\mathbf{1}}y_n.$$

Further,

$$y_{n+1} = y_n + \widehat{h} \widetilde{\mathbf{b}}^T \widetilde{\mathbf{k}} = y_n + \widehat{h} \widetilde{\mathbf{b}}^T (I - \widehat{h} A)^{-1} \widetilde{\mathbf{1}} y_n.$$

## Recall: Stability Regions for General RK-methods

We have

$$y_{n+1} = y_n + \widehat{h}\widetilde{\mathbf{b}}^T\widetilde{\mathbf{k}} = y_n + \widehat{h}\widetilde{\mathbf{b}}^T(I - \widehat{h}A)^{-1}\widetilde{\mathbf{1}}y_n.$$

Thus, the stability function is

## Stability Function, $R(\hat{h})$

$$R(\widehat{h}) = 1 + \widehat{h}\widetilde{\mathbf{b}}^T(I - \widehat{h}A)^{-1}\widetilde{\mathbf{1}}.$$

As usual, the method is stable for  $\hat{h}$  such that  $|R(\hat{h})| \leq 1$ .

For explicit methods, A strictly lower triangular, the quantity

$$\tilde{\mathbf{d}} = (I - \widehat{h}A)^{-1}\tilde{\mathbf{1}},$$

is easily computable using forward substitution.

# The Stability Function $R(\hat{h})$

As we have seen, the stability functions for explicit RK-methods are **polynomials...** Lets consider the stability analysis for a **semi-implicit** method defined by the following Butcher array:

$$\begin{array}{c|ccc} c_1 & a_{1,1} & 0 \\ c_2 & a_{2,1} & a_{2,2} \\ \hline & b_1 & b_2 \end{array}$$

We get

$$k_1 = f(t_n + c_1 h, y_n + h k_1 a_{1,1}) = \lambda y_n + \widehat{h} a_{1,1} k_1 k_2 = f(t_n + c_2 h, y_n + h k_1 a_{2,1} + h k_2 a_{2,2}) = \lambda y_n + \widehat{h} (a_{2,1} k_1 + a_{2,2} k_2)$$

$$k_1 = \left[\frac{1}{1 - \widehat{h}a_{1,1}}\right] \lambda y_n, \quad k_2 = \left[\frac{1 - \widehat{h}a_{1,1} - \widehat{h}a_{2,1}}{(1 - \widehat{h}a_{1,1})(1 - \widehat{h}a_{2,2})}\right] \lambda y_n.$$

## The Stability Function $R(\widehat{h})$ — Semi Implicit RK

With these values of  $k_1$ ,  $k_2$ :

$$k_1 = \left[\frac{1}{1 - \widehat{h}a_{1,1}}\right] \lambda y_n, \quad k_2 = \left[\frac{1 - \widehat{h}a_{1,1} - \widehat{h}a_{2,1}}{(1 - \widehat{h}a_{1,1})(1 - \widehat{h}a_{2,2})}\right] \lambda y_n$$

the final step becomes

$$y_{n+1} = y_n \left[ 1 + hb_1k_1 + hb_2k_2 \right]$$

$$= y_n \left[ 1 + \widehat{h} \left[ \frac{b_1}{1 - \widehat{h}a_{1,1}} + \frac{b_2(1 - \widehat{h}a_{1,1} - \widehat{h}a_{2,1})}{(1 - \widehat{h}a_{1,1})(1 - \widehat{h}a_{2,2})} \right] \right]$$

$$\xrightarrow{R(\widehat{h})}$$

Clearly,  $R(\widehat{h})$  is a rational function.



#### Summarizing...

We have seen that when we apply an RK-method to the test equation  $y'(t) = \lambda y(t)$ , we get the discrete iteration

$$y_{n+1} = R(\widehat{h})y_n, \quad \widehat{h} = h\lambda, \quad \lambda \in \mathbb{C},$$

#### where

- ullet for explicit RK-methods  $R(\widehat{h})$  is a polynomial, and
- for semi- (and fully) implicit RK-methods it is a rational function.

#### Summarizing...

The exact solution to the test equation is

$$y(t) = Ke^{\lambda t}$$
, K constant (initial conditions)

hence, the exact solution to the iteration is

$$y_{n+1}^* = e^{\lambda h} y_n = e^{h} y_n.$$

We can express the truncation error as:

$$\mathsf{LTE}(\widehat{h}) = \frac{y_{n+1}^* - y_{n+1}}{h} = \frac{1}{h} \left[ e^{\widehat{h}} - R(\widehat{h}) \right] y_n = \mathcal{O}\left(\widehat{h}^p\right),$$

for a  $p^{th}$  order method.



## Polynomial Approximations to the Exponential

Clearly the truncation error

$$\mathsf{LTE}(\widehat{h}) = \frac{1}{h} \left[ e^{\widehat{h}} - R(\widehat{h}) \right] y_n = \mathcal{O} \left( \widehat{h}^p \right)$$



only depends on how well  $R(\hat{h})$  approximates the exponential  $e^{\hat{h}}$ !!!

Hence, if we know how to find a good approximation to the exponential, we can back-track and build a high-order scheme (hopefully with good stability properties).

The optimal polynomial approximations come directly from the **Taylor expansion** of  $e^{\hat{h}}$ :

$$e^{\widehat{h}} = \sum_{k=0}^{\infty} \frac{1}{k!} \widehat{h}^k.$$

### Rational Approximations to the Exponential

We are now motivated to look at Rational Approximations to the Exponential Math 541.

#### Value-Add (Strong Connection to Stability)

The value-add is that we are working directly with the stability function. Once we find high-order approximations to  $e^{\hat{h}}$  with desirable stability properties we go back and identify coefficients to build the corresponding finite-difference scheme.

Let

$$R_T^S(\widehat{h}) = \left[\sum_{i=0}^S a_i \widehat{h}^i\right] / \left[\sum_{j=0}^T b_j \widehat{h}^j\right] \quad a_0 = b_0 = 1, a_S \neq 0, b_T \neq 0$$

denote a rational approximation of  $e^{\hat{h}}$ .

## Rational Approximations to the Exponential

The maximum order of approximation of the exponential for a rational function  $R_T^S(\hat{h})$  is T+S:

$$e^{\widehat{h}} - R_T^S(\widehat{h}) = \mathcal{O}(\widehat{h}^{p+1}), \quad p \leq T + S$$

if p = S + T then  $R_T^S(\hat{h})$  is called a **Padé Approximation** of  $e^{\hat{h}}$ .

Butcher (1987) figured out what the coefficients for the Padé approximations (of  $e^x$ ) are:

$$a_i = \frac{S!}{(S+T)!} \frac{(S+T-i)!}{i!(S-i)!}, i = 1, 2, \dots, S$$

$$b_j = (-1)^j \frac{T!}{(S+T)!} \frac{(S+T-j)!}{j!(T-j)!}, \ j=1,2,\ldots,T$$



## Examples: Some Padé Approximations — Order 3

$$R_3^0(\widehat{h}) = \frac{1}{1 - \widehat{h} + \frac{1}{2}\widehat{h}^2 - \frac{1}{6}\widehat{h}^3}$$

$$R_2^1(\widehat{h}) = \frac{1 + \frac{1}{3}\widehat{h}}{1 - \frac{2}{3}\widehat{h} + \frac{1}{6}\widehat{h}^2}$$

$$R_1^2(\widehat{h}) = \frac{1 + \frac{2}{3}\widehat{h} + \frac{1}{6}\widehat{h}^2}{1 - \frac{1}{3}\widehat{h}}$$

$$R_0^3(\widehat{h}) = 1 + \widehat{h} + \frac{1}{2}\widehat{h}^2 + \frac{1}{6}\widehat{h}^3$$

As usual, the boundaries of the stability regions are given by

$$R_T^S(\widehat{h}) = e^{i\theta}, \quad \theta \in [0, 2\pi)$$



## The Associated Stability Regions





# The Associated Stability Regions with Magnitude

## Order 3







# The Associated Stability Regions with Magnitude

## Order 4



## The Associated Stability Regions with Magnitude

Order 5



### Definition: Acceptability of Approximation

#### Definition (Ehle, 1969)

A rational approximation  $R(\hat{h})$  to  $e^{\hat{h}}$  is said to be:

- **4 A-acceptable** if  $|R(\widehat{h})| < 1$  whenever  $Re(\widehat{h}) < 0$ .
- **2** A<sub>0</sub>-acceptable if  $|R(\widehat{h})| < 1$  whenever  $\widehat{h}$  is real and negative.
- **Q** L-acceptable if it is A-acceptable, and  $|R(\widehat{h})| \to 0$  as  $Re(\widehat{h}) \to -\infty$ .

Clearly the associated numerical methods are A-stable,  $A_0$ -stable, and L-stable.

### Theorems: Acceptability of Padé Approximations

#### Theorem (Varga, 1961)

If  $T \geq S$ , then  $R_T^S(\widehat{h})$  is  $A_0$ -acceptable.

#### Theorem (Birkhoff and Varga, 1965)

If T = S, then  $R_T^S(\widehat{h})$  is A-acceptable.

#### Theorem (Ehle, 1969)

If T = S + 1, or T = S + 2 then  $R_T^S(\widehat{h})$  is L-acceptable.

#### Theorem (Wanner, Hairer, Nørsett, 1978)

 $R_T^S(\widehat{h})$  is A-acceptable if and only if  $T-2 \le S \le T$ . ("The Ehle Conjecture" 1965)

#### Theorems — Visualized



#### Theorems — Visualized





#### Theorems — Note



**Note:** Even though  $\lim_{\mathrm{Real}(\widehat{h})\to-\infty}|R_3^0(\widehat{h})|\to 0$ ,  $R_3^0(\widehat{h})$  is not Lacceptable, since it is **not** A-acceptable; — The left-half-plane of the region of absolute stability has two small "cutouts." It is  $A(\alpha)$ -acceptable, where  $\alpha\approx\frac{\pi}{2}-0.031$ .



## Implicit RK-methods Suitable for Stiff Systems

Given the preceding detour into approximation of the exponential, we are now ready to take another look at RKmethods.



Given an RK-method, with its associated Butcher array

$$\begin{array}{c|c} \tilde{\mathbf{c}} & A \\ \hline & \tilde{\mathbf{b}}^T \end{array}$$

we recall that we can express the stability function as

$$R(\widehat{h}) = 1 + \widehat{h}\widetilde{\mathbf{b}}^T(I - \widehat{h}A)^{-1}\widetilde{\mathbf{1}},$$

or

$$R(\widehat{h}) = \frac{\det[I - \widehat{h}(A - \widetilde{\mathbf{1}}\widetilde{\mathbf{b}}^T)]}{\det[I - \widehat{h}A]}.$$

# Finding the RK-method from $R(\widehat{h})$

- Whereas it is possible, in some cases (but extremely tedious, in all cases) to take a rational function  $R(\hat{h})$  and "reverse engineer" a numerical method, this is not the path we will take.
- We are going to look at the fully implicit Gauss or Gauss-Legendre Methods:
- By optimally selecting the points where f is evaluated (the entries in the matrix A which occurs in the Butcher array), an s-stage Gauss method achieves order 2s.

**Note:** The optimal placement of the (time,  $\vec{c}$ ) points comes directly from the analysis for Gaussian numerical integration  $^{Math \, 541}$ .

Since there is a **unique**  $R_S^S(\widehat{h})$  rational approximation to order 2s of  $e^{\widehat{h}}$ , namely the Padé approximation, it follows that the stability function for the Gauss methods must be the Padé approximation.

Since S = T all Gauss methods are A-stable (Birkhoff-Varga).

#### Example ("Implicit Mid-point Rule.")

The "Implicit Mid-point Rule" is a 1-stage 2nd-order Gauss method:

$$\begin{array}{c|c} \frac{1}{2} & \frac{1}{2} \\ \hline & 1 \end{array}$$

$$y_{n+1} = y_n + hf\left(t_n + \frac{1}{2}h, \frac{1}{2}(y_n + y_{n+1})\right)$$

## Example (2-stage 4th order Gauss method)

| $\frac{3-\sqrt{3}}{6}$ | $\frac{1}{4}$            | $\frac{3-2\sqrt{3}}{12}$ |
|------------------------|--------------------------|--------------------------|
| $\frac{3+\sqrt{3}}{6}$ | $\frac{3+2\sqrt{3}}{12}$ | $\frac{1}{4}$            |
|                        | <u>1</u> 2               | <u>1</u> 2               |

## Example (3-stage 6th order Gauss method)

| $\frac{5-\sqrt{15}}{10}$ | <u>5</u><br>36              | $\tfrac{10-3\sqrt{15}}{45}$ | $\tfrac{25-6\sqrt{15}}{180}$ |
|--------------------------|-----------------------------|-----------------------------|------------------------------|
| $\frac{1}{2}$            | $\frac{10+3\sqrt{15}}{72}$  | <u>2</u>                    | $\frac{10-3\sqrt{15}}{72}$   |
| $\frac{5+\sqrt{15}}{10}$ | $\frac{25+6\sqrt{15}}{180}$ | $\tfrac{10+3\sqrt{15}}{45}$ | <u>5</u><br>36               |
|                          | <u>5</u><br>18              | <del>4</del> 9              | <u>5</u><br>18               |

Ponder how much fun would it be to reverse engineer this 3-6 method from the Padé approximation

$$R_3^3(\widehat{h}) = \frac{1 + \frac{1}{2}h + \frac{1}{10}\widehat{h}^2 + \frac{1}{120}\widehat{h}^3}{1 - \frac{1}{2}h + \frac{1}{10}\widehat{h}^2 - \frac{1}{120}\widehat{h}^3}$$

# Stability





### Gauss(-Legendre) Methods — The Final Wish

- If want to find something "wrong" with the Gauss methods, it would be that they are not L-stable.
- It turns out we can trade one order of approximation for L-stability. The **Radau I-A** and **Radau II-A** s-stage methods are order (2s-1) and L-stable.
- The Radau I-A methods are derived just like the Gaussian methods, but require the left endpoint to be part of the interval  $(c_1 = 0)$ .
- The Radau II-A methods require the right endpoint to be part of the interval  $(c_1 = 1)$ .

#### Radau I/II-A Methods

Examples I/II

### Example (1-stage 1st order Radau II-A L-stable method)

#### Example (2-stage 3rd order Radau I-A L-stable method)

$$\begin{array}{c|cccc}
0 & \frac{1}{4} & -\frac{1}{4} \\
\frac{2}{3} & \frac{1}{4} & \frac{5}{12} \\
\hline
& \frac{1}{4} & \frac{3}{4}
\end{array}$$

### Radau I/II-A Methods

## Examples II/II

#### Example (3-stage 5th order Radau I-A L-stable method)

$$\begin{array}{c|cccc} 0 & \frac{1}{9} & \frac{-1-\sqrt{6}}{18} & \frac{-1+\sqrt{6}}{18} \\ \frac{6-\sqrt{6}}{10} & \frac{1}{9} & \frac{88+7\sqrt{6}}{360} & \frac{88-43\sqrt{6}}{360} \\ \frac{6+\sqrt{6}}{10} & \frac{1}{9} & \frac{88+43\sqrt{6}}{360} & \frac{88-7\sqrt{6}}{360} \\ & & & & & & & & \\ \frac{1}{9} & \frac{16+\sqrt{6}}{36} & \frac{16-\sqrt{6}}{36} \end{array}$$

## Radau Methods — Some Stability Regions Visualized



### RK-methods — Wrap-up

- Clearly, constructing A- or L-stable implicit RK-methods is not an insurmountable task.
- Further, implementing the methods is also quite straight-forward.
- Either with the help of Richardson Extrapolation or by RKF45-like methods we can get good error estimates, and thus construct adaptive algorithms that change the step-size h on the fly.

### RK-methods — Wrap-up

- These methods will work and can be designed to be very robust.
- However, in terms of efficiency they fall short of fine-tuned BDF (LMM) methods.
- To make RK-methods competitive, the computational handling of the implicitness must be cut down. There are a number of "tricks" — transformations that can be applied to reduce the computational burden.

#### Next couple of lectures...

- Linear Multistep Methods for Stiff ODEs.
- Review and examples.
- Hybrid Methods.
- Tie up loose ends.
- Start thinking about projects....