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Introduction Review: Stability for Explicit Runge-Kutta Methods

Stability of Semi-Implicit RK-Methods

Recall: Stability Analysis for Explicit RK-methods

By applying the RK-methods to the scalar test-problem
y'(t) = Ay(t), y(tg) = yo we will find the regions of stability for
the methods.

E.g. Heun's Method

€| a1 a2 0| O 0
() 3271 8272 = 1 1 0
| b1 b 1/2 1/2

Hence

ki = f(tn, ¥n) = Ayn
ko = f(tn+ h, yn + hki) = Myn + hk1) = Ayn + hA\%y,

h\)?

R(h))
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Introduction Review: Stability for Explicit Runge-Kutta Methods

Stability of Semi-Implicit RK-Methods

Recall: Stability of Heun's Method

The iteration is given by
Yn+1 = R(hA)yn,

and the stability region is given by

2
IR(hN)| = ’1 +hA+ (hg) <1

We find the boundary of the region by find the complex roots of

1— e+ hx+

for all values of 6 € [0, 27).
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Introduction Review: Stability for Explicit Runge-Kutta Methods

Stability of Semi-Implicit RK-Methods

Recall: Stability of Heun’s Method 1/

We find the boundary of the region by find the complex roots of

hA
1-— e’9+h)\+( 2) =0, V60elo,2n).
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T
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Introduction Review: Stability for Explicit Runge-Kutta Methods

Stability of Semi-Implicit RK-Methods

Recall: Stability Regions for General RK-methods

For notational convenience we absorb hA — h.

Using the A from the Butcher array, we can write the k;'s

k1 1
ko

F i
Il

: = y,,i +;7\AI~(, where 1 = 1 ,
ks 1
thus, we can solve for k:
k= (I — hA) iy,
Further,

Ynt1 = Yn + BBTE =Yn+ /HBT(I — /HA)_liyn.
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Introduction

Review: Stability for Explicit Runge-Kutta Methods
Stability of Semi-Implicit RK-Methods

Recall: Stability Regions for General RK-methods

We have
Yn+t1 = Yn+ /HBTR‘ =Yn+ /HBT(I — FA)iliyn.

Thus, the stability function is

Stability Function, R(h)

R(h) =1+ hb" (I — hA) 1.

As usual, the method is stable for h such that ]R(E)| <L

For explicit methods, A strictly lower triangular, the quantity
d=(I—hA)1,

is easily computable using forward substitution.
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Introduction Review: Stability for Explicit Runge-Kutta Methods

Stability of Semi-Implicit RK-Methods

The Stability Function R(F)

As we have seen, the stability functions for explicit RK-methods
are polynomials... Lets consider the stability analysis for a
semi-implicit method defined by the following Butcher array:

C1 31,1 0
C | a1 a2

b1 b

We get

ki = f(tn + crh, yn + hklal,l) = Ay, + 77\31,1/(1
ko = f(tn+ coh,yn + hkiap1 + hkoasp) = Ayn + h(ap1ki + a2 ko)

1 1—hai1—h
ki=|——| Aym ko= AL TR |y
1-— h3171 (1 — haLl)(l — h8272)
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Introduction Review: Stability for Explicit Runge-Kutta Methods

Stability of Semi-Implicit RK-Methods

The Stability Function R(F) — Semi Implicit RK

With these values of ki, ko:

1—hai1—h
= |———| Ayn, ko= R S e N W
1-— haLl (1 — hal,l)(l — haz’z)

the final step becomes

Ynt1 = Yn[l+ hbiky + hboko]

b 1—ha1—h
1 +b2( a1 32,1)”

1+h L - =
1-— h3171 (1 — h3171)(1 — h3272)

= Yn

R(h)

Clearly, R(Z) is a rational function.
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Introduction Review: Stability for Explicit Runge-Kutta Methods

Stability of Semi-Implicit RK-Methods

Summarizing...

We have seen that when we apply an RK-method to the test
equation y'(t) = Ay(t), we get the discrete iteration
Yor1=R(h)ys, h=h\, AeC,
where
o for explicit RK-methods R(h) is a polynomial, and

@ for semi- (and fully) implicit RK-methods it is a rational
function.
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Introduction Review: Stability for Explicit Runge-Kutta Methods
Stability of Semi-Implicit RK-Methods

Summarizing... 1n/n

The exact solution to the test equation is
y(t) = Ke, K constant (initial conditions)
hence, the exact solution to the iteration is
Visa = yn = ey,
We can express the truncation error as:

N £ 17+ N =
TE(h) = P22 [P R(R)] yy = O ().

for a p™ order method.
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Optimal Polynomial Approximations
Approximations of e* Optimal Rational (Padé) Approximations
Rational Approximations: Classification and Properties

Polynomial Approximations to the Exponential

Clearly the truncation error

LTE(R) = % "~ R(B)| yo = 0 () -

only depends on how well R(/h\) approximates the expo-

nential e 11

Hence, if we know how to find a good approximation to the
exponential, we can back-track and build a high-order scheme
(hopefully with good stability properties).

The optimal polynomial approximations come directly from the
Taylor expansion of e':
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Optimal Polynomial Approximations
Approximations of e* Optimal Rational (Padé) Approximations
Rational Approximations: Classification and Properties

Rational Approximations to the Exponential [/11

We are now motivated to look at Rational Approximations to
the Exponential"%¥

Value-Add (Strong Connection to Stability)

The value-add is that we are working directly with the stability
function. Once we find high-order approximations to e” with
desirable stability properties we go back and identify coefficients to
build the corresponding finite-difference scheme.

Let

S

T
R-,S—(/l;): Za;ﬁ’- / ij/f;] aO:bozl,ag#O,bT;«éO
Jj=0

i=0

denote a rational approximation of e”.
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Optimal Polynomial Approximations
Approximations of e* Optimal Rational (Padé) Approximations
Rational Approximations: Classification and Properties

Rational Approximations to the Exponential 1/

The maximum order of approximation of the exponential for a
rational function R3(h) is T + S:

e — R§(h) = O(A*Y), p<T+S

if p=S+ T then R75-(71\) is called a Padé Approximation of eh.

Butcher (1987) figured out what the coefficients for the Padé
approximations (of €¥) are:

Sl (S+T—)

S+ i(S—il i=1,2,...,5

aj =

T (S+T-))
S+ (T =)

b = (—-1Y L j=12...,T
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Optimal Polynomial Approximations
Approximations of e* Optimal Rational (Padé) Approximations
Rational Approximations: Classification and Properties

Examples: Some Padé Approximations — Order 3

As usual, the boundaries of the stability regions are given by

R3(h) =€, 6e]o,2n)
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Optimal Polynomial Approximations
Approximations of e* Optimal Rational (Padé) Approximations
Rational Approximations: Classification and Properties

The Associated Stability Regions

4 T T

4 1 1 | 1 1 . | 1 |
6 4 2 0 2 4 6 4 2 o 2 4

RS(F) — interior Rf(ﬁ) — interior

4 T T 4 T T

e
2 2 -
o o ,
ok oL ,
R e T e
L(h) — ; 0(h) — ;
R3(h) — exterior R3(h).— exterior
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Op al Polynomial Approximations
Approximations of e* Optimal Rational (Padé) Approximations
Rational Approximations: Classification and Properties

The Associated Stability Regions with Magnitude Order 3
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Optimal Polynomial Approximations
Approximations of e* Optimal Rational (Padé) Approximations
Rational Approximations: Classification and Properties

The Associated Stability Regions with Magnitude Order 4

log(abs(R[4,0](2))) log(abs(R[3,1](2)))

°

Al | (@]l 8

5 0 5 5 0 5

log(abs(R[2,2](2))) 109(@bs(R(0.41(2))
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Optimal Polynomial Approximations
Approximations of e* Optimal Rational (Padé) Approximations
Rational Approximations: Classification and Properties

The Associated Stability Regions with Magnitude Order 5
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Optimal Polynomial Approximations
Approximations of e* Optimal Rational (Padé) Approximations
Rational Approximations: Classification and Properties

Definition: Acceptability of Approximation

Definition (Ehle, 1969)

A rational approximation R(h) to el is said to be:

O A-acceptable if |R(h)| < 1 whenever Re(h) < 0.
@ Ag-acceptable if |[R(h)| < 1 whenever h is real and negative.

Q L-acceptable if it is A-acceptable, and IR(h)| = 0 as
Re(h) — —oc.

Clearly the associated numerical methods are A-stable, Ag-stable,
and L-stable.
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Optimal Polynomial Approximations
Approximations of e* Optimal Rational (Padé) Approximations
Rational Approximations: Classification and Properties

Theorems: Acceptability of Padé Approximations

Theorem (Varga, 1961)
If T > S, then R?(E) is Ag-acceptable.

Theorem (Birkhoff and Varga, 1965)
If T =S, then R:,g-(ﬁ) is A-acceptable.

Theorem (Ehle, 1969)
IfT=S+10or T =542 then R?(ﬁ) is L-acceptable.

Theorem (Wanner, Hairer, Ngrsett, 1978)

R?(F) is A-acceptable if and only if T —2<S < T.
( “The Ehle Conjecture” 1965)
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al Polynomial Approximations
Approximations of al Rational (Padé) Approximations
Rational Approximations: Classification and Properties

Theorems — Visualized

Guaranteed Ao—acceptability of R .Sr(h), Varga 1961 Guaranteed A-acceptability of R .Sr(h), Birkhoff and Varga 1965

11 11

10 [} 10 [}
9 o o 9 o
8 o 0 0 8 [
7 o 0o o0 o 7 o
6 o 0 0 0 O 6 -3

2] 2
5 0 0 0 0 0 0 5 [
4 © 0 0 0 0 0 © 4 °
3 00 -0 0 -0 -0 0 0 3 o
2 o o o o o o o [ [ 2 o
1 © 6 0 6 0 0 0 0 0 © 1 °
0 0
0 2 4 6 8 10 0 2 4 6 8 10
T T

Peter Blomgren, (blomgren.peter@gmail.com) Runge-Kutta Methods for Stiff ODE



al Polynomial Approximations
Approximations of al Rational (Padé) Approximations
Rational Approximations: Classification and Properties

Theorems — Visualized

Guaranteed L-acceptability of R ?(h), Ehle 1969 A-acceptability of R ?(h), W-H-N 1978
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Optimal Polynomial Approximations
Approximations of e* Optimal Rational (Padé) Approximations
Rational Approximations: Classification and Properties

Theorems — Note

Note: Even though “mReal( |R0( )| — 0, Ro(h) is not L-
acceptable, since it is not A acceptable; — The left-half-
plane of the region of absolute stability has two small “cut-
outs." It is A(a)-acceptable, where a =~ 7 — 0.031.
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Examples: Gauss-Legendre Methods
Wishing for L-stability... The Radau Methods

Implicit RK-Methods for Stiff Problems

Implicit RK-methods Suitable for Stiff Systems

Given the preceding detour into approximation of the ex-
ponential, we are now ready to take another look at RK-
methods.

Given an RK-method, with its associated Butcher array

we recall that we can express the stability function as
R(h) =1+ hb" (I — hA)~1,

or R —
det[/ — h(A— 1bT)]

det[/ — hA]

R(h) =
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Examples: Gauss-Legendre Methods
Wishing for L-stability... The Radau Methods

Implicit RK-Methods for Stiff Problems

-~

Finding the RK-method from R(h)

@ Whereas it is possible, in some cases (but extremely tedious,
in all cases) to take a rational function R(h) and ‘reverse
engineer” a numerical method, this is not the path we will
take.

@ We are going to look at the fully implicit Gauss or
Gauss-Legendre Methods:

o By optimally selecting the points where f is evaluated (the
entries in the matrix A which occurs in the Butcher array), an
s-stage Gauss method achieves order 2s.

Note: The optimal placement of the (time, ) points
comes directly from the analysis for Gaussian numerical
integration™=t" 5
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Examples: Gauss-Legendre Methods

Implicit RK-Methods for Stiff Problems Wishing for L-stability... The Radau Methods

Gauss(-Legendre) Methods

Since there is a unique Rg(h) rational approximation to order 2s

of ef', namely the Padé approximation, it follows that the stability
function for the Gauss methods must be the Padé approximation.

Since S = T all Gauss methods are A-stable (Birkhoff-Varga).

Example (“Implicit Mid-point Rule.”)

The “Implicit Mid-point Rule” is a 1-stage 2nd-order Gauss

method:
1

N
= Nl

1 1
Yn+1 = Yn + hf (tn + §h7 E(Yn + )/n+1)>
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Examples: Gauss-Legendre Methods

Implicit RK-Methods for Stiff Problems Wishing for L-stability... The Radau Methods

Gauss(-Legendre) Methods

Example (2-stage 4th order Gauss method)

3—/3 1 3-23
6 4 12
3+v3 | 3+2V/3 1
6 12 4
1 1
2 2

/111
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Examples: Gauss-Legendre Methods

Implicit RK-Methods for Stiff Problems Wishing for L-stability... The Radau Methods

Gauss(-Legendre) Methods /i

Example (3-stage 6th order Gauss metho

5—/15 5 10-3v15 25-615
10 36 75 180

1 104315 2 10—3v/15
2 72 9 72
5415 | 2546115 10+3/15 5
10 180 45 36
5 4 5
18 9 18

Ponder how much fun would it be to reverse engineer this 3-6
method from the Padé approximation
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Examples: Gauss-Legendre Methods
Wishing for L-stability... The Radau Methods

Implicit RK-Methods for Stiff Problems

Gauss(-Legendre) Methods Stability

log(abs(R[L,1] log(abs(R[2,2]
0 log(abs(R[1,1](2))) o 10 log(abs(R[2,2](2))) o
8 05 8 e
4
6 6
1 18
4 4
2
) 15 ) .
0 @ I ; X
2 e 2 a5
4 4 “
a 5
6 6
~ B
N as o :
10 4 10
EG 10 5 0 a5 10 5 0
log(abs(R([3,3](2))) log(abs(R[4,4](2)))
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Examples: Gauss-Legendre Methods

Implicit RK-Methods for Stiff Problems Wishing for L-stability... The Radau Methods

Gauss(-Legendre) Methods — The Final Wish

@ If want to find something "“wrong” with the Gauss methods, it
would be that they are not L-stable.

@ It turns out we can trade one order of approximation for
L-stability. The Radau I-A and Radau II-A s-stage methods
are order (2s — 1) and L-stable.

@ The Radau I-A methods are derived just like the Gaussian
methods, but require the left endpoint to be part of the
interval (c; = 0).

@ The Radau II-A methods require the right endpoint to be part
of the interval (¢ = 1).
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Examples: Gauss-Legendre Methods
Wishing for L-stability... The Radau Methods

Implicit RK-Methods for Stiff Problems

Radau I/1I-A Methods Examples 1/11

Example (1-stage 1st order Radau II-A L-stable method)

Example (2-stage 3rd order Radau I-A L-stable method)

el S L
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Examples: Gauss-Legendre Methods
Implicit RK-Methods for Stiff Problems WshipeliogtatiitopibelRadauliistiods

Radau I/1I-A Methods Examples I1/11

Example (3-stage 5th order Radau I-A L-stable method)

0 1 -1-v6  =1+V6
9 18 18
6—v6 | 1 88+7V6 88—43/6
10 9 360 360
64+v6 | 1 88+43v6 88—76
10 9 360 360
1 16+V6 16—v6
9 36 36
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Examples: Gauss-Legendre Methods
Implicit RK-Methods for Stiff Problems WshipeliogtatiitopibelRadauliistiods

Radau Methods — Some Stability Regions Visualized

Radau II-A (s=1, p=1)

Radau LA (s=2, p=3) Radau I-A (s=3, p=5)
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Examples: Gauss-Legendre Methods

Implicit RK-Methods for Stiff Problems Wishing for L-stability... The Radau Methods

RK-methods — Wrap-up

@ Clearly, constructing A- or L-stable implicit RK-methods is not
an insurmountable task.

@ Further, implementing the methods is also quite
straight-forward.

@ Either with the help of Richardson Extrapolation or by
RKF45-like methods we can get good error estimates, and
thus construct adaptive algorithms that change the step-size h
on the fly.
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Examples: Gauss-Legendre Methods

Implicit RK-Methods for Stiff Problems Wishing for L-stability... The Radau Methods

RK-methods — Wrap-up

@ These methods will work and can be designed to be very
robust.

@ However, in terms of efficiency they fall short of fine-tuned
BDF (LMM) methods.

@ To make RK-methods competitive, the computational
handling of the implicitness must be cut down. There are a
number of “tricks” — transformations that can be applied to
reduce the computational burden.
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Examples: Gauss-Legendre Methods

Implicit RK-Methods for Stiff Problems Wishing for L-stability... The Radau Methods

Next couple of lectures...

)

Linear Multistep Methods for Stiff ODEs.

(]

Review and examples.

(]

Hybrid Methods.

(]

Tie up loose ends.

(]

Start thinking about projects....
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