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Quick Recap, Our View of the FEM Problem

(V)    (M)

(V_h)

Ax=b x

u_h

u(D)

Error Estimate

(M_h)

(693a)

We are seeking the solution u to the differential equation (D). We
formulate the equivalent variational (V ) and/or minimization (M)
problems. Next, we construct a finite dimensional variational
problem (Vh), which leads us to a linear system Ax = b.

The solution x = A−1b is a solution to (Vh). The error estimate
gives us an idea of how close out numerical solution is to the
solution of (V ).
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Quick Recap, the Poisson Equation

We are trying to solve the following boundary value problem

−∆u = f in Ω
u = 0 on Γ = ∂Ω

where Ω is a bounded domain in R
2 = {(x1, x2) : x1 ∈ R, x2 ∈ R}.

Γ is the boundary of Ω, f (x1, x2) a given function.
We reviewed some vector calculus, e.g. the divergence theorem

∫

Ω
∇ ◦ ũ d x̃ =

∫

Γ
ũ ◦ ñ ds,

and Green’s Formula
∫

Ω
∇v ◦ ∇w d x̃ =

∫

Γ
v
∂w

∂n
ds −

∫

Ω
v∆w d x̃.
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Quick Recap, the Variational Formulation

We defined the equivalent variational problem

(V ) Find u ∈ V so that a(u, v) = (f , v), ∀v ∈ V .

where

a(u, v) =

∫

Ω
∇u ◦ ∇v d x̃

(f , v) =

∫

Ω
fv d x̃

V =





v : v ∈ C (Ω)
vx1 and vx2 are piecewise continuous in Ω
v = 0 on Γ





Now, we will construct a finite-element subspace Vh ⊂ V and
set up the Finite Element Method for this problem.
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Step #1: Triangulating the Domain Ω

For simplicity, we assume that the boundary Γ of Ω is a polygonal
curve. [Otherwise we have to worry about how well the polygons

approximate the boundary and/or use non-polygonal boundary

elements...]

We generate a triangulation by subdividing Ω into a set
Th = {t1, t2, . . . , tN} of non-overlapping triangles. Ω =

⋃N
i=1 ti .

Note that no vertex of one triangle lies on the edge of another
triangle.

Figure: A sample finite element triangulation of a polygonal domain.
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Size of the Triangulation / The Finite Element Space

We need a measure of the grid size. Let

diam2D(t) = the longest side of the triangle t.

and
h = max

t∈Th

diam2D(t)

We are now ready to define the finite element space Vh

Vh =





v ∈ C (Ω)
v : v |t is linear for t ∈ Th

v = 0 on Γ





where v |t denotes the restriction of v to the triangle t.

Clearly Vh ⊂ V .
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Basis Functions for Vh

The parameters which describe the functions of Vh are the values
at the node points nj of v ∈ Vh (excluding nodes on the boundary,
since v = 0 there). The corresponding basis functions φi ∈ Vh,
i = 1, 2, . . . ,N are defined by

φi (nj) = δji , i , j = 1, 2, . . . ,N

Figure: A basis function Φj .
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The Basis Functions φj

We see that the support of φj — the set of points x̃ for which
φj(x̃) 6= 0 — are the union of the triangles with the common node
nj .

We can now represent any function vh ∈ Vh:

vh(x̃) =
N∑

i=1

ηjφj(x̃), ηj = φj(nj), ∀x̃ ∈ Ω

We are now ready for the finite element formulation of the
problem!
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Finite Element Formulation

The discrete Variational Problem is

(Vh) Find uh ∈ Vh such that a(uh, vh) = (f , vh), ∀vh ∈ Vh.

As in the 1-dimensional case, we plug in the basis-representation of
uh:

uh(x̃) =
N∑

i=1

ξiφi (x̃)

and notice that (Vh) implies that a(uh, φj) = (f , φj),
j = 1, 2, . . . ,N. Thus

N∑

i=1

ξia(φi , φj) = (f , φj)

defines the linear system
Aξ̃ = b̃
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The Linear System Aξ̃ = b̃

The entries of the stiffness matrix A are

Ai ,j = a(φi , φj) =

∫

Ω
∇φi ◦ ∇φj d x̃ =

∑

t∈Th

[∫

t

∇φi ◦ ∇φj d x̃
]

The entries of the load vector b̃ are

bj = (f , φj) =

∫

Ω
f (x̃)φj(x̃) d x̃ =

∑

t∈Th

[∫

t

f (x̃)φj(x̃) d x̃

]

Computing these entries is not completely trivial...
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Notes on the Linear System

We note that A is symmetric, and positive definite since

a(v , v) = 0 ⇒ ∇v = 0 ⇒ v ≡ 0, and a(v , v) > 0, ∀v 6≡ 0.

Since A is SPD, ξ̃ = A−1b̃ has a unique solution.

Also, if ni and nj are not nodes of the same triangle, we have

a(φi , φj) = 0
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The Element Stiffness Matrix

In practice, the elements Aij are usually computed by summing the
contributions from the different triangles:

Ai ,j = a(φi , φj) =
∑

t∈Th

a|t(φi , φj)

where a|t(φi , φj) is a(φi , φj) restricted to the triangle t, i.e.

a|t(φi , φj) =
∫

t

∇φi (x̃) ◦ ∇φj(x̃) d x̃

Let ni , nj and nk denote the vertexes of the triangle t, then we call
the 3× 3 matrix a|t is called the element stiffness matrix for t

a|t =




a|t(φi , φi ) a|t(φi , φj) a|t(φi , φk)
a|t(φj , φi ) a|t(φj , φj) a|t(φj , φk)
a|t(φk , φi ) a|t(φk , φj) a|t(φk , φk)



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Assembling the Global Stiffness Matrix

First we compute a|t , ∀ t ∈ Th; then we can assemble the global
stiffness matrix by summing the contributions from each
sub-triangle.

In a similar way, we can assemble the right-hand side b̃.

In computing a|t we are need the basis functions φi , φj and φk ,
restricted to the triangle t. Let ψi , ψj and ψk denote these
restrictions. Clearly ψi ,j ,k satisfy the following at the nodes:

ψi (ni ) = 1, ψi (nj) = 0, ψi (nk) = 0
ψj(ni ) = 0, ψj(nj) = 1, ψj(nk) = 0
ψk(ni ) = 0, ψk(nj) = 0, ψk(nk) = 1

ψi , ψj and ψk are the basis functions on the triangle t ijk .
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The Basis Functions on the Triangle t

Let us compute the basis functions on the triangle t ijk , with nodes

ni = (xi , yi ), nj = (xj , yj), nk = (xk , yk).

They are linear functions

ψi = ai + bix + ciy , ψj = aj + bjx + cjy , ψk = ak + bkx + cky ,

and we have the following relations





1 xi yi
1 xj yj
1 xk yk









ai aj ak
bi bj bk
ci cj ck



 =





1 0 0
0 1 0
0 0 1



 .

Hence, 



ai aj ak
bi bj bk
ci cj ck



 =





1 xi yi
1 xj yj
1 xk yk





−1 



1 0 0
0 1 0
0 0 1



 .
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Example: Basis Functions for { (0, 0), (0, 1), (1, 0) } I
II

For the triangle described by the nodes

ni = (0, 0), nj = (0, 1), nk = (1, 0)

We get




ai aj ak
bi bj bk
ci cj ck


 =




1 0 0
1 0 1
1 1 0



−1 


1 0 0
0 1 0
0 0 1


 =




1 0 0
−1 0 1
−1 1 0




i.e. the basis functions are

ψi (x , y) = 1− x − y , ψj(x , y) = y , ψk(x , y) = x

their gradients are

∇ψi (x , y) = {−1,−1}T , ∇ψj(x , y) = {0, 1}T , ∇ψk(x , y) = {1, 0}T
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Example: Basis Functions for { (0, 0), (0, 1), (1, 0) } II
II

The gradients are

∇ψi (x , y) = {−1,−1}T , ∇ψj(x , y) = {0, 1}T , ∇ψk(x , y) = {1, 0}T

The inner product of the gradients:

∇ψi ∇ψj ∇ψk

∇ψi 2 −1 −1
∇ψj −1 1 0
∇ψk −1 0 1

The element stiffness matrix:

a|t =




1 −1
2 −1

2
−1

2
1
2 0

−1
2 0 1

2



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Example: A Square Domain

Let Ω be the unit square, and let Th be the uniform triangulation
shown in the figure below, with the indicated numbering of the
nodes.

1 2 N

N+1

i

For this triangulation we get (row #i of the stiffness matrix, ni
does not have a neighbor on the boundary)

Ai ,i = 4, Ai ,i+1 = Ai ,i−1 = −1, Ai ,i+N = Ai ,i−N = −1
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Moving to Hilbert Spaces

When solving BVPs for PDEs, it is natural and useful (from a
mathematical perspective) to work with function spaces that
contain more functions than the continuous functions with
piecewise continuous derivatives.

Our new spaces will also have associated scalar products related
to the BVP.

Our expanded spaces will be Hilbert Spaces.
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What’s a Hilbert Space? — Let’s Get Technical!

“A Hilbert Space is a complete metric space, i.e. every Cauchy
sequence converges with respect to the norm induced by the
metric.”

Let’s start from the beginning...

Definition (Linear form)

If V is a linear space, then L is a linear form on V if

L : V → R, i.e. L(v) ∈ R, ∀v ∈ V , and L is linear

Linearity means that ∀v ,w ∈ V and α, β ∈ R

L(αv + βw) = αL(v) + βL(w)
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Some More Definitions

Definition (Bilinear Form)

A form a(◦, ◦) is a bilinear form on V × V if

a : V × V → R, i.e. a(v ,w) ∈ R, ∀v ,w ∈ V

and a(◦, ◦) is linear in each argument

a(u, αv + βw) = αa(u, v) + βa(u,w)
a(γu + δv ,w) = γa(u,w) + δa(v ,w)

}
∀u, v ,w ∈ V
∀α, β, γ, δ ∈ R

The bilinear form a(◦, ◦) on V × V is said to be symmetric if

a(u, v) = a(v , u), ∀u, v ∈ V
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Bilinear From → Scalar Product → Norm

A symmetric bilinear form a(◦, ◦) on V × V is said to be a scalar
product on V if

a(v , v) > 0, ∀v ∈ V \{0}

The norm ‖ ◦ ‖a associated with the scalar product a(◦, ◦) is
defined by

‖v‖a =
√
a(v , v), ∀v ∈ V

Cauchy’s Inequality

|a(v ,w)| ≤ ‖v‖a‖w‖a

holds.
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Cauchy Sequence → Hilbert Space

A sequence in the space V with norm ‖ ◦ ‖

{vk}∞k=1, vk ∈ V , k = 1, 2, . . . ,∞

is said to be a Cauchy sequence if ∀ ǫ > 0 there is an N(ǫ) so that

‖vi − vj‖ < ǫ, ∀i , j > N(ǫ)

Further, the sequence converges to v ∈ V if

lim
i→∞

‖vi − v‖ = 0

If V is a linear space with a norm ‖ ◦ ‖ and every Cauchy sequence
with respect to ‖ ◦ ‖ is convergent, then V is a Hilbert Space.
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Hilbert Spaces — Examples: L2(I)

If I = (a, b) is an interval, we define the space of “square integrable
functions” on I :

L2(I ) =

{
v : v is defined on I and

∫

I

v2 dx <∞
}

L2(I ) is a Hilbert space with the scalar product and norm

(u, v) =

∫

I

uv dx , ‖v‖L2(I ) =

√∫

I

v2 dx =
√

(v , v)

By Cauchy’s inequality

|(u, v)| ≤ ‖u‖L2(I )‖v‖L2(I )

We see that (u, v) exists as long as u, v ∈ L2(I ).
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The Hilbert Space L2(I)

L2(I ) is a very “rich” space — for full appreciation we need
familiarity with the Lebesgue integral (a basic course in Real
Analysis). Here it suffices to think of L2(I )-functions as piecewise
continuous, possibly unbounded, with finite square-integral.

Example: For I = (0, 1), the functions v(x) = x−β , β < 1/2 are
members if L2(0, 1) since:

∫ 1

0

[
x−β

]2
dx =

∫ 1

0

[
x−2β

]
dx =

[
x1−2β

1− 2β

]1

0

=
1

1− 2β
<∞

as long as β < 1/2.

We have already worked with L2(Ω) — even though we didn’t
“know” we did... All our Finite Element Solutions where in the
space(s) L2(Ω).
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The Hilbert Space L2(I) — A Side Note

One very important property of functions in L2(R) is that the
Fourier transform

f̂ (w) = F [f ](w) =

∫
∞

−∞

f (t)e−iwt dx

f (t) = F−1[f̂ ](t) =
1

2π

∫
∞

−∞

f̂ (w)e iwt dt

is an isometry on L2(R). — i.e. if f (t) ∈ L2(R), then so is its
Fourier transform, f̂ (w) ∈ L2(R).
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We need “Smoother” Function Spaces

As we have seen, functions in L2(I ) can be quite “wild” — x−1/3

approaches ∞ as x → 0, but x−1/3 ∈ L2(0, 1).

The point of looking at Hilbert spaces is that we are going to look
for solutions to our ODEs/PDEs (the Finite Element formulation)
in these spaces... We need something a bit “smoother”...

H1(I ) is the space of square-integrable functions, with
square-integrable derivatives...
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The Sobolev Space H1(I )

If I = (a, b) is an interval, we define

H1(I ) =
{
v : v ∈ L2(I ), v

′ ∈ L2(I )
}

H1(I ) is known as a Sobolev space — if we define the scalar
product and norm

(u, v)H1(I ) =

∫

I

uv + u′v ′ dx

‖v‖H1(I ) =

√∫

I

v2 + v ′2 dx =
√
(v , v)H1(I )

it is a Hilbert space.

In order for a function of the form x−β to be a member of H1(0, 1)
we must have β < 1/2 and (β + 1) < 1/2 ⇒ β < −1/2. This
means that even

√
x is too “wild” for H1(0, 1).
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A Space Useful for Boundary Value Problems: H1
0(I)

Whereas we may admire Hilbert spaces for their mathematical
beauty... We are on a mission of solving boundary value problems.

For a problem of the form:

−u′′(x) = f (x), x ∈ I = (a, b), u(a) = u(b) = 0

The space

H1
0 (I ) = {v ∈ H1(I ) : v(a) = v(b) = 0}

with the scalar product and norm inherited from H1(I ) is very
useful.
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Reformulating the Variational Problem

Our model boundary value problem

(BVP) − u′′(x) = f (x), x ∈ [0, 1], u(0) = u(1) = 0

can now be given the following variational formulation

(V ) Find u ∈ H1
0 (I ) such that a(u, v) = (f , v), ∀v ∈ H1

0 (I ).

where

a(u, v) = (u′, v ′) =

∫

I

u′v ′ dx , (f , v) =

∫

I

fv dx
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Comments

We notice that H1
0 (I ) is larger than the space of piecewise linear

functions on [0, 1] (which we used in our previous variation
formulations).

H1
0 (I ) is optimally tailored for the variational formulation (V) of

(BVP); — it is the largest space for which (V) is meaningful.

Since u, v ∈ H1
0 (I ), Cauchy’s inequality guarantees that a(u, v) is

meaningful (finite):

|a(u, v)| = |(u′, v ′)| ≤ ‖u′‖L2(I )‖v ′‖L2(I ) <∞

and |(f , v)| is also finite as long as f ∈ L2(I ):

|(f , v)| ≤ ‖f ‖L2(I )‖v‖L2(I )
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More Comments

From a mathematical point of view, the “right” (optimal) choice
of function space makes it easier to prove existence and uniqueness
of the solutions of the continuous variational problem.

From a finite element point of view the “H1
0 (I )” formulation is

mainly of interest since the basic error estimate

‖(u − uh)
′‖ ≤ ‖(u − v)′‖

can expressed in terms of the H1(I )-norm.

‖(u − uh)
′‖ ≤ ‖(u − v)′‖ ≤ ‖u − v‖H1

0 (I )

Using the standard (mathematical) notation L2(I ), H
1(I ), H1

0 (I )
etc enables us to express the variational formulations in a concise
way.
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Further Comments, Moving Beyond 1D-problems

Let Ω be a bounded domain in R
n, n ≥ 2, and define

L2(Ω) =

{
v : v is defined on Ω and

∫

Ω
v2 d x̃ <∞

}

H1(Ω)

{
v : v ∈ L2(Ω),

∂v

∂xi
∈ L2(Ω), i = 1, 2, . . . , n

}

and introduce the corresponding scalar products and norms

(u, v) =

∫

Ω
uv d x̃, ‖u‖L2(Ω) =

√∫

Ω
v2 d x̃

(u, v)H1(Ω) =

∫

Ω
[uv +∇u ◦ ∇v ] d x̃, ‖u‖H1(Ω) =

√
(u, u)H1(Ω)

we also define

H1
0 (Ω) =

{
v : v ∈ H1(Ω), v = 0 on Γ

}
, where Γ = ∂Ω.
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Completing the Circle

The Boundary Value Problem

(BVP) −∆u = f , x ∈ Ω, u = 0, x ∈ Γ = ∂Ω

can now be given the variational formulation

(V) Find u ∈ H1
0 (Ω) such that a(u, v) = (f , v), ∀v ∈ H1

0 (Ω)

or equivalently

(M) Find u ∈ H1
0 (Ω) such that F (u) ≤ F (v), ∀v ∈ H1

0 (Ω)

where

F (v) =
1

2
a(v , v)− (f , v)

a(u, v) =

∫

Ω
∇u ◦ ∇v d x̃, (f , v) =

∫

Ω
fv d x̃
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“That’s Weak!” In a Mathematical Sense, I
II

The formulation (V) is said to be a weak formulation of (BVP)
and the solution of (V) is a weak solution of (BVP).

If u is a weak solution of (BVP) then it is not clear that u is also
a classical solution of (BVP). For that to be true, we must require
u to be sufficiently smooth that ∆u us defined in a classical sense.

The mathematical advantage of the weak formulation is that it is
easy to prove existence of a solution to (V), whereas it is relatively
difficult to prove the existence of a classical solution to (BVP).
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“That’s Weak!” In a Mathematical Sense, II
II

To prove existence of a classical solution of (BVP) we start with a
weak solution and show — with considerable effort — that this
solution is smooth enough to be a classical solution.

For more complicated (e.g. nonlinear) problems it may be
extremely difficult or practically impossible to prove existence of
classical solutions whereas existence of weak solutions may still be
within reach.
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Example: Inhomogeneous Boundary Conditions I
II

Consider

(BVP) −∆u = f , x ∈ Ω, u = g(x), x ∈ Γ

Let

H1
g(x)(Ω) =

{
v : v ∈ H1(Ω), v(x) = g(x), x ∈ Γ

}

We multiply (BVP) by v ∈ H1
0(Ω) and integrate

−
∫

Ω
v∆u d x̃ =

∫

Ω
vf d x̃

We apply Green’s Theorem to the left-hand side

−
∫

Ω
v∆u d x̃ =

∫

Ω
∇v ◦ ∇u d x̃−

∫

Γ
v
∂u

∂n
d s̃

Note that the boundary integral is zero since v ∈ H1
0 (Ω).
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Example: Inhomogeneous Boundary Conditions II
II

Now, with

a(u, v) =

∫

Ω
∇u ◦ ∇v d x̃, (f , v) =

∫

Ω
fv d x̃

the corresponding variational and minimization formulations are

(V) Find u ∈ H1
g(x)(Ω) such that a(u, v) = (f , v), ∀v ∈ H1

0 (Ω)

and

(M) Find u ∈ H1
g(x)(Ω) such that F (u) ≤ F (v), ∀v ∈ H1

0 (Ω)

where, as usual

F (v) =
1

2
a(v , v)− (f , v)

Note: A finite element representation of this problem yields finite
elements with non-zero basis functions at the boundary...
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Geometric Interpretation of FEM I
IV

Recall: Two elements u, v in a linear space S with scalar product
(◦, ◦) are orthogonal if (u, v) = 0.

As a point of discussion, let us consider the following equation
(from Mechanics)

(BVP) −∆u + u = f , x ∈ Ω, u = 0, x ∈ Γ

The corresponding variational formulation is

(V) Find u ∈ H1
0 (Ω):

∫

Ω
[∇u ◦ ∇v + uv ] d x̃

︸ ︷︷ ︸
a(u,v)

=

∫

Ω
fv d x̃, ∀v ∈ H1

0 (Ω)

We notice that a(◦, ◦) is the H1
0 (Ω) scalar product.
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Geometric Interpretation of FEM II
IV

In preparation for solving the FEM problem, we let Vh be a finite
dimensional subspace of H1

0 (Ω), e.g. the space of piecewise linear
functions on a triangulation of Ω.
The FEM formulation:

(FEM) Find uh ∈ Vh such that a(uh, vh) = (f , vh), ∀vh ∈ Vh.

By subtracting

a(u, vh) = (f , vh) ∀v ∈ Vh

a(uh, vh) = (f , vh) ∀v ∈ Vh

a([u− uh], vh) = 0 ∀v ∈ Vh

i.e. the error [u − uh] is orthogonal to the space Vh with respect to
a(◦, ◦).
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Geometric Interpretation of FEM III
IV

We can express the orthogonality [u − uh] ⊥ Vh:

The finite element solution uh is the projection with respect to
a(◦, ◦) of the exact solution u on Vh, i.e. uh is the element in Vh

closest to u with respect to the H1(Ω)-norm ‖ ◦ ‖H1(Ω), or

‖u − uh‖H1(Ω) ≤ ‖u − v‖H1(Ω), ∀v ∈ Vh

V_h
u

u_h
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Geometric Interpretation of FEM IV
IV

According to

‖u − uh‖H1(Ω) ≤ ‖u − v‖H1(Ω), ∀v ∈ Vh

uh is the best approximation of the exact solution u, in the sense
that no other function v ∈ Vh, has a smaller error [u − v ]
measured in the H1

0 (Ω)-norm.

We have seen that uh can be computed by solving a linear system
of equations; — derived from the basis function representation of
Vh.

Thus we can compute uh — the best approximation of u —
without knowing u itself.
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Neumann Boundaries — Natural vs. Essential BCs

So far we have restricted our discussion to Dirichlet boundary
conditions; we will now expand our universe to Neumann
problems:

(BVP) −∆u + u = f , x ∈ Ω,
∂u

∂ñ
= g , x ∈ Γ

where as usual Ω is a bounded domain with boundary Γ, and ∂
∂ñ

denotes the outward normal derivative to Γ.

The Neumann boundary condition corresponds to a given force
(mechanics) or a flow (physics) on Γ.
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Variational Formulation for Neumann-BVP

In our usual fashion, we multiply (BVP) by a test function
v ∈ H1(Ω) and apply Green’s theorem:

−
∫

Ω
v∆u d x̃ =

∫

Ω
∇u ◦ ∇ d x̃−

∫

Γ
v
∂u

∂ñ
d s̃

The variational formulation becomes

(V) Find u ∈ H1(Ω): a(u, v) = (f , v) + 〈g , v〉, ∀v ∈ H1(Ω)

where

a(u, v) =

∫

Ω
[∇u ◦ ∇v + uv ] d x̃

(f , v) =

∫

Ω
fv d x̃, 〈g , v〉 =

∫

Γ
gv d s̃
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Variational Formulation for Neumann-BVP —- Comments

Note that the Neumann condition does not explicitly appear in
the function space for the variational formulation; — we are only
requiring u ∈ H1(Ω). Still, any function solving (V) will satisfy the
Neumann boundary condition.

A boundary condition of this type, which does not have to be
explicitly imposed in the variational formulation, is called a natural
boundary condition.

Boundary conditions (e.g. Dirichlet BCs) which have to be
explicitly imposed are called essential boundary conditions.
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Finite Element Method for the Neumann Problem I
III

The FEM formulation for the Neumann problem, using piecewise
linear basis functions:

Let Th be a triangulation of Ω, as discussed earlier. Define

Vh = {v : v ∈ C (Ω), v |t is linear ∀t ∈ Th}

where the notation v ∈ C (Ω) ⇔ “v is continuous on Ω”.

We characterize the functions in Vh by their values at the nodes,
including nodes on the boundary Γ.

Note that function in Vh are not required to satisfy any boundary
condition, and Vh ⊂ H1(Ω).
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Finite Element Method for the Neumann Problem II
III

The FEM for (BVP)

(FEM) Find uh ∈ Vh: a(uh, vh) = (f , vh) + 〈g , vh〉, ∀v ∈ Vh

where

a(u, v) =

∫

Ω
[∇u ◦ ∇v + uv ] d x̃

(f , v) =

∫

Ω
fv d x̃, 〈g , v〉 =

∫

Γ
gv d s̃

Using the “tent-function” basis we get a symmetric positive
definite linear system Aξ̃ = b̃.
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Finite Element Method for the Neumann Problem III
III

As previously seen (for the Dirichlet problem) the solution uh is
optimal with respect to the H1(Ω)-norm, i.e.

‖u − uh‖H1(Ω) ≤ ‖u − vh‖H1(Ω), ∀vh ∈ Vh

in particular we are allowed to choose vh to be the interpolant of
u, and get

‖u − uh‖H1(Ω) ≤ Ch
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Solved Problem: Mixing it up... I
IV

Let Ω be a bounded domain in R
2 and let the boundary of Ω be

divided into two parts Γ1 and Γ2.
(i) Give a variational formulation of the following problem:

−∆u = f x ∈ Ω
u = g x ∈ Γ1

∂u
∂ñ = h x ∈ Γ2

where f , g , h are given functions.
(ii) Formulate a finite element method for this problem.
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Solved Problem II
IV

Let
H1
Γ1(g)

=
{
v ∈ H1(Ω) : v |Γ1 = g

}

thus
H1
Γ1(0)

=
{
v ∈ H1(Ω) : v |Γ1 = 0

}

Now multiply the equation by v ∈ H1
Γ1(0)

and apply Green’s
theorem to the left-hand-side:

−
∫

Ω
v∆u d x̃ =

∫

Ω
∇u ◦ ∇v d x̃−

∫

Γ
v
∂u

∂ñ
d s̃

The integral over the Γ1-part of the boundary is zero since v is zero
there; over the Γ2-part, we have ∂u

∂ñ = h from the equation, hence

∫

Γ
v
∂u

∂ñ
d s̃ =

∫

Γ2

vh d s̃
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Solved Problem III
IV

The variational formulation becomes

(V) Find u ∈ H1
Γ1(g)

(Ω): a(u, v) = (f , v) + 〈h, v〉, ∀v ∈ H1
Γ1(0)

(Ω)

where

a(u, v) =

∫

Ω
[∇u ◦ ∇v ] d x̃

(f , v) =

∫

Ω
fv d x̃, 〈h, v〉 =

∫

Γ2

hv d s̃

Let Th be a triangulation of Ω, as discussed earlier. Define

Vh = {v : v ∈ C (Ω), v |t is linear ∀t ∈ Th}

Wh(g) = {v : v ∈ Vh, v |Γ1 = g}
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Solved Problem IV
IV

Let Th be a triangulation of Ω, as discussed earlier. Define

Vh = {v : v ∈ C (Ω), v |t is linear ∀t ∈ Th}

Wh(g) = {v : v ∈ Vh, v |Γ1 = g}
The FEM for (BVP)

Find uh ∈ Wh(g): a(uh, vh) = (f , vh) + 〈h, vh〉, ∀v ∈ Wh(0)

where

a(u, v) =

∫

Ω
[∇u ◦ ∇v ] d x̃

(f , v) =

∫

Ω
fv d x̃, 〈h, v〉 =

∫

Γ2

hv d s̃. �
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Notes on Implementation of FEM

When developing a piece of software for the solution of FEM
problems the process naturally divides into 6 steps:

[1] Input of Domain, Boundary Conditions, and the Equation.

[2] Triangulation, Th, of the domain Ω.

[3] Computation of the element stiffness matrix, and element
load vector.

[4] Assembly of the global stiffness matrix, and the load vector.

[5] Solution of the linear system.

[6] Presentation of the result.

Some comments on steps [2]–[5] follow.
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Triangulation — Quasi-Uniform

Automatic triangulation of Ω can be based on successive
refinement of an initial coarse (user-defined) triangulation; we
could refine each triangle by connecting the midpoints of each side
(as above).

This process leads to a uniform or quasi-uniform mesh — all
triangles will have essentially the same size in all parts of Ω.
(Above: since we started with a uniform mesh, it stays uniform.)

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Triangulations, Matrices, Spaces, Geometry... — (54/59)



Triangulations, the Element Stiffness Matrix
Hilbert Spaces

Geometric Interpretation of FEM

Orthogonality, etc. in Hilbert Spaces...
Boundaries... Neumann “flavor”
Notes

Triangulation — Local Refinement

It is often desirable to construct triangulations where the size of
the triangles varies considerably in different parts of the domain.
We need smaller triangles where the solution varies quickly. If we
know that the right-hand-side of the equation is particularly large
in a region, that’s probably where we need the triangles...

Note that with the above simple scheme, we generate long narrow
triangles — that may lead to problems...
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Triangulation — Adaptive

First we compute the solution on the coarse grid and error
estimates for each triangle. In the regions where the error is too
large, we refine — and keep going until we reach some tolerance.
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Computation

The next step is to compute the element stiffness matrices, i.e. the
inner products

a|t(φi , φj), i , j = 1, 2, . . . ,Nnodes, ∀t ∈ Th

Most of these are zeros — only overlapping basis functions
contribute.

Then we compute the element load vectors

(f , φi )t , i = 1, 2, . . . ,Nnodes, ∀t ∈ Th
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Assembly

Once we have the element stiffness matrices and load vectors, we
are ready to assemble the contributions to the global element
stiffness matrix and load vector...

This (and the steps above) require very good bookkeeping — we
need to number the nodes in an intelligent way (so we get a good
— banded — structure of the stiffness matrix), and also keep track
of all the node-triples which define the triangles.

We also have to consider storage of A — most of the entries will
be zero (the matrix is sparse). Even for moderately sized
problems, storing a sparse matrix in “dense” / “full” format
requires lots of memory.
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Solution

Finally we have to solve the linear system

Aξ̃ = b̃

where A is a large, sparse matrix.

This is a science in itself and some techniques are discussed in
Math 543.

In summary we notice that it is quite easy to write down the FEM
formulation of a problem, but we have to invest quite a bit of work
to get to the final solution. — That’s a good argument for using
some off-the-shelf software package.
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