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Current Lecture — Reviewing Math 541 and Calculus Why Review Calculus???
The purpose of this lecture is to “warm up” by reviewing some It's a good warm-up for our brains!
forgotten(?) material from the past.
When developing numerical schemes we will use theorems from
Note that complete lecture notes for Math 541 are available calculus to guarantee that our algorithms make sense.
on_line at http://terminus.sdsu.edu/SDSU/Math541 2014/
If the theory is sound, when our programs fail we look for bugs in
the code!
— (3/49) Calculus Review — (4/49)

Calculus and Math 541 Review




Background Material — A Crash Course in Calculus

Limit / Continuity

Key concepts from Calculus
e Limits
e Continuity
e Convergence
e Differentiability
e Rolle’s Theorem
e Mean Value Theorem
e Extreme Value Theorem
e Intermediate Value Theorem

e Taylor’'s Theorem

Definition (Limit)

A function f defined on a set X of real numbers X C R has the limit L

at xp, written

if given any real number € > 0 (Ve > 0), there exists a real number § > 0
(39 > 0) such that |f(x) — L| < €, whenever x € X and 0 < |x — xp| < .

Definition (Continuity (at a point))

Let f be a function defined on a set X of real numbers, and xg € X.

Then f is continuous at xg if

lim f(x) = f(x).

X—rX0

lim £(x) = L,

X—>X0
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Example: Continuity at xg Examples: Jump Discontinuity
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Flx) = { X+ %sin(27rx) x <05
Here we see how the limit x — xo (where xo = 0.5) exists for the x4+ 5sin(2mx) 41 x> 0.5
function f(x) = x + 3 sin(2mx). has a jump discontinuity at xg = 0.5.
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Examples: “Spike” Discontinuity

Continuity / Convergence

The function The limit exists, but
_J 1 x=05 lim f(x)=0+#1
f(X) - { 0 X ?é 0.5 x—0.5

has a discontinuity at xp = 0.5.
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Definition (Continuity (in an interval))

The function f is continuous on the set X (f € C(X)) if it is
continuous at each point x in X.

Definition (Convergence of a sequence)

Let x = {x,}°°; be an infinite sequence of real (or complex
numbers). The sequence x converges to x (has the limit x) if
Ve >0, IN(e) € Z1: |xn — x| < € Yn > N(e). The notation

lim x, = x
n—oo

means that the sequence {x,}°°; converges to x.
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[llustration: Convergence of a Complex Sequence

Differentiability
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A sequence in z = {z}}°; converges to zy € C (the black dot) if
for any e (the radius of the circle), there is a value N (which
depends on €) so that the “tail” of the sequence z, = {z}?° ,, is
inside the circle.
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Theorem

If f is a function defined on a set X of real numbers and xy € X, the the following
statements are equivalent:
(a) f is continuous at xg

(b)  If {xn}52, is any sequence in X converging to xp, then lim, oo f(xn) = f(x0).

Definition (Differentiability (at a point))

Let f be a function defined on an open interval containing xp (a < xg < b). f is
differentiable at xq if

F(x0) = lim 1) = F0)

X—X0 X — X0

exists.

If the limit exists, f/(xp) is the derivative at x.

Definition (Differentiability (in an interval))

If f'(xp) exists Vxg € X, then f is differentiable on X.

v
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[llustration: Differentiability

Continuity / Rolle’'s Theorem

Here we see that the limit

i F00 = £(0)

X—Xp X — XO

exists — and approaches the slope / derivative at xg, f'(xo).

Theorem (Differentiability = Continuity)

If f is differentiable at xg, then f is continuous at xg.

Theorem (Rolle’'s Theorem Wiki-Link )

Suppose f € Cla, b] and that f is differentiable on (a, b). If f(a) = f(b),
then 3c € (a, b): f'(c) =0.
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Mean Value Theorem Extreme Value Theorem
Theorem (Mean Value Theorem  wiki-Link ) Theorem (Extreme Value Theorem Wiki-Link )
If f € Cla, b] and f is differentiable on (a, b), then 3c € (a, b): If f € Cla, b] then dc1, ¢ € [a, b]: f(c1) < f(x) < f(c2)
F(c) = f(b) — f(a) Vx € [a, b]. If f is differentiable on (a, b) then the numbers c1, c;
 b—a occur either at the endpoints of [a, b] or where f'(x) = 0.
A - A c2=b A
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Intermediate Value Theorem

Taylor's Theorem

Theorem (Intermediate Value Theorem Wiki-Link )

if f € Cla, b] and K is any number between f(a) and f(b), then
there exists a number ¢ in (a, b) for which f(c) = K.

Theorem (Taylor's Theorem  Wiki-Link )

Suppose f € C"[a, b], f("t1)3 on [a, b], and xo € [a, b]. Then
Vx € (a,b), 3¢(x) € (x0,x) with f(x) = Py(x) + Rn(x) where

LR (x (n+1)(¢(x
Pal) = 32 T 00 (g m(xF%

k!
k=0

(x—xo)("+1).

P.(x) is called the Taylor polynomial of degree n, and R,(x) is
the remainder term (truncation error).

This theorem is extremely important for numerical analysis;
Taylor expansion is a fundamental step in the derivation of many
of the algorithms we see in this class (and in Math 542 & 693ab).
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lllustration: Taylor's Theorem f(x) = sin(x) [llustration: Taylor's Theorem Errors f(x) = sin(x)
of |t B 1t E /
E5 X Eg X E13 X
P5(x) Po(x) Pus(x) (x) (x) (x)
1 1 1 1 1 1
1 1 1 1 1 1 Pis(x) =x — x>+ =x® ——x" 4+ —x? — x4 13
3 5 7 9 11 13 13
= x— — x5 = X9 — ! ! ! | l I
P13(x) = x i< T T T ok T X T e 3 5 9! 11! 13!
~ g Ps(x)
Ps(x) — v
~ g Po(x)
Po(x)
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Taylor Expansions — Matlab

Background Material

@ A Taylor polynomial of degree n requires all derivatives up
to order n, and order n + 1 for the remainder.

@ Derivatives may be [more] complicated expression [than the
original function].

@ Matlab can compute derivatives for you:

Matlab: Symbolic Computations Try this!!!
>> syms X

>> diff (sin(2*x))

>> diff(sin(2*x),3)

>> taylor(exp(x),5)

>> taylor(exp(x),5,1)
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Key concepts from Math 541

e Polynomial Interpolation and Approximation
—  Approximation of Derivatives

e Numerical Integration
—  Approximation of

tit1
/ f(t,y,y’,...,y(”)) dt
t

i
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Math 541 Review

Interpolation: Lagrange Polynomials

Key topics:

Lagrange Coefficients — Lagrange Polynomials

Newton’s Divided Differences — An expression for the polynomial
Using polynomials to approximate f’(x)

Richardson’s Extrapolation

Numerical Integration — Return of the Lagrange Polynomials
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Instead of working hard at one point (Taylor polynomials), we are
going to construct a polynomial passing through the points

(x0, f(x0)), (x1,f(x1)), (x2,f(x2)), --., (Xn, F(xn)).
We define

Definition (the Lagrange coefficients, L, x(x))

n

Lor(x) = H X — Xj

)
Xl — X|
i=0, itk kT

L «(x) have the properties L, j(xj) = d;j, and we use them as
building blocks for the Lagrange interpolating polynomial:

Pa(x) = ) F(x) Lnk(x).
k=0
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The Lagrange Coefficients, L, x(x).

Newton's Divided Differences.

E.g. L67k(X,') = (5,"/(, {X,'}?:O = i:

15

Zeroth Divided Difference:

f[X,'] = f(X,').

N . . . First Divided Difference:
flxit1] — fxi
| /\ by il = ]
05 \ Xi+1 — Xi
ok : Second Divided Difference:
FXir, Xio] — Flxis %
sl \/ f[X,', Xi+17Xi—|—2] _ [X +1 X+2] [X X+1] )
: Xj4+2 = Xi
4l kth Divided Difference:
FIXi Xid1s - s Xipk] = FIXit1s Xig2s - -« Xirk] = FXis X1, - - 7Xi+k—1]'
15 ‘ ‘ ‘ ‘ ‘ ‘ Xitk — Xi
0 1 2 3 4 5 6
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Newton's Divided Differences: Compute the Polynomial. Numerical Differentiation — Using Polynomials
Suppose {xg, x1,...,X,} are distinct points in an interval Z, and
We can write the interpolating polynomial with the help of the f € C"Y(T), we can write
divided differences: '
n k—1 . [Te—o(x — xx) (n+1)
F(x) =D fla)be(x) + =" (§)
Pa(x) = flxo] + > |flxo. - x] [ (x - xm)] : kz_% (n+1)!
k=1 m=0
. ) o Formal differentiation gives:
where f[xp, ..., x| are the diagonal entries from the divided
difference table: n d [T]h—o(x — xk)
! — f L el k=0 k f(n-i-l)
() = XAt + 5 | Ll o
X0 f[Xo] k=0
x1 | flxi]  flxo.xt fx1, xo] — f[xo0, x1] [le—o(x = xk) d T (ns1)
: = |6
xo | fixo] flxi, %]  flxo, x1, x] X5 — X0 (n+1)!  dx
Since we will be evaluating f/(x;) the last term gives no
contribution.
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The (n + 1) point formula for approximating f’(x;)

Example: 3-point Formulas, I/1ll

Building blocks:

(x —x1)(x — x2) , 2X — X1 — Xo
L =
2,0(X) (XO — Xl)(XO — X2)7 2,0(X) (XO — Xl)(XO — X2)
n n
SRIG) 2

F(x) = > FOaLix) + ——== | [T (5 — ) Lpi(x) = X0 mxe) oy g 2X X0 —x
k=0 (n+1)! kI;[q 1) (= x0)(a — x2)’ 22 (%) (x1 — x0) (1 — x2)

k#J L »(x) (x = x0)(x — x1) (%) 2X — Xg — X1
X) = X) = .
22 (e —x)0e —x)  ° (2 = x0)(x2 — x1)

The formula is most useful when the node points are equally Formulas:
; 2X; — X1 — X 2X;i — Xp — X
spaced, i.e. Fix) = flx [ J 1 2 } + f(x [ J] 0 2
e =30+ kh, ) = F00) | e o )] T (a0 0a — )
2
2x; — Xg — X1 ] f(3)
+  f(x J — X
be) {(Xz —x0)(x2 — x1) 1:[ )
k+j
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Example: 3-point Formulas, I1/111

Example: 3-point Formulas, I11/111

, 1 h? 3)
Fix0) = 5, [=3f(x0) + 4F (1) — FOxe)] + 5 £ (&)

F() = ;h[ Floo) + Fa)] - (e

F/(2) = o [F(30) — 4(x0) + 3¢(s2)] + = A&
Use xx = xg + kh:

F/(30) = o [-37(0) +4F(s0 + h) — F(s0+ 20)] + 2 F (&)

Fl(xo-+ ) = 5o [-F(oa) + Flro + 26)] — - FO)(e)

2
f'(x0 +2h) = % [f(x0) — 4f(xo + h) 4 3f(xo + 2h)] + %f@(gz)
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(

F/(30) = 57 [-3F(x0) + 4F(x0 + ) — Flx0 +20)] + %2f<3>(£o)

. 1 h?2 3)
(x0) = >h [—f(x0 — h) + f(xo + h)] — gf (1)

f/(Xo) = 2_1h [f(XO — 2h) 4f(X0 — h) + 3f(X0)] + h—zf (62)

After the substitution xg + h — xg in the second equatlon, and
Xo + 2h — xg in the third equation.

\

Note#1: The third equation can be obtained from the first one by
setting h — —h.

Note#2: The error is smallest in the second equation.

Note#3: The second equation is a two-sided approximation, the first
and third one-sided approximations.
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Richardson’s Extrapolation

Building High Accuracy Approximations 1of 2

What it is: A general method for generating high-accuracy
results using low-order formulas.

Applicable when: The approximation technique has an error
term of predictable form, e.g.
(e.)

M — Nj(h) =) Exh¥,
k=j

where M is the unknown value we are trying to approximate, and

N;(h) the approximation (which has an error O(#).)

Procedure: Use two approximations of the same order, but with
different h; e.g. N;j(h) and N;(h/2). Combine the two
approximations in such a way that the error terms of
order W cancel.
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Consider two first order approximations to M:
M — Ny(h) = Eih¥,
k=1

and 0o Pk
M — Ny(h/2) =) By

k=1

If we let Na(h) = 2N1(h/2) — Ny(h), then

h "\ 2
M — Na(h) = 26,7 - Eth+ 3" EP K,

———— k=2
0

1
EP = <2k_1 - 1) .

Hence, N,(h) is now a second order approximation to M.

where
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Building High Accuracy Approximations 2 of 2

Building Integration Schemes with Lagrange Polynomials

We can play the game again, and combine N,(h) with Np(h/2) to get a
third-order accurate approximation, etc.
h/2) — Na(h)

3

Na(h) No(h/2) + Na(

N(h) = 4N2(h/2;—

N3(h/2) — N3(h
Na(h/2) — Na(h)
24 -1
In general, combining two jth order approximations to get a
(j + 1)st order approximation:

Ns(h) = Na(h/2) +

h/2) — N;(h)
2i-1

Njia(h) = Ny(h/2) + ¢
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Given the nodes {xp, x1, . .
polynomial

., Xn} we use the Lagrange interpolating

n (n+1) X n
P.(x) = Z fiLi(x), with error Ep(x) = f(T(gl()l)) H(X—X,-)
i=0 - i=0

to obtain

Calculus Review — (36/49)




Identifying the Coefficients

Example #1: Trapezoidal Rule

b b n n b n
/ Po(x) dx = / > fili(x) dx = f,-/ Li(x)dx = fia;.
a a a 0

Hence we write

b n
/ f(x)dx ~ Za,-f,-
a i=0

with error given by
b b A(1+1) (¢(x)) <"
E(f):/ E,,(x)dx:/ f(T(ﬁ()l))H(x—x,)dx.
a a " i=0

— (37/49)

Calculus Review

Let a = xp < x3 = b, and use the linear interpolating polynomial

Pi(x) = fo {X_Xl} s {ﬂ} . Then...

Xp—X1 X1 — Xo

h=b-a.

[ i@ =n[ LD o),

— (38/49)

Calculus Review

Example #2: Simpson’s Rule (with optimal error bound)

Degree of Accuracy (Precision) of an Integration Scheme

/Xz f(x) dx —h [f(XQ) + 4f(3X1) + f(Xz) B ;(S)f(4)(f)

X0

Taylor expand f(x) about x:

7 (x)

() = fxa) + £/ (a)(x — x1) + b =)+ — ==+ (x —x)*

£ (x1) F®(&(x))
2 24

Integrating the error term gives

(4) (4)
[ (= P
a 24 60

Using the approximation (q) = Lif(x) — 2f(x1) + f(xo)] — B @ (e
3

X2 Bl W
/XO FO) dx = 2hf0a) + — | 5 [flx0) = 2f0a) + FOe)] = ZF7(&) | +

) s
60

L [f(xg) + 4f(xy) + f(xp) hd ()
=h {—3 } ~ 50" )
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Definition (Degree of Accuracy)

The Degree of Accuracy, or precision, of a quadrature formula is
the largest positive integer n such that the formula is exact for x*
Vk=0,1,...,n.

With this definition:

Scheme Degree of Accuracy
Trapezoidal 1
Simpson's 3

Trapezoidal and Simpson's are examples of a class of methods
known as Newton-Cotes formulas.
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Newton-Cotes Formulas — Two Types

Closed Newton-Cotes Formulas

Two types of Newton-Cotes Formulas:

Closed The (n+ 1) point closed NCF uses nodes x; = xp + ih,
i=0,1,...,n where xp = a, x, = band h = (b—a)/n. It
is called closed since the endpoints are included as nodes.

Open The (n 4 1) point open NCF uses nodes x; = xg + ih,

i=0,1,...,nwhere h=(b—a)/(n+2) and xg = a+h,
xp = b — h. (We label x_1 = a, x,41 = b.)
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The approximation is

where

Calculus Review — (42/49)
Closed Newton-Cotes Formulas — Error Closed Newton-Cotes Formulas — Examples
Theorem (Newton-Cotes Formulas, Error Term) n = 2: Simpson’s Rule
Suppose that Y _:_, aif(x;) denotes the (n+ 1) point closed
Newton-Cotes formula with xo = a, x, = b, and h = (b — a)/n. Then h h® 4)
there exists £ € (a, b) for which 3 f(x0) +4f () + f(x)| — %f (€)
b n hn+3 f(n+2)(£) n )
/a f(X)dX:X(;a,f(X,)+(n+2)| /0 t (t—l)(t—n)dt, n—= 3: Simpson’s %_Rule
i . n+2 3h 3h5
if n is even and f € C"*t*[a, b], and 5 [f(XO) +3f(x1) + 3f(x2) + f(X3):| _ %f(“)(f)
b n n+2 £(n+1) n
/ f(x)dx:Za,-f(x,-)+hfl(§)/ t(t—1)---(t — n)dt,
2 — (n+1)r Jo n = 4: Boole's Rule
if n is odd and f € C"1[a, b]. 2h 8h’
ifnisodd and f € C"a, ] by e [Yf(xo) +32f (x1) + 12f (x2) + 32f(x3) +7f(X4)] TR,
Note that when n is an even integer, the degree of precision is (n + 1). When n is

odd, the degree of precision is only n.
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Composite Simpson's Rule, 1/11

Composite Simpson's Rule, 11/

For an even integer n: Subdivide the interval [a, b] into n
sub-intervals, and apply Simpson’s rule on each consecutive pair of
sub-intervals. With h=(b—a)/n and x; = a+ jh, j=0,1,...,n,
we have

5 n/2

b h & @
/ f(x)dx = 3 f(x0) = FOxn) + > [4f(ij,1) + 2f(xzj)] % S,
a j=1

=t

Theorem (Composite Simpson'’s Rule)
Let f € C*{a,b], n be even, h= (b — a)/n, and x; = a + jh,

b n/2 ; ) . ) .
/ F(x)dx = Z /X2J F(x)dx Jj=0,1,...,n. There exists j1 € (a, b) for which the Composite
a o Simpson’s Rule for n sub-intervals can be written with its error
term as
n/2 h JA: @
= 2| Flaj2) + 4 (xajo1) + Fx)) | — 5= F(E) ¢, )
— 3 90 b h n/
= / Fde = 5 |F(a)~ F(6) + D" RFGy) + 47 (1)
a [—
for some & € [xoj_2, )], if f € C*[a, b]. J=1
. . . . . (b—a) 4 (4)
Since all the interior “even” xp; points appear twice in the sum, we _Wh £ ().
can simplify the expression a bit...
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Romberg Integration Romberg Integration — Implemented
Romberg Integration is the combination of the Composite n . . ‘
Trapezoidal Rule (CTR) g E"'g‘feig:Inggiza’;;Z“EiZ;oirt‘:X) over [0,pi]
R = zeros(7,7);
R(1,1) = (b—a)/2x*(sin(a) + sin(b));
b h n—1 (b ) for k=2:7 (1)
_ —a),2 h = (b—a)/2t"1;
/ f(x)dx = 7 | f(a) + f(b) +2) f0q)| - BT (1) R(k,1)=1/2% (R(k — 1,1) + 2% hx S(sin(a + (2% (1 : (2—2)) — 1) % h)));
a j=1 end
for j=2:7
. . for k=j:7
and Richardson Extrapolation. RG§) = R(k.j— 1)+ (R(kJj — 1) — R(k — 1, — 1))/(40-D—1);
end
It yields a method for generating high-accuracy integral end
approximations using several “measurements” using the relatively disp(R)
crude (inaccurate) Trapezoidal Rule.
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Next Time, and Beyond

Simulating ODEs using Euler's method, and improvements...
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