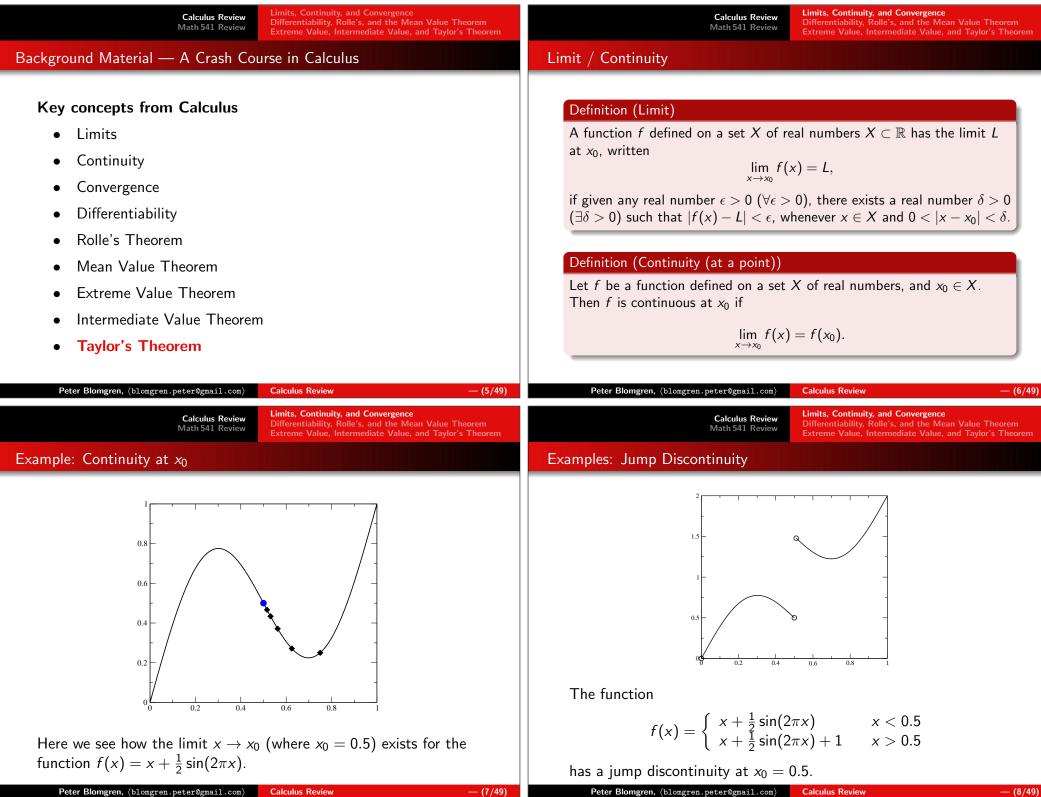
Calculus Review Math 541 Review	Calculus Review Math 541 Review	
	Outline	
Numerical Solutions to Differential Equations Lecture Notes #2 — Calculus and Math 541 Review	1 Calculus Review	
Peter Blomgren, <pre></pre>	 Limits, Continuity, and Convergence Differentiability, Rolle's, and the Mean Value Theorem Extreme Value, Intermediate Value, and Taylor's Theorem 	
Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://terminus.sdsu.edu/	 Math 541 Review Interpolation, Differentiation, Extrapolation Integration, Degree of Accuracy Newton-Cotes Formulas, Composite Integration 	
Spring 2015 Peter Blomgren, (blomgren.peter@gmail.com) Calculus and Math 541 Review	Peter Blomgren, (blomgren.peter@gmail.com) Calculus and Math 541 Review — (2/49)	
Calculus Review	Calculus Review Math 541 Review	
Current Lecture — Reviewing Math 541 and Calculus	Why Review Calculus???	
The purpose of this lecture is to "warm up" by reviewing some forgotten(?) material from the past. Note that complete lecture notes for Math 541 are available on-line at http://terminus.sdsu.edu/SDSU/Math541.f2014).	It's a good warm-up for our brains! When developing numerical schemes we will use theorems from calculus to guarantee that our algorithms make sense. If the theory is sound, when our programs fail we look for bugs in the code!	

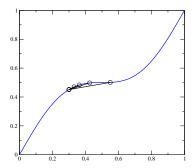


— (8/49)



Differentiability, Rolle's, and the Mean Value Theorem Extreme Value, Intermediate Value, and Taylor's Theorem

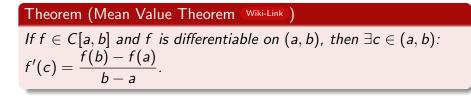
Illustration: Differentiability

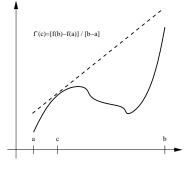


Here we see that the limit

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$

exists — and approaches the slope / derivative at x_0 , $f'(x_0)$.





Calculus Review Math 541 Review

Differentiability, Rolle's, and the Mean Value Theorem Extreme Value, Intermediate Value, and Taylor's Theorem

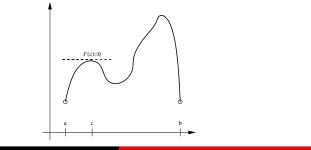
Continuity / Rolle's Theorem

Theorem (Differentiability \Rightarrow Continuity)

If f is differentiable at x_0 , then f is continuous at x_0 .

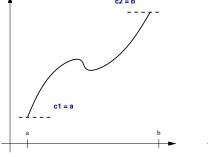
Theorem (Rolle's Theorem Wiki-Link)

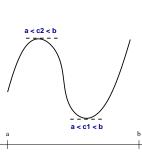
Suppose $f \in C[a, b]$ and that f is differentiable on (a, b). If f(a) = f(b), then $\exists c \in (a, b)$: f'(c) = 0.



Peter Blomgren, {blomgren.peter@gmail.com} **Calculus Review** - (14/49) Differentiability, Rolle's, and the Mean Value Theorem

Theorem (Extreme Value Theorem Wiki-Link)		
If $f \in C[a, b]$ then $\exists c_1, c_2 \in [a, b]$: $f(c_1) \le f(x) \le f(c_2)$		
$\forall x \in [a, b]$. If f is differentiable on (a, b) then the numbers c_1, c_2		
occur either at the endpoints of $[a, b]$ or where $f'(x) = 0$.		
	c2 = b	





Limits, Continuity, and Convergence Differentiability, Rolle's, and the Mean Value Theorem Extreme Value, Intermediate Value, and Taylor's Theorem

Intermediate Value Theorem

Theorem (Intermediate Value Theorem Wiki-Link

if $f \in C[a, b]$ and K is any number between f(a) and f(b), then there exists a number c in (a, b) for which f(c) = K.

Taylor's Theorem

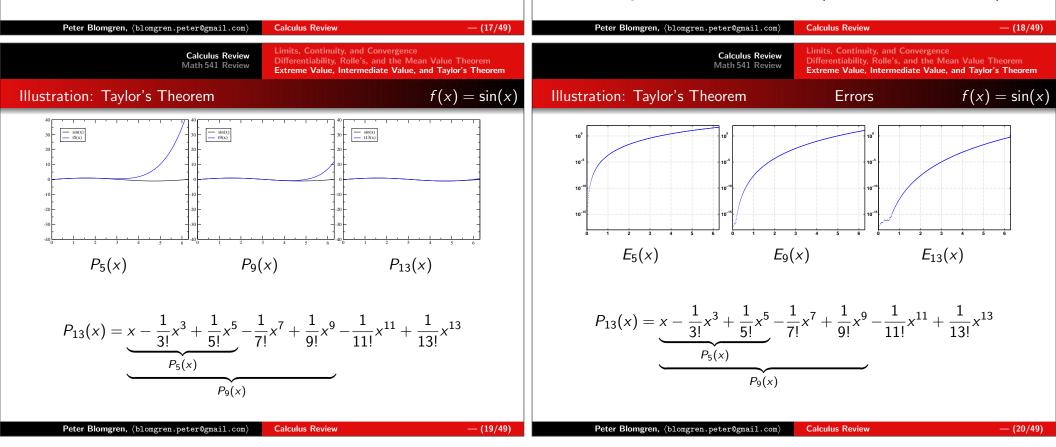
Theorem (Taylor's Theorem Wiki-Link)

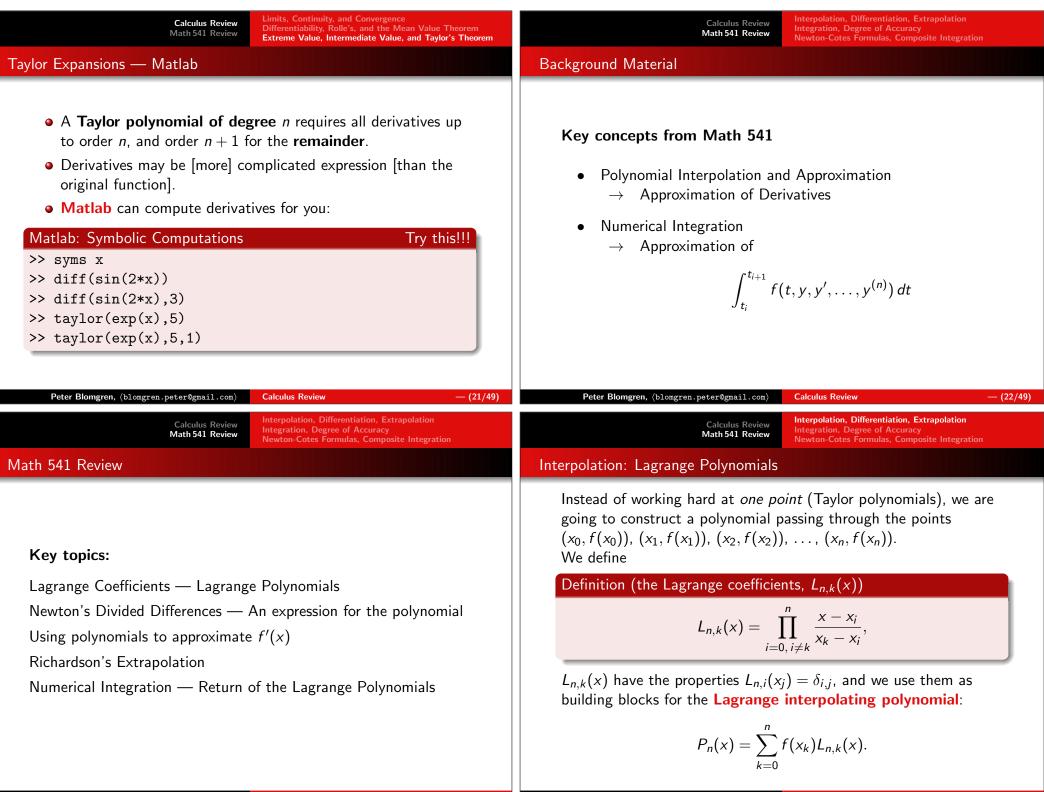
Suppose $f \in C^n[a, b]$, $f^{(n+1)} \exists$ on [a, b], and $x_0 \in [a, b]$. Then $\forall x \in (a, b)$, $\exists \xi(x) \in (x_0, x)$ with $f(x) = P_n(x) + R_n(x)$ where

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k, \quad R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{(n+1)}.$$

 $P_n(x)$ is called the **Taylor polynomial of degree** *n*, and $R_n(x)$ is the **remainder term** (truncation error).

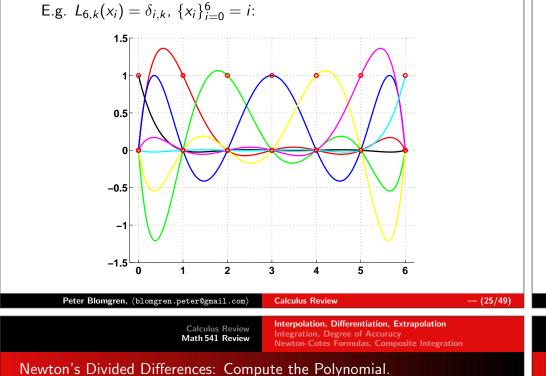
This theorem is **extremely important** for numerical analysis; Taylor expansion is a fundamental step in the derivation of many of the algorithms we see in this class (and in Math 542 & 693ab).





Interpolation, Differentiation, Extrapolation Integration, Degree of Accuracy Newton-Cotes Formulas, Composite Integration

The Lagrange Coefficients, $L_{n,k}(x)$.



We can write the interpolating polynomial with the help of the divided differences:

$$P_n(x) = f[x_0] + \sum_{k=1}^n \left[f[x_0, \dots, x_k] \prod_{m=0}^{k-1} (x - x_m) \right].$$

where $f[x_0, ..., x_k]$ are the diagonal entries from the divided difference table:

Calculus Review Math 541 Review Interpolation, Differentiation, Extrapolation Integration, Degree of Accuracy Newton-Cotes Formulas, Composite Integration

Newton's Divided Differences.

Zeroth Divided Difference:

$$f[x_i] = f(x_i).$$

First Divided Difference:

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}$$

Second Divided Difference:

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}.$$

kth Divided Difference:

$$f[x_i, x_{i+1}, \ldots, x_{i+K}] = \frac{f[x_{i+1}, x_{i+2}, \ldots, x_{i+K}] - f[x_i, x_{i+1}, \ldots, x_{i+K-1}]}{x_{i+K} - x_i}.$$

 Peter Blomgren, (blomgren.peter@gmail.com)
 Calculus Review
 — (26/49)

 Calculus Review Math 541 Review Newton-Cotes Formulas, Composite Integration
 Interpolation, Differentiation, Extrapolation Integration, Degree of Accuracy Newton-Cotes Formulas, Composite Integration

Numerical Differentiation — Using Polynomials

Suppose $\{x_0, x_1, \ldots, x_n\}$ are distinct points in an interval \mathcal{I} , and $f \in C^{n+1}(\mathcal{I})$, we can write

$$f(x) = \sum_{k=0}^{n} f(x_k) L_k(x) + \frac{\prod_{k=0}^{n} (x - x_k)}{(n+1)!} f^{(n+1)}(\xi).$$

Formal differentiation gives:

$$f'(x) = \sum_{k=0}^{n} f(x_k) L'_k(x) + \frac{d}{dx} \left[\frac{\prod_{k=0}^{n} (x - x_k)}{(n+1)!} \right] f^{(n+1)}(\xi) \\ + \frac{\prod_{k=0}^{n} (x - x_k)}{(n+1)!} \frac{d}{dx} \left[f^{(n+1)}(\xi) \right].$$

Since we will be evaluating $f'(x_j)$ the last term gives no contribution.

Interpolation, Differentiation, Extrapolation Integration, Degree of Accuracy Newton-Cotes Formulas, Composite Integration

The (n + 1) point formula for approximating $f'(x_i)$

$$\mathbf{f}'(\mathbf{x}_j) = \sum_{\mathbf{k}=\mathbf{0}}^{\mathbf{n}} \mathbf{f}(\mathbf{x}_{\mathbf{k}}) \mathbf{L}'_{\mathbf{k}}(\mathbf{x}_j) + \frac{\mathbf{f}^{(\mathbf{n}+1)}(\xi)}{(\mathbf{n}+1)!} \left[\prod_{\substack{k = 0 \\ k \neq j}}^{\mathbf{n}} (\mathbf{x}_j - \mathbf{x}_k) \right]$$

The formula is most useful when the node points are equally spaced, *i.e.*

$$x_k = x_0 + kh.$$

Example: 3-point Formulas, I/III

Building blocks:

$$L_{2,0}(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}, \quad L'_{2,0}(x) = \frac{2x - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)}$$
$$L_{2,1}(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}, \quad L'_{2,1}(x) = \frac{2x - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)}$$
$$L_{2,2}(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}, \quad L'_{2,2}(x) = \frac{2x - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)}.$$

Formulas:

$$\begin{array}{lcl} f'(x_j) & = & f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right] \\ & + & f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{f^{(3)}(\xi_j)}{6} \prod_{\substack{k = 0 \\ k \neq j}}^2 (x_j - x_k). \end{array}$$

 Peter Blomgren, (blomgren.peter@gmail.com)
 Calculus Review
 — (29/49)
 Peter Blomgren, (blomgren.peter@gmail.com)
 Calculus Review

 Calculus Review
 Interpolation, Differentiation, Extrapolation
 Interpolation, Differentiation, Extrapolation
 Interpolation, Differentiation, Extrapolation

 Math 541 Review
 Interpolation, Degree of Accuracy
 Newton-Cotes Formulas, Composite Integration
 Integration, Degree of Accuracy

Example: 3-point Formulas, II/III

$$\begin{cases} f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_1) - f(x_2) \right] + \frac{h^2}{3} f^{(3)}(\xi_0) \\ f'(x_1) = \frac{1}{2h} \left[-f(x_0) + f(x_2) \right] - \frac{h^2}{6} f^{(3)}(\xi_1) \\ f'(x_2) = \frac{1}{2h} \left[f(x_0) - 4f(x_1) + 3f(x_2) \right] + \frac{h^2}{3} f^{(3)}(\xi_2) \end{cases}$$

Use $x_k = x_0 + kh$:

$$\begin{cases} f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0) \\ f'(x_0 + h) = \frac{1}{2h} \left[-f(x_0) + f(x_0 + 2h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1) \\ f'(x_0 + 2h) = \frac{1}{2h} \left[f(x_0) - 4f(x_0 + h) + 3f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_2) \end{cases}$$

Example: 3-point Formulas, III/III

$$\begin{cases} f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0) \\ f'(x_0) = \frac{1}{2h} \left[-f(x_0 - h) + f(x_0 + h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1) \\ f'(x_0) = \frac{1}{2h} \left[f(x_0 - 2h) - 4f(x_0 - h) + 3f(x_0) \right] + \frac{h^2}{3} f^{(3)}(\xi_2) \end{cases}$$

After the substitution $x_0 + h \rightarrow x_0$ in the second equation, and $x_0 + 2h \rightarrow x_0$ in the third equation.

- **Note#1:** The third equation can be obtained from the first one by setting $h \rightarrow -h$.
- **Note#2:** The error is smallest in the second equation.
- **Note#3:** The second equation is a two-sided approximation, the first and third one-sided approximations.

- (30/49)

Calculus Review Math 541 Review Math 541 Review

Richardson's Extrapolation

- What it is: A general method for generating high-accuracy results using low-order formulas.
- **Applicable when:** The approximation technique has an error term of predictable form, *e.g.*

$$M-N_j(h)=\sum_{k=j}^{\infty}E_kh^k,$$

where M is the unknown value we are trying to approximate, and $N_i(h)$ the approximation (which has an error $\mathcal{O}(h^j)$.)

Procedure: Use two approximations of the same order, but with *different h*; *e.g.* $N_j(h)$ and $N_j(h/2)$. Combine the two approximations in such a way that the error terms of order h^j cancel.

1 of 2

Building High Accuracy Approximations

Consider two first order approximations to M:

$$M-N_1(h)=\sum_{k=1}^{\infty}E_kh^k,$$

and

$$M-N_1(h/2)=\sum_{k=1}^{\infty}E_k\frac{h^k}{2^k}.$$

If we let $N_2(h)=2N_1(h/2)-N_1(h),$ then

$$M - N_2(h) = \underbrace{2E_1\frac{h}{2} - E_1h}_{0} + \sum_{k=2}^n E_k^{(2)}h^k,$$

where

$$E_k^{(2)} = E_k \left(\frac{1}{2^{k-1}} - 1 \right).$$

Hence, $N_2(h)$ is now a second order approximation to M.

Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Calculus Review	— (33/49)	Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Calculus Review	— (34/49)
Calculus Review Math 541 Review	Interpolation, Differentiation, Extrapolation Integration, Degree of Accuracy Newton-Cotes Formulas, Composite Integratio	n	Calculus Review Math 541 Review	Interpolation, Differentiation, Extrapolation Integration, Degree of Accuracy Newton-Cotes Formulas, Composite Integratio	n
Building High Accuracy Approximations 2 of 2		Building Integration Schemes with Lagrange Polynomials			

We can play the game again, and combine $N_2(h)$ with $N_2(h/2)$ to get a third-order accurate approximation, etc.

$$\begin{split} \mathsf{N}_3(h) &= \frac{4\mathsf{N}_2(h/2) - \mathsf{N}_2(h)}{3} = \mathsf{N}_2(h/2) + \frac{\mathsf{N}_2(h/2) - \mathsf{N}_2(h)}{3} \\ \mathsf{N}_4(h) &= \mathsf{N}_3(h/2) + \frac{\mathsf{N}_3(h/2) - \mathsf{N}_3(h)}{7} \\ \mathsf{N}_5(h) &= \mathsf{N}_4(h/2) + \frac{\mathsf{N}_4(h/2) - \mathsf{N}_4(h)}{2^4 - 1} \end{split}$$

In general, combining two *j*th order approximations to get a (j + 1)st order approximation:

 $N_{j+1}(h) = N_j(h/2) + \frac{N_j(h/2) - N_j(h)}{2^j - 1}$

Given the nodes $\{x_0, x_1, \ldots, x_n\}$ we use the Lagrange interpolating polynomial

$$P_n(x) = \sum_{i=0}^n f_i L_i(x), \text{ with error } E_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^n (x-x_i)$$

to obtain

$$\int_a^b f(x) \, dx = \int_a^b P_n(x) \, dx + \int_a^b E_n(x) \, dx.$$

Integration, Degree of Accuracy

Identifying the Coefficients

$$\int_{a}^{b} P_{n}(x) dx = \int_{a}^{b} \sum_{i=0}^{n} f_{i} L_{i}(x) dx = \sum_{i=0}^{n} f_{i} \underbrace{\int_{a}^{b} L_{i}(x) dx}_{a_{i}} = \sum_{i=0}^{n} f_{i} a_{i}.$$

Hence we write

$$\int_a^b f(x) \, dx \approx \sum_{i=0}^n a_i f_i$$

with error given by

$$E(f) = \int_{a}^{b} E_{n}(x) \, dx = \int_{a}^{b} \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^{n} (x-x_{i}) \, dx.$$

 Peter Blomgren, (blomgren.peter@gmail.com)
 Calculus Review

 Calculus Review Math 541 Review
 Interpolation, Differentiation, Extrapolation Integration, Degree of Accuracy Newton-Cotes Formulas, Composite Integration

Example #2: Simpson's Rule (with optimal error bound)

$$\int_{x_0}^{x_2} \mathbf{f}(\mathbf{x}) \, d\mathbf{x} = \mathbf{h} \left[\frac{\mathbf{f}(\mathbf{x}_0) + 4\mathbf{f}(\mathbf{x}_1) + \mathbf{f}(\mathbf{x}_2)}{3} \right] - \frac{\mathbf{h}^5}{90} \mathbf{f}^{(4)}(\xi).$$

Taylor expand f(x) about x_1 :

$$f(x) = f(x_1) + f'(x_1)(x - x_1) + \frac{f''(x_1)}{2}(x - x_1)^2 + \frac{f'''(x_1)}{6}(x - x_1)^3 + \frac{f^{(4)}(\xi(x))}{24}(x - x_1)^4$$

Integrating the error term gives

$$\int_{a}^{b} \frac{f^{(4)}(\xi(x))}{24} (x-x_1)^4 dx = \frac{f^{(4)}(\xi_1)}{60} h^5.$$

Using the approximation $f''(x_1) = \frac{1}{h^2} [f(x_0) - 2f(x_1) + f(x_2)] - \frac{h^2}{12} f^{(4)}(\xi)$

$$\int_{x_0}^{x_2} f(x) \, dx = 2hf(x_1) + \frac{h^3}{3} \left[\frac{1}{h^2} [f(x_0) - 2f(x_1) + f(x_2)] - \frac{h^2}{12} f^{(4)}(\xi_2) \right] + \frac{f^{(4)}(\xi_1)}{60} h^5$$
$$= h \left[\frac{f(x_0) + 4f(x_1) + f(x_2)}{3} \right] - \frac{h^5}{90} f^{(4)}(\xi).$$

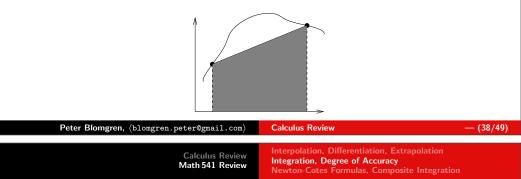
Interpolation, Differentiation, Extrapolation Integration, Degree of Accuracy Newton-Cotes Formulas, Composite Integration

Example #1: Trapezoidal Rule

Let $a = x_0 < x_1 = b$, and use the linear interpolating polynomial

$$P_1(x) = f_0\left[\frac{x-x_1}{x_0-x_1}\right] + f_1\left[\frac{x-x_0}{x_1-x_0}\right],$$
 Then...

$$\int_a^b \mathbf{f}(\mathbf{x}) \, \mathrm{d} \mathbf{x} = \mathbf{h} \left[\frac{\mathbf{f}(\mathbf{x}_0) + \mathbf{f}(\mathbf{x}_1)}{2} \right] - \frac{\mathbf{h}^3}{12} \mathbf{f}''(\xi), \quad h = b - a.$$



Degree of Accuracy (Precision) of an Integration Scheme

Definition (Degree of Accuracy)

The **Degree of Accuracy**, or **precision**, of a quadrature formula is the largest positive integer *n* such that the formula is exact for x^k $\forall k = 0, 1, ..., n$.

With this definition:

Scheme	Degree of Accuracy
Trapezoidal	1
Simpson's	3

Trapezoidal and Simpson's are examples of a class of methods known as **Newton-Cotes formulas**.

— (37/49)

Newton-Cotes Formulas — Two Types

Closed Newton-Cotes Formulas

Two types of Newton-Cotes Formulas:

Calculus Review

Math 541 Review

- Closed The (n + 1) point closed NCF uses nodes $x_i = x_0 + ih$, i = 0, 1, ..., n, where $x_0 = a$, $x_n = b$ and h = (b-a)/n. It is called closed since the endpoints are included as nodes.
- Open The (n + 1) point open NCF uses nodes $x_i = x_0 + ih$, i = 0, 1, ..., n where h = (b - a)/(n + 2) and $x_0 = a + h$, $x_n = b - h$. (We label $x_{-1} = a$, $x_{n+1} = b$.)

The approximation is

$$\int_a^b f(x) \, dx \approx \sum_{i=0}^n a_i f(x_i),$$

where

$$a_{i} = \int_{x_{0}}^{x_{n}} L_{n,i}(x) dx = \int_{x_{0}}^{x_{n}} \prod_{\substack{j = 0 \\ j \neq i}}^{n} \frac{(x - x_{j})}{(x_{i} - x_{j})} dx.$$

Peter Blomgren, (blomgren.peter@gmail.com) Calculus Review — (41/49) Calculus Review Math 541 Review Interpolation, Differentiation, Extrapolation Integration, Degree of Accuracy Newton-Cotes Formulas, Composite Integration	Peter Blomgren, (blomgren.peter@gmail.com) Calculus Review — (42/49) Calculus Review Math 541 Review Interpolation, Differentiation, Extrapolation Integration, Degree of Accuracy Newton-Cotes Formulas, Composite Integration	
Closed Newton-Cotes Formulas — Error	Closed Newton-Cotes Formulas — Examples	
Theorem (Newton-Cotes Formulas, Error Term) Suppose that $\sum_{i=0}^{n} a_i f(x_i)$ denotes the $(n + 1)$ point closed Newton-Cotes formula with $x_0 = a$, $x_n = b$, and $h = (b - a)/n$. Then	n = 2: Simpson's Rule $h \left[f(x_1, y_2, \dots, f(x_n)) - h^5 f(x_n) + h^5$	
there exists $\xi \in (a, b)$ for which	$\frac{h}{3}\left[f(x_0) + 4f(x_1) + f(x_2)\right] - \frac{h^3}{90}f^{(4)}(\xi)$	
$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} a_{i}f(x_{i}) + \frac{h^{n+3}f^{(n+2)}(\xi)}{(n+2)!} \int_{0}^{n} t^{2}(t-1)\cdots(t-n)dt,$	$n = 3$: Simpson's $\frac{3}{8}$ -Rule	
if n is even and $f \in C^{n+2}[a, b]$, and $\int_{-\infty}^{b} f(a) da = \sum_{n=1}^{n} f(a) da = \int_{-\infty}^{n} f(a) da = \int_{-\infty$	$\frac{3h}{8} \left[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right] - \frac{3h^5}{80} f^{(4)}(\xi)$	
$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} a_{i}f(x_{i}) + \frac{h^{n+2}f^{(n+1)}(\xi)}{(n+1)!} \int_{0}^{n} t(t-1)\cdots(t-n)dt,$	n = 4: Boole's Rule	
if n is odd and $f \in C^{n+1}[a, b]$.	$\frac{2h}{45} \left[7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4) \right] - \frac{8h^7}{945} f^{(6)}(\xi)$	
Note that when n is an even integer, the degree of precision is $(n + 1)$. When n is odd, the degree of precision is only n .		
Peter Blomgren, (blomgren.peter@gmail.com) Calculus Review - (43/49)	Peter Blomgren, {blomgren.peter@gmail.com} Calculus Review - (44/49)	

Interpolation, Differentiation, Extrapolation Integration, Degree of Accuracy Newton-Cotes Formulas, Composite Integration

Composite Simpson's Rule, I/II

For an even integer *n*: Subdivide the interval [a, b] into *n* sub-intervals, and apply Simpson's rule on each consecutive pair of sub-intervals. With h = (b - a)/n and $x_j = a + jh$, j = 0, 1, ..., n, we have

$$\int_{a}^{b} f(x)dx = \sum_{j=1}^{n/2} \int_{x_{2j-2}}^{x_{2j}} f(x)dx$$
$$= \sum_{j=1}^{n/2} \left\{ \frac{h}{3} \left[f(x_{2j-2}) + 4f(x_{2j-1}) + f(x_{2j}) \right] - \frac{h^{5}}{90} f^{(4)}(\xi_{j}) \right\},$$

for some $\xi_j \in [x_{2j-2}, x_{2j}]$, if $f \in C^4[a, b]$.

1-

Since all the interior "even" x_{2j} points appear twice in the sum, we can simplify the expression a bit...

Peter Blomgren, blomgren.peter@gmail.com **Calculus Review** — (45/49) Peter Blomgren, {blomgren.peter@gmail.com} **Calculus Review** — (46/49) Interpolation, Differentiation, Extrapolation Interpolation, Differentiation, Extrapolation **Calculus Review Calculus Review** Integration, Degree of Accuracy Integration, Degree of Accuracy Math 541 Review Math 541 Review Newton-Cotes Formulas, Composite Integration Newton-Cotes Formulas, Composite Integration **Romberg Integration** Romberg Integration — Implemented Romberg Integration is the combination of the **Composite** % Romberg Integration for sin(x) over [0,pi] **Trapezoidal Rule** (CTR) a = 0; b = pi; % The Endpoints R = zeros(7,7);R(1,1) = (b-a)/2 * (sin(a) + sin(b));for k = 2:7 $\int_{a}^{b} f(x) dx = \frac{h}{2} \left| f(a) + f(b) + 2 \sum_{i=1}^{n-1} f(x_i) \right| - \frac{(b-a)}{12} h^2 f''(\mu)$ h = $(b-a)/2^{(k-1)}$: $R(k,1)=1/2 * (R(k-1,1)+2 * h * \sum (sin(a+(2 * (1 : (2^{(k-2)}))-1) * h)));$ end for i = 2:7for k = i : 7and Richardson Extrapolation. $R(k, i) = R(k, i-1) + (R(k, i-1) - R(k-1, i-1))/(4^{(j-1)}-1);$ end end It yields a method for generating high-accuracy integral disp(R) approximations using several "measurements" using the relatively crude (inaccurate) Trapezoidal Rule.

Calculus Review Math 541 Review Interpolation, Differentiation, Extrapolation Integration, Degree of Accuracy Newton-Cotes Formulas, Composite Integration

Composite Simpson's Rule, II/II

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \left[f(x_{0}) - f(x_{n}) + \sum_{j=1}^{n/2} \left[4f(x_{2j-1}) + 2f(x_{2j}) \right] \right] - \frac{h^{5}}{90} \sum_{j=1}^{n/2} f^{(4)}(\xi_{j}).$$

Theorem (Composite Simpson's Rule)

Let $f \in C^4[a, b]$, *n* be even, h = (b - a)/n, and $x_j = a + jh$, j = 0, 1, ..., n. There exists $\mu \in (a, b)$ for which the **Composite Simpson's Rule** for *n* sub-intervals can be written with its error term as

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \left[f(a) - f(b) + \sum_{j=1}^{n/2} \left[2f(x_{2j}) + 4f(x_{2j+1}) \right] \right] - \frac{(b-a)}{180} h^{4} f^{(4)}(\mu).$$

Interpolation, Differentiation, Extrapolation Integration, Degree of Accuracy Newton-Cotes Formulas, Composite Integration

Next Time, and Beyond

Simulating ODEs using Euler's method, and improvements...

Peter Blomgren, blomgren.peter@gmail.com Calculus Review

— (49/49)