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Current Lecture — Reviewing Math 541 and Calculus

The purpose of this lecture is to “warm up” by reviewing some
forgotten(?) material from the past.

Note that complete lecture notes for Math 541 are available
on-line at http://terminus.sdsu.edu/SDSU/Math541 f2014/ .
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Limits, Continuity, and Convergence
Differentiability, Rolle’s, and the Mean Value Theorem
Extreme Value, Intermediate Value, and Taylor’s Theorem

Why Review Calculus???

It’s a good warm-up for our brains!

When developing numerical schemes we will use theorems from
calculus to guarantee that our algorithms make sense.

If the theory is sound, when our programs fail we look for bugs in
the code!
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Background Material — A Crash Course in Calculus

Key concepts from Calculus

• Limits

• Continuity

• Convergence

• Differentiability

• Rolle’s Theorem

• Mean Value Theorem

• Extreme Value Theorem

• Intermediate Value Theorem

• Taylor’s Theorem
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Limit / Continuity

Definition (Limit)

A function f defined on a set X of real numbers X ⊂ R has the limit L
at x0, written

lim
x→x0

f (x) = L,

if given any real number ǫ > 0 (∀ǫ > 0), there exists a real number δ > 0
(∃δ > 0) such that |f (x)− L| < ǫ, whenever x ∈ X and 0 < |x − x0| < δ.

Definition (Continuity (at a point))

Let f be a function defined on a set X of real numbers, and x0 ∈ X .
Then f is continuous at x0 if

lim
x→x0

f (x) = f (x0).
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Example: Continuity at x0

0 0.2 0.4 0.6 0.8 1
0
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1

Here we see how the limit x → x0 (where x0 = 0.5) exists for the
function f (x) = x + 1

2 sin(2πx).
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Examples: Jump Discontinuity

0 0.2 0.4 0.6 0.8 1
0

0.5

1
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2

The function

f (x) =

{
x + 1

2 sin(2πx) x < 0.5
x + 1

2 sin(2πx) + 1 x > 0.5

has a jump discontinuity at x0 = 0.5.
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Examples: “Spike” Discontinuity

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

The function

f (x) =

{
1 x = 0.5
0 x 6= 0.5

has a discontinuity at x0 = 0.5.

The limit exists, but

lim
x→0.5

f (x) = 0 6= 1
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Continuity / Convergence

Definition (Continuity (in an interval))

The function f is continuous on the set X (f ∈ C (X )) if it is
continuous at each point x in X .

Definition (Convergence of a sequence)

Let x = {xn}
∞
n=1 be an infinite sequence of real (or complex

numbers). The sequence x converges to x (has the limit x) if
∀ǫ > 0, ∃N(ǫ) ∈ Z

+: |xn − x | < ǫ ∀n > N(ǫ). The notation

lim
n→∞

xn = x

means that the sequence {xn}
∞
n=1 converges to x .
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Illustration: Convergence of a Complex Sequence

1

2

3

4

k>=N

N−2

N−1

A sequence in z = {zk}
∞
k=1 converges to z0 ∈ C (the black dot) if

for any ǫ (the radius of the circle), there is a value N (which
depends on ǫ) so that the “tail” of the sequence zt = {zk}

∞
k=N is

inside the circle.
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Differentiability

Theorem

If f is a function defined on a set X of real numbers and x0 ∈ X, the the following

statements are equivalent:
(a) f is continuous at x0
(b) If {xn}∞n=1 is any sequence in X converging to x0, then limn→∞ f (xn) = f (x0).

Definition (Differentiability (at a point))

Let f be a function defined on an open interval containing x0 (a < x0 < b). f is
differentiable at x0 if

f ′(x0) = lim
x→x0

f (x)− f (x0)

x − x0
exists.

If the limit exists, f ′(x0) is the derivative at x0.

Definition (Differentiability (in an interval))

If f ′(x0) exists ∀x0 ∈ X , then f is differentiable on X .
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Illustration: Differentiability
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1

Here we see that the limit

lim
x→x0

f (x)− f (x0)

x − x0

exists — and approaches the slope / derivative at x0, f
′(x0).
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Continuity / Rolle’s Theorem

Theorem (Differentiability ⇒ Continuity)

If f is differentiable at x0, then f is continuous at x0.

Theorem (Rolle’s Theorem Wiki-Link )

Suppose f ∈ C [a, b] and that f is differentiable on (a, b). If f (a) = f (b),
then ∃c ∈ (a, b): f ′(c) = 0.

a bc

f’(c)=0
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Mean Value Theorem

Theorem (Mean Value Theorem Wiki-Link )

If f ∈ C [a, b] and f is differentiable on (a, b), then ∃c ∈ (a, b):

f ′(c) =
f (b)− f (a)

b − a
.

a bc

f’(c)=[f(b)−f(a)] / [b−a]

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Calculus Review — (15/49)

http://en.wikipedia.org/wiki/Mean_value_theorem


Calculus Review
Math 541 Review

Limits, Continuity, and Convergence
Differentiability, Rolle’s, and the Mean Value Theorem
Extreme Value, Intermediate Value, and Taylor’s Theorem

Extreme Value Theorem

Theorem (Extreme Value Theorem Wiki-Link )

If f ∈ C [a, b] then ∃c1, c2 ∈ [a, b]: f (c1) ≤ f (x) ≤ f (c2)
∀x ∈ [a, b]. If f is differentiable on (a, b) then the numbers c1, c2
occur either at the endpoints of [a, b] or where f ′(x) = 0.

a b

c1 = a

c2 = b

a b
a < c1 < b

a < c2 < b
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Intermediate Value Theorem

Theorem (Intermediate Value Theorem Wiki-Link )

if f ∈ C [a, b] and K is any number between f (a) and f (b), then
there exists a number c in (a, b) for which f (c) = K.
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Taylor’s Theorem

Theorem (Taylor’s Theorem Wiki-Link )

Suppose f ∈ Cn[a, b], f (n+1)∃ on [a, b], and x0 ∈ [a, b]. Then
∀x ∈ (a, b), ∃ξ(x) ∈ (x0, x) with f (x) = Pn(x) + Rn(x) where

Pn(x) =
n∑

k=0

f (k)(x0)

k!
(x−x0)

k , Rn(x) =
f (n+1)(ξ(x))

(n + 1)!
(x−x0)

(n+1).

Pn(x) is called the Taylor polynomial of degree n, and Rn(x) is
the remainder term (truncation error).

This theorem is extremely important for numerical analysis;
Taylor expansion is a fundamental step in the derivation of many
of the algorithms we see in this class (and in Math 542 & 693ab).
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Illustration: Taylor’s Theorem f (x) = sin(x)
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sin(x)
t1(x)

P1(x) = x
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Illustration: Taylor’s Theorem f (x) = sin(x)
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Illustration: Taylor’s Theorem f (x) = sin(x)
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Illustration: Taylor’s Theorem Errors f (x) = sin(x)
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E5(x) = |f (x)− P5(x)|
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Taylor Expansions — Matlab

A Taylor polynomial of degree n requires all derivatives up
to order n, and order n + 1 for the remainder.

Derivatives may be [more] complicated expression [than the
original function].

Matlab can compute derivatives for you:

Matlab: Symbolic Computations Try this!!!

>> syms x

>> diff(sin(2*x))

>> diff(sin(2*x),3)

>> taylor(exp(x),5)

>> taylor(exp(x),5,1)
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Newton-Cotes Formulas, Composite Integration

Background Material

Key concepts from Math 541

• Polynomial Interpolation and Approximation
→ Approximation of Derivatives

• Numerical Integration
→ Approximation of

∫ ti+1

ti

f (t, y , y ′, . . . , y (n)) dt
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Math 541 Review

Key topics:

Lagrange Coefficients — Lagrange Polynomials

Newton’s Divided Differences — An expression for the polynomial

Using polynomials to approximate f ′(x)

Richardson’s Extrapolation

Numerical Integration — Return of the Lagrange Polynomials
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Interpolation: Lagrange Polynomials

Instead of working hard at one point (Taylor polynomials), we are
going to construct a polynomial passing through the points
(x0, f (x0)), (x1, f (x1)), (x2, f (x2)), . . . , (xn, f (xn)).
We define

Definition (the Lagrange coefficients, Ln,k(x))

Ln,k(x) =
n∏

i=0, i 6=k

x − xi
xk − xi

,

Ln,k(x) have the properties Ln,i (xj) = δi ,j , and we use them as
building blocks for the Lagrange interpolating polynomial:

Pn(x) =
n∑

k=0

f (xk)Ln,k(x).
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The Lagrange Coefficients, Ln,k(x).

E.g. L6,0(x0) = 1, L6,0(xi ) = 0, ∀i 6= 0, {xi}
6
i=0 = i :
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The Lagrange Coefficients, Ln,k(x).

E.g. L6,1(x1) = 1, L6,1(xi ) = 0, ∀i 6= 1, {xi}
6
i=0 = i :
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The Lagrange Coefficients, Ln,k(x).

E.g. L6,2(x2) = 1, L6,2(xi ) = 0, ∀i 6= 2, {xi}
6
i=0 = i :
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The Lagrange Coefficients, Ln,k(x).

E.g. L6,3(x3) = 1, L6,3(xi ) = 0, ∀i 6= 3, {xi}
6
i=0 = i :
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The Lagrange Coefficients, Ln,k(x).

E.g. L6,4(x4) = 1, L6,4(xi ) = 0, ∀i 6= 4, {xi}
6
i=0 = i :
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The Lagrange Coefficients, Ln,k(x).

E.g. L6,5(x5) = 1, L6,5(xi ) = 0, ∀i 6= 5, {xi}
6
i=0 = i :
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The Lagrange Coefficients, Ln,k(x).

E.g. L6,6(x6) = 1, L6,6(xi ) = 0, ∀i 6= 6, {xi}
6
i=0 = i :
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The Lagrange Coefficients, Ln,k(x).

E.g. L6,k(xi ) = δi ,k , {xi}
6
i=0 = i :
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Newton’s Divided Differences.

Zeroth Divided Difference:

f [xi ] = f (xi ).

First Divided Difference:

f [xi , xi+1] =
f [xi+1]− f [xi ]

xi+1 − xi
.

Second Divided Difference:

f [xi , xi+1, xi+2] =
f [xi+1, xi+2]− f [xi , xi+1]

xi+2 − xi
.

kth Divided Difference:

f [xi , xi+1, . . . , xi+K ] =
f [xi+1, xi+2, . . . , xi+k ]− f [xi , xi+1, . . . , xi+k−1]

xi+k − xi
.
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Newton’s Divided Differences: Compute the Polynomial.

We can write the interpolating polynomial with the help of the
divided differences:

Pn(x) = f [x0] +
n∑

k=1

[

f [x0, . . . , xk ]
k−1∏

m=0

(x − xm)

]

.

where f [x0, . . . , xk ] are the diagonal entries from the divided
difference table:

x0 f [x0]
x1 f [x1] f [x0, x1]
x2 f [x2] f [x1, x2] f [x0, x1, x2]
...

...
...

...
. . .

f [x1, x2]− f [x0, x1]

x2 − x0
.
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Numerical Differentiation — Using Polynomials

Suppose {x0, x1, . . . , xn} are distinct points in an interval I, and
f ∈ Cn+1(I), we can write

f (x) =

n∑

k=0

f (xk)Lk(x) +

∏n
k=0(x − xk)

(n + 1)!
f (n+1)(ξ).

Formal differentiation gives:

f ′(x) =
n∑

k=0

f (xk)L
′
k(x) +

d

dx

[∏n
k=0(x − xk)

(n + 1)!

]

f (n+1)(ξ)

+

∏n
k=0(x − xk)

(n + 1)!

d

dx

[

f (n+1)(ξ)
]

.

Since we will be evaluating f ′(xj) the last term gives no
contribution.
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The (n + 1) point formula for approximating f ′(xj)

f ′(xj) =
n∑

k=0

f(xk)L
′
k(xj) +

f(n+1)(ξ)

(n+ 1)!







n∏

k = 0
k 6= j

(xj − xk)







The formula is most useful when the node points are equally
spaced, i.e.

xk = x0 + kh.
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Example: 3-point Formulas, I/III

Building blocks:

L2,0(x) =
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
, L′2,0(x) =

2x − x1 − x2
(x0 − x1)(x0 − x2)

L2,1(x) =
(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
, L′2,1(x) =

2x − x0 − x2
(x1 − x0)(x1 − x2)

L2,2(x) =
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
, L′2,2(x) =

2x − x0 − x1
(x2 − x0)(x2 − x1)

.

Formulas:

f ′(xj) = f (x0)

[
2xj − x1 − x2

(x0 − x1)(x0 − x2)

]

+ f (x1)

[
2xj − x0 − x2

(x1 − x0)(x1 − x2)

]

+ f (x2)

[
2xj − x0 − x1

(x2 − x0)(x2 − x1)

]

+
f (3)(ξj)

6

2∏

k = 0
k 6= j

(xj − xk).
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Example: 3-point Formulas, II/III







f ′(x0) =
1

2h
[−3f (x0) + 4f (x1)− f (x2)] +

h2

3
f (3)(ξ0)

f ′(x1) =
1

2h
[−f (x0) + f (x2)]−

h2

6
f (3)(ξ1)

f ′(x2) =
1

2h
[f (x0)− 4f (x1) + 3f (x2)] +

h2

3
f (3)(ξ2)
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Example: 3-point Formulas, II/III







f ′(x0) =
1

2h
[−3f (x0) + 4f (x1)− f (x2)] +

h2

3
f (3)(ξ0)

f ′(x1) =
1

2h
[−f (x0) + f (x2)]−

h2

6
f (3)(ξ1)

f ′(x2) =
1

2h
[f (x0)− 4f (x1) + 3f (x2)] +

h2

3
f (3)(ξ2)

Use xk = x0 + kh:






f ′(x0) =
1

2h
[−3f (x0) + 4f (x0 + h)− f (x0 + 2h)] +

h2

3
f (3)(ξ0)

f ′(x0 + h) =
1

2h
[−f (x0) + f (x0 + 2h)]−

h2

6
f (3)(ξ1)

f ′(x0 + 2h) =
1

2h
[f (x0)− 4f (x0 + h) + 3f (x0 + 2h)] +

h2

3
f (3)(ξ2)
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Example: 3-point Formulas, III/III







f ′(x0) =
1

2h
[−3f (x0) + 4f (x0 + h)− f (x0 + 2h)] +

h2

3
f (3)(ξ0)

f ′(x0 + h) =
1

2h
[−f (x0) + f (x0 + 2h)]−

h2

6
f (3)(ξ1)

f ′(x0 + 2h) =
1

2h
[f (x0)− 4f (x0 + h) + 3f (x0 + 2h)] +

h2

3
f (3)(ξ2)

Make the substitution x0 + h → x0 in the second equation.
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Example: 3-point Formulas, III/III







f ′(x0) =
1

2h
[−3f (x0) + 4f (x0 + h)− f (x0 + 2h)] +

h2

3
f (3)(ξ0)

f ′(x0) =
1

2h
[−f (x0 − h) + f (x0 + h)]−

h2

6
f (3)(ξ1)

f ′(x0 + 2h) =
1

2h
[f (x0)− 4f (x0 + h) + 3f (x0 + 2h)] +

h2

3
f (3)(ξ2)

After the substitution x0 + h → x0 in the second equation. Next,
make the substitution x0 + 2h → x0 in the third equation.
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Example: 3-point Formulas, III/III







f ′(x0) =
1

2h
[−3f (x0) + 4f (x0 + h)− f (x0 + 2h)] +

h2

3
f (3)(ξ0)

f ′(x0) =
1

2h
[−f (x0 − h) + f (x0 + h)]−

h2

6
f (3)(ξ1)

f ′(x0) =
1

2h
[f (x0 − 2h)− 4f (x0 − h) + 3f (x0)] +

h2

3
f (3)(ξ2)

After the substitution x0 + h → x0 in the second equation, and
x0 + 2h → x0 in the third equation.
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Example: 3-point Formulas, III/III







f ′(x0) =
1

2h
[−3f (x0) + 4f (x0 + h)− f (x0 + 2h)] +

h2

3
f (3)(ξ0)

f ′(x0) =
1

2h
[−f(x0 − h) + f(x0 + h)]−

h2

6
f(3)(ξ1)

f ′(x0) =
1

2h
[f (x0 − 2h)− 4f (x0 − h) + 3f (x0)] +

h2

3
f (3)(ξ2)

After the substitution x0 + h → x0 in the second equation, and
x0 + 2h → x0 in the third equation.

Note#1: The third equation can be obtained from the first one by
setting h → −h.

Note#2: The error is smallest in the second equation.

Note#3: The second equation is a two-sided approximation, the first
and third one-sided approximations.
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Richardson’s Extrapolation

What it is: A general method for generating high-accuracy
results using low-order formulas.
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Richardson’s Extrapolation

What it is: A general method for generating high-accuracy
results using low-order formulas.

Applicable when: The approximation technique has an error
term of predictable form, e.g.

M − Nj(h) =
∞∑

k=j

Ekh
k ,

where M is the unknown value we are trying to approximate, and
Nj(h) the approximation (which has an error O(hj).)
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Richardson’s Extrapolation

What it is: A general method for generating high-accuracy
results using low-order formulas.

Applicable when: The approximation technique has an error
term of predictable form, e.g.

M − Nj(h) =
∞∑

k=j

Ekh
k ,

where M is the unknown value we are trying to approximate, and
Nj(h) the approximation (which has an error O(hj).)

Procedure: Use two approximations of the same order, but with
different h; e.g. Nj(h) and Nj(h/2). Combine the two
approximations in such a way that the error terms of
order hj cancel.
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Building High Accuracy Approximations 1 of 2

Consider two first order approximations to M:

M − N1(h) =

∞∑

k=1

Ekh
k ,

and

M − N1(h/2) =

∞∑

k=1

Ek

hk

2k
.
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Building High Accuracy Approximations 1 of 2

Consider two first order approximations to M:

M − N1(h) =

∞∑

k=1

Ekh
k ,

and

M − N1(h/2) =

∞∑

k=1

Ek

hk

2k
.

If we let N2(h) = 2N1(h/2)−N1(h), then

M − N2(h) = 2E1
h

2
− E1h

︸ ︷︷ ︸

0

+
n∑

k=2

E
(2)
k hk ,

where

E
(2)
k = Ek

(
1

2k−1
− 1

)

.

Hence, N2(h) is now a second order approximation to M.
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Building High Accuracy Approximations 2 of 2

We can play the game again, and combine N2(h) with N2(h/2) to get a
third-order accurate approximation, etc.

N3(h) =
4N2(h/2)− N2(h)

3
= N2(h/2) +

N2(h/2)− N2(h)

3
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Building High Accuracy Approximations 2 of 2

We can play the game again, and combine N2(h) with N2(h/2) to get a
third-order accurate approximation, etc.

N3(h) =
4N2(h/2)− N2(h)

3
= N2(h/2) +

N2(h/2)− N2(h)

3

N4(h) = N3(h/2) +
N3(h/2)− N3(h)

7

N5(h) = N4(h/2) +
N4(h/2)− N4(h)

24 − 1

In general, combining two jth order approximations to get a
(j + 1)st order approximation:

Nj+1(h) = Nj(h/2) +
Nj(h/2)−Nj(h)

2j − 1
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Building Integration Schemes with Lagrange Polynomials

Given the nodes {x0, x1, . . . , xn} we use the Lagrange interpolating
polynomial

Pn(x) =

n∑

i=0

fiLi (x), with error En(x) =
f (n+1)(ξ(x))

(n + 1)!

n∏

i=0

(x−xi )

to obtain

∫ b

a

f (x) dx =

∫ b

a

Pn(x) dx +

∫ b

a

En(x) dx .
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Identifying the Coefficients

∫ b

a

Pn(x) dx =

∫ b

a

n∑

i=0

fiLi (x) dx =

n∑

i=0

fi

∫ b

a

Li (x) dx

︸ ︷︷ ︸

ai

=

n∑

i=0

fiai .

Hence we write

∫ b

a

f (x) dx ≈
n∑

i=0

ai fi

with error given by

E (f ) =

∫ b

a

En(x) dx =

∫ b

a

f (n+1)(ξ(x))

(n + 1)!

n∏

i=0

(x − xi ) dx .
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Example #1: Trapezoidal Rule

Let a = x0 < x1 = b, and use the linear interpolating polynomial

P1(x) = f0

[
x − x1
x0 − x1

]

+ f1

[
x − x0
x1 − x0

]

, Then...

∫ b

a
f(x)dx = h

[
f(x0) + f(x1)

2

]

−
h3

12
f ′′(ξ), h = b − a.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Calculus Review — (38/49)



Calculus Review
Math 541 Review

Interpolation, Differentiation, Extrapolation
Integration, Degree of Accuracy
Newton-Cotes Formulas, Composite Integration

Example #2: Simpson’s Rule (with optimal error bound)

∫ x2

x0

f(x)dx =h

[
f(x0) + 4f(x1) + f(x2)

3

]

−
h5

90
f(4)(ξ).

Taylor expand f (x) about x1:

f (x) = f (x1) + f
′
(x1)(x − x1) +

f ′′(x1)

2
(x − x1)

2
+

f ′′′(x1)

6
(x − x1)

3
+

f (4)(ξ(x))

24
(x − x1)

4

Integrating the error term gives

∫

b

a

f (4)(ξ(x))

24
(x − x1)

4
dx =

f (4)(ξ1)

60
h
5
.

Using the approximation f ′′(x1) = 1
h2

[f (x0) − 2f (x1) + f (x2)] −
h2

12
f (4)(ξ)

∫

x2

x0

f (x) dx = 2hf (x1) +
h3

3

[

1

h2
[f (x0) − 2f (x1) + f (x2)] −

h2

12
f
(4)

(ξ2)

]

+
f (4)(ξ1)

60
h
5

= h

[

f(x0) + 4f(x1) + f(x2)

3

]

−
h5

90
f
(4)

(ξ).
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Degree of Accuracy (Precision) of an Integration Scheme

Definition (Degree of Accuracy)

The Degree of Accuracy, or precision, of a quadrature formula is
the largest positive integer n such that the formula is exact for xk

∀k = 0, 1, . . . , n.

With this definition:

Scheme Degree of Accuracy

Trapezoidal 1
Simpson’s 3

Trapezoidal and Simpson’s are examples of a class of methods
known as Newton-Cotes formulas.
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Newton-Cotes Formulas — Two Types

Two types of Newton-Cotes Formulas:

Closed The (n + 1) point closed NCF uses nodes xi = x0 + ih,
i = 0, 1, . . . , n, where x0 = a, xn = b and h = (b−a)/n. It
is called closed since the endpoints are included as nodes.

Open The (n + 1) point open NCF uses nodes xi = x0 + ih,
i = 0, 1, . . . , n where h = (b− a)/(n+2) and x0 = a+ h,
xn = b − h. (We label x−1 = a, xn+1 = b.)
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Closed Newton-Cotes Formulas

The approximation is

∫ b

a

f (x) dx ≈
n∑

i=0

ai f (xi ),

where

ai =

∫ xn

x0

Ln,i (x) dx =

∫ xn

x0

n∏

j = 0
j 6= i

(x − xj)

(xi − xj)
dx .
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Closed Newton-Cotes Formulas — Error

Theorem (Newton-Cotes Formulas, Error Term)

Suppose that
∑n

i=0 ai f (xi ) denotes the (n + 1) point closed
Newton-Cotes formula with x0 = a, xn = b, and h = (b − a)/n. Then
there exists ξ ∈ (a, b) for which

∫ b

a

f (x)dx =

n∑

i=0

ai f (xi ) +
hn+3f (n+2)(ξ)

(n + 2)!

∫ n

0

t2(t − 1) · · · (t − n)dt,

if n is even and f ∈ C n+2[a, b], and

∫ b

a

f (x)dx =

n∑

i=0

ai f (xi ) +
hn+2f (n+1)(ξ)

(n + 1)!

∫ n

0

t(t − 1) · · · (t − n)dt,

if n is odd and f ∈ C n+1[a, b].

Note that when n is an even integer, the degree of precision is (n+ 1). When n is
odd, the degree of precision is only n.
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Closed Newton-Cotes Formulas — Examples

n = 2: Simpson’s Rule

h

3

[

f (x0) + 4f (x1) + f (x2)

]

−
h5

90
f (4)(ξ)

n = 3: Simpson’s 3
8-Rule

3h

8

[

f (x0) + 3f (x1) + 3f (x2) + f (x3)

]

−
3h5

80
f (4)(ξ)

n = 4: Boole’s Rule

2h

45

[

7f (x0) + 32f (x1) + 12f (x2) + 32f (x3) + 7f (x4)

]

−
8h7

945
f (6)(ξ)
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Composite Simpson’s Rule, I/II

For an even integer n: Subdivide the interval [a, b] into n
sub-intervals, and apply Simpson’s rule on each consecutive pair of
sub-intervals. With h = (b − a)/n and xj = a+ jh, j = 0, 1, . . . , n,
we have

∫ b

a

f (x)dx =

n/2
∑

j=1

∫ x2j

x2j−2

f (x)dx

=

n/2
∑

j=1

{
h

3

[

f (x2j−2) + 4f (x2j−1) + f (x2j)

]

−
h5

90
f (4)(ξj)

}

,

for some ξj ∈ [x2j−2, x2j ], if f ∈ C 4[a, b].

Since all the interior “even” x2j points appear twice in the sum, we
can simplify the expression a bit...
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Composite Simpson’s Rule, II/II
∫

b

a
f (x)dx =

h

3



f (x0) − f (xn) +

n/2
∑

j=1

[

4f (x2j−1) + 2f (x2j )

]



 −
h5

90

n/2
∑

j=1

f
(4)

(ξj ).

Theorem (Composite Simpson’s Rule)

Let f ∈ C 4[a, b], n be even, h = (b − a)/n, and xj = a+ jh,
j = 0, 1, . . . , n. There exists µ ∈ (a, b) for which the Composite
Simpson’s Rule for n sub-intervals can be written with its error
term as

∫ b

a

f (x)dx =
h

3



f (a)− f (b) +

n/2
∑

j=1

[2f (x2j) + 4f (x2j+1)]





−
(b − a)

180
h4f (4)(µ).
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Romberg Integration

Romberg Integration is the combination of the Composite
Trapezoidal Rule (CTR)

∫ b

a

f (x)dx =
h

2



f (a) + f (b) + 2
n−1∑

j=1

f (xj)



−
(b − a)

12
h2f ′′(µ)

and Richardson Extrapolation.

It yields a method for generating high-accuracy integral
approximations using several “measurements” using the relatively
crude (inaccurate) Trapezoidal Rule.
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Romberg Integration — Implemented

% Romberg Integration for sin(x) over [0,pi]

a = 0; b = pi; % The Endpoints

R = zeros(7,7);

R(1,1) = (b − a)/2 ∗ (sin(a) + sin(b));
for k = 2 : 7
h = (b − a)/2(k−1);

R(k,1)=1/2 ∗ (R(k − 1, 1) + 2 ∗ h ∗
∑

(sin(a+ (2 ∗ (1 : (2(k−2)))− 1) ∗ h)));
end

for j = 2 : 7
for k = j : 7
R(k,j) = R(k, j − 1) + (R(k, j − 1)− R(k − 1, j − 1))/(4(j−1)−1);
end

end

disp(R)
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Next Time, and Beyond

Simulating ODEs using Euler’s method, and improvements...
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