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Introduction

The Lotka[1]-Volterra[2] predator-prey model was
introduced by Lotka in 1910 (for chemical reac-
tions), and extended by Volterra in 1920 to model
organic systems; the equation form famous today
was introduced in 1925.

Google scholar returns 18,400 hits for the search “lotka
volterra” with the restriction “since 2000.”

We will examine mathematical models and Runge-Kutta based
simulations for two species that are intertwined in a predator-prey
or host-parasite relationship.

The discussion will be fairly complete, but we will gloss over
(some) theoretical details that are not the focal point of this class.

[1] Alfred James Lotka (March 2, 1880 December 5, 1949)
[2] Vito Volterra (3 May 1860 11 October 1940)
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Classical Example: The Lynx & The Hare

The Lynx-Hare system has
been extensively studied,
mainly because the Hudson
Bay company kept careful
records of all furs from the
early 1800s into the 1900s[1].
[Right] Graph of the partial
data-set, 1900-1920.
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[1] Charles Elton and Mary Nicholson, The Ten-Year Cycle in Numbers of the Lynx in
Canada, Journal of Animal Ecology, Vol. 11, No. 2 (Nov., 1942), pp. 215-244.
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The Model: Hares

Let H(t) be the population of hares, and L(t) be the population of
lynx.

The rate of change in a population is equal to the net increase
(births) into the population minus the net decrease (deaths) of the
population.

In a naive model we have: (1) The primary growth in the hare
population is Malthusian (the population grows in proportion to its
own population) a1 H(t). (2) Predation, being the only reason for
hare population decline, modeled by assuming random Lynx-Hare
contact, −a2H(t)L(t); so

dH(t)

dt
= a1H(t)− a2H(t)L(t).
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The Model: Lynx

Assuming that hares are the main food source for lynx: the growth
of the lynx population is similar to the death rate for the hare
population with a different constant of proportionality: b2H(t)L(t).

The loss of lynx is presumed to be a type of reverse Malthusian
growth. That is, in the absence of hares, the lynx population
declines in proportion to their own population, which
mathematically is given by the negative modeling term, −b1L(t);
so

dL(t)

dt
= −b1L(t) + b2H(t)L(t).

Note: The model ignores the role of climate variation and the
interactions of other species, including human disturbance. Other
significant factors that are ignored in this modeling effort are the ages of
the animals and the spatial distribution.
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Equilibria & Jacobian

dH(t)

dt
= a1H(t)− a2H(t)L(t)

dL(t)

dt
= −b1L(t) + b2H(t)L(t).

By inspection we see that we have equilibria for the cases

(H, L) ∈ { (0, 0), (b1/b2, a1/a2) }.

These equilibria do not help explain the oscillatory behavior of the
lynx and snowshoe hare. We examine the stability of these
solutions, by computing the Jacobian:

J(H, L) =

[
a1 − a2L(t) −a2H(t)

b2L(t) −b1 + b2H(t)

]
.
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Stationary Points & Behavior

We find

J(0, 0) =

[
a1 0
0 −b1

]
, λ1 = a1, ξ1 =

[
1
0

]
, λ2 = −b1, ξ2 =

[
0
1

]

Which shows that (0, 0) is a saddle node, with exponential growth
along the Hare(t) axis, and decay along the Lynx(t) axis.
4 nanoseconds of thought confirms that’s what we should expect!

J(b1/b2, a1/a2) =

[
0 − a2b1

b2
a1b2
a2

0

]
, λ1,2 = ±i

√
a1b1 = ±iω

To linear order this generates periodic solutions
[

HL(t)
LL(t)

]
= c1

[
cos(ωt)
A sin(ωt)

]
+ c2

[
sin(ωt)

−A cos(ωt)

]
, A =

b2
a2

√
a1
b1

.
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Periodic Solutiions

The linear solution produces a structurally unstable model, because
small perturbations from the nonlinear terms result in the solution
either spiraling toward or away from the equilibirum.

However, there are periodic limit cycles for all initial conditions in
the 1st quadrant: formally divide the equations (taking time out of
the picture)

dH

dL
=

a1H − a2HL

−b1L+ b2HL

which has the implicit solution

H−b1eb2H︸ ︷︷ ︸
FH(H)

= CLa1e−a2L︸ ︷︷ ︸
FL(L)

.
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Characterizing the Solution
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FH(H) = H−b1eb2H , F ′
H(H) = H−b1−1eb2H(b2H − b1),

FL(L) = CLa1e−a2L, F ′
L(L) = CLa1−1e−a2L(a1 − a2L).

FH(H) has a vertical asymptote at H = 0, limHց0 FH(H) = ∞, and a
minimum at Hmin = b1/b2.

FL(L) has a maximum at Fmax = a1/a2, FL(0) = 0, and
limL→∞ FL(L) = 0.
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Existence of Periodic Solutions
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These functions are equal (with FL(L) shifting depending on the
integration constant, C.) This can only happen on the range

[minFH(H), maxFL(L) ] .

Since FL(L)/FH(H) takes two values at the min/max of FH(H)/FL(L), it
follows that there must be a periodic orbit.
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Periodic Orbits
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Periodic Orbits
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Given the partial data set

Year Hare (1,000) Lynx (1,000) Year Hare (1,000) Lynx (1,000)

1900 30 4 1911 40.3 8
1901 47.2 6.1 1912 57 12.3
1902 70.2 9.8 1913 76.6 19.5
1903 77.4 35.2 1914 52.3 45.7
1904 36.3 59.4 1915 19.5 51.1
1905 20.6 41.7 1916 11.2 29.7
1906 18.1 19 1917 7.6 15.8
1907 21.4 13 1918 14.6 9.7
1908 22 8.3 1919 16.2 10.1
1909 25.4 9.1 1920 24.7 8.6
1910 27.1 7.4

One might wonder what the parameters a1, a2, b1, and b2 are???
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Parameter Guesses

We set our initial conditions to H(0) = 30, and L(0) = 4 (from the
data).

By averaging the data over one period (eye-balled at about 12
years), and looking at snapshots of rapid growth/decay in the
populations, it is possible (see Math 636 for the real discussion) to
come up with some useful estimates to get things going, e.g.

Hmin =
b1
b2

≈ Hmean ≈ 34.6, Lmax =
a1
a2

≈ Lmean ≈ 22.1,

a1b1 ≈ π2

36
≈ 0.274,

a1 = 0.397, b1 = 0.786, a2 = 0.018, b2 = 0.023.
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H(0) = 30, L(0) = 4, a1 = 0.397, a2 = 0.018, b1 = 0.786, b2 = 0.023
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Parameter Fitting

Using a bit of black-box technlogy (Matlab’s fminsearch) related
to Math 693a, and RKF45 (known as ode45 in Matlab) we can set
up a search for the optimal (as measured in the
sum-of-squares-sense) parameters

H∗
0 , L∗0, a∗1, a∗2, b∗1, b∗2.

Matlab Code: Fragment #1 — Initializing
function exitflag = lynx_hare

%Data and the initial guess.

td = [0:20];

yr = 1900:1920;

hare = [30 47.2 70.2 77.4 36.3 20.6 18.1 21.4 22 25.4 ...

27.1 40.3 57 76.6 52.3 19.5 11.2 7.6 14.6 16.2 24.7];

lynx = [4 6.1 9.8 35.2 59.4 41.7 19 13 8.3 9.1 7.4 8 ...

12.3 19.5 45.7 51.1 29.7 15.8 9.7 10.1 8.6];

p = [30 4 0.4 0.018 0.8 0.023];
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Parameter Fitting

Matlab Code: Fragment #2 — Optimize

% This finds the min...

[p,fval,exitflag] = fminsearch(@leastcomp,p,[],td,hare,lynx);

%Compute the least squares error of current guess

function J = leastcomp(p,tdata,xdata,ydata)

[t,y] = ode45(@lotvol,tdata,[p(1),p(2)],[],p(3),p(4),p(5),p(6));

errx = y(:,1) - xdata’;

erry = y(:,2) - ydata’;

J = sum( abs(errx).^2) + sum(abs(erry).^2 );

% Predator and Prey ODE Model

function dydt = lotvol(t,y,a1,a2,b1,b2)

tmp1 = a1*y(1) - a2*y(1)*y(2);

tmp2 = -b1*y(2) + b2*y(1)*y(2);

dydt = [tmp1; tmp2];
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Action Slide!!!

〈〈 play with matlab code 〉〉
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H(0) = 34.91, L(0) = 3.857,

a1 = 0.4807, a2 = 0.02482, b1 = 0.9272, b2 = 0.02756
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Optimal Parameters: Curious Fact

Using ode23 (2nd-3rd order RK) we get

H(0) = 34.91, L(0) = 3.857,

a1 = 0.4807, a2 = 0.02482, b1 = 0.9272, b2 = 0.02756

with a sum-of-squares error of 594.9.

Using ode45 (4nd-5th order RK) we get

H(0) = 36.90, L(0) = 3.029,

a1 = 0.4121, a2 = 0.02249, b1 = 1.089, b2 = 0.03170

with a sum-of-squares error of 651.6.
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