

Heun's method samples the slope at the beginning and the end, and uses the average as the final approximation of the slope.

Runge's Method — y'(t) = y(t) + 2t - 1, y(0) = 1 (h = 1/2)

Flashback Deriving Explicit 2-stage RK-methods, I/III	Flashback Deriving Explicit 2-stage RK-methods, II/III
The Butcher array for a 2-stage explicit RK method has the form: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	With the following Taylor expansions: $y_{n+1} = y_n + hf_n + \frac{h^2}{2}f'_n + \mathcal{O}(h^3)$ $k_1 = f_n$ $k_2 = f(t_n + c_2h, y_n + c_2hk_1)$ $= f_n + (c_2h)\frac{\partial}{\partial t}f(t_n, y_n) + (c_2h)\frac{\partial}{\partial y}f(t_n, y_n)y'(t) + \mathcal{O}(h^2)$ We can define the Local Truncation Error
Hence, $\begin{cases} k_1 = f(t_n, y_n) \\ k_2 = f(t_n + c_2 h, y_n + c_2 h k_1) \\ y_{n+1} = y_n + h [b_1 k_1 + (1 - b_1) k_2] \end{cases}$ Describes all possible explicit 2-stage RK-methods. We Taylor expand to determine the parameters c_2 and b_1	$LTE(h) = \frac{y_{n+1} - y_n}{h} - b_1 k_1 - (1 - b_1) k_2$ $= \left[f_n + \frac{h}{2} f'_n + \mathcal{O}(h^2) \right] - \left[b_1 f_n + (1 - b_1) \left(f_n + (c_2 h) \left[\frac{\partial}{\partial t} f_n + \frac{\partial}{\partial y} f_n \cdot f_n \right] \right) \right]$ $= \frac{h}{2} \left[\frac{\partial}{\partial t} f_n + \frac{\partial}{\partial y} f_n \cdot f_n \right] - \mathbf{b}_2 c_2 h \left[\frac{\partial}{\partial t} f_n + \frac{\partial}{\partial y} f_n \cdot f_n \right] + \mathcal{O}(h^2)$
Runge-Kutta Methods, Continued — (9/47)	Runge-Kutta Methods, Continued — (10/47)
Flashback Deriving Explicit 2-stage RK-methods, III/III	Runge-Kutta Methods: Issues to clear up
We have $LTE(h) = \frac{h}{2} \left[\frac{\partial}{\partial t} f_n + \frac{\partial}{\partial y} f_n \cdot f_n \right] - \mathbf{b}_2 c_2 h \left[\frac{\partial}{\partial t} f_n + \frac{\partial}{\partial y} f_n \cdot f_n \right] + \mathcal{O}(h^2)$ Now, if $\frac{h}{2} - b_2 c_2 h = 0 \Leftrightarrow 2b_2 c_2 = 1$ we get LTE(h) ~ $\mathcal{O}(h^2)$, <i>i.e.</i> our 2-stage RK-method is second order . The corresponding family of Butcher arrays is	 Error Estimation using Richardson's Extrapolation Error Analysis LTE(h) consistency
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Stability Analysis
Runge-Kutta Methods, Continued $-(11/47)$	Runge-Kutta Methods, Continued $-(12/47)$

Estimating the Error "on the fly"

Estimating the Error "on the fly"

Thus.

200% overhead.

In addition to computing the numerical solution, we also need an estimate on the quality of the solution — an error estimate.

Suppose we have used a Runge-Kutta method (with step-size $h_1 = h$) of order p to get the numerical solution y_{n+1}^* at t_{n+1} , then the local error in the solution is:

 $e^* = y(t_{n+1}) - y_{n+1}^* = Ch^{p+1} + O(h^{p+2})$

If we have another solution y_{n+1}^{**} , computed with $h_2 = h/2$,

$e^{**} = y(t_{n+1}) - y_{n+1}^{**} = C\left[\frac{h}{2}\right]$	$^{p+1}+\mathcal{O}(h^{p+2})$
--	-------------------------------

 $\mathcal{C}\left[\frac{h}{2}\right]^{p+1} = \frac{\mathbf{y}_{n+1}^{**} - \mathbf{y}_{n+1}^{*}}{\mathbf{2}^{p+1} - \mathbf{1}}$

is an estimate for principal local truncation error (PLTE).

This works well in practice. The only problem is that it is expensive to implement — 3 times the evaluations of the slope f(t, y) (a total of 12 evaluations for Runge's 4th order scheme) —

Keeping only the leading order (principal part, h^{p+1} -term) of the error expansion we can write:

$$y_{n+1}^{**} - y_{n+1}^{*} = -Ch^{p+1}\left[\frac{1}{2^{p+1}} - 1\right]$$

We have

1/111

- (13/47)

 Π / Π

- (15/47)

$$y_{n+1}^{**} - y_{n+1}^{*} = -\mathcal{C}h^{p+1}\left[\frac{1}{2^{p+1}} - 1\right] = -\mathcal{C}\left[\frac{h}{2}\right]^{p+1}\left[1 - 2^{p+1}\right]$$

Runge-Kutta Methods, Continued

— (14/47)

Finding a More Efficient Error Estimate

It'd be great if we could find an error estimate directly from the computed slopes (the k_i 's)...

This idea was introduced by Merson in 1957. The idea is to derive two Runge-Kutta methods of orders p and p + 1 using the **same** set of k_i 's... In terms of the Butcher array:

Where $(A, \tilde{\mathbf{c}}, \tilde{\mathbf{b}})$ defines a method of order p, and $(A, \tilde{\mathbf{c}}, \tilde{\mathbf{b}}_2)$ a method of order p + 1. The vector $\tilde{\mathbf{E}}^T = \tilde{\mathbf{b}}_2 - \tilde{\mathbf{b}}$, and the error estimate is given by $h \sum_{i=1}^{s} E_i k_i$.

Runge-Kutta Methods, Continued

Stability Regions for RK-methods

We have

$$y_{n+1} = y_n + \hat{h} \tilde{\mathbf{b}}^T \tilde{\mathbf{k}} = y_n + \hat{h} \tilde{\mathbf{b}}^T (I - \hat{h} A)^{-1} \tilde{\mathbf{1}} y_n$$

Thus, the stability function is

Consistency for RK-methods

Theorem

where

An RK-method

$$R\left(\widehat{h}
ight)=1+\widehat{h}\widetilde{\mathbf{b}}^{T}\left(I-\widehat{h}A
ight)^{-1}\widetilde{\mathbf{1}}$$

As usual, the method is stable for \hat{h} such that $|R(\hat{h})| < 1$. For explicit methods, A strictly lower triangular, the quantity

$$\tilde{\mathbf{d}} = \left(I - \widehat{h}A\right)^{-1} \tilde{\mathbf{1}}$$

 $\frac{y_{n+1}-y_n}{h}=\sum_{i=1}^s b_i k_i$

 $k_i = f\left(t_i + c_i h, y_n + h \sum_{j=1}^s a_{ij} k_j\right)$

is consistent with the ODE, y'(t) = f(t, y), if and only if $\sum b_i = 1$.

is easily computable using forward substitution.

Runge-Kutta Methods, Continued

Runge-Kutta Methods, Continued

Homework #2, Due 11:00am, 2/20/2015 Chronology 1895 The idea of multiple evaluations of the derivative for each Find the stability function for Runge's 4th-order 4-stage time-step is attributed to Runge. method. 1900 Heun makes several contributions. Implement RKF45 (don't use matlab's ode45!). Solve 1901 Kutta characterizes the set of Runge-Kutta methods of order $\left\{ \begin{array}{l} y'(t) = y(t) + 2t - 1 \\ y(0) = 1 \\ t \in [0, 1] \end{array} \right.$ 4; proposed the first order 5 method. 1925 Nyström proposes special methods for second order ODEs. 1956 Huta introduces 6th order methods. with step-length $h \in \{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}\}.$ Modern analysis of Runge-Kutta methods developed by • Plot the exact, and estimated errors at the terminating point 1951 Gill (t = 1) vs. the step-length h on a log-log scale (in matlab: loglog(the_h_values, the_exact_errors, '-o', 1957 Merson the_h_values, the_estimated_errors, '-*') 1963 Butcher Runge-Kutta Methods, Continued - (25/47) Runge-Kutta Methods, Continued - (26/47) *s*-stage Runge-Kutta for { y'(t) = f(t, y), $y(t_0) = y_0$ } Conditions on the Butcher Array The Butcher array for a general *s*-stage RK method is The Butcher array must satisfy the following row-sum condition $c_i = \sum_{i=1}^s a_{i,j} \quad i = 1, 2, \dots, s$ and consistency requires is a compact shorthand for the scheme $\sum_{i=1}^{J} b_j = 1.$ $y_{n+1} = y_n + h \sum_{i=1}^{3} b_i k_i$ where the k_i s are multiple estimates of the right-hand-side f(t, y)Beyond that, we are left with the formidable task of selecting $\tilde{\mathbf{b}}$, $\tilde{\mathbf{c}}$, $k_i = f\left(t_n + c_i h, y_n + h \sum_{i=1}^{s} a_{i,j} k_j\right), \quad i = 1, 2, \dots, s$ and the matrix A. Up to this point our only tool is (tedious) Taylor expansions.

— (27/47)

Runge-Kutta Methods, Continued

Runge-Kutta Methods, Continued

— (28/47)

Explicit 3-stage RK Methods	The Order Conditions	Finding the Order Conditions
If we want to build an explicit 3-stage method, $ \begin{array}{c c} 0 \\ c_2 \\ a_{21} \\ \hline c_3 \\ a_{31} \\ a_{32} \\ \hline b_1 \\ b_2 \\ b_3 \end{array} $ it can be shown (Taylor expansion) that in order order scheme, we must satisfy the Order Condi $ \begin{array}{c c} b_1 + b_2 + b_3 \\ b_1 + b_2 + b_3 \\ \hline b_1 + b_2 + b_3 \\ \hline b_2 c_2 + b_3 c_3 \\ \hline b_2 c_2^2 + b_3 c_3^2 \\ \hline c_3 \\ \hline c_3$	r to achieve a 3rd tions :	 Clearly, deriving a Runge-Kutta scheme boils down to a two-stage process: Find the order conditions: — a set of non-linear equations in the parameters sought. Find a solution, or family of solutions, to the order conditions. As the desired order of the method increases, both deriving and solving these algebraic conditions become increasingly complicated. We now consider a structured way of deriving the order conditions without explicit Taylor expansions.
Runge-Kutta Method	ls, Continued — (29/47)	Runge-Kutta Methods, Continued — (30/47)
Rooted Trees Definition (Rooted Tree)		Examples: Trees
A rooted tree is a graph, which is connected, ha has one vertex designated as the root. Definition (Order of a Rooted Tree) The order of a rooted tree is the number of vert Definition (Leaves)	s no cycles, and ices in the tree.	Figure Tree of order 2, 2, 4, 5, and 8. By convention, we
A leaf is vertex in a tree (with order greater tha exactly one vertex joined to it.	n one) which has	Figure: Trees of order 2, 3, 4, 5, and 8. By convention, we place to root at the bottom of the graph, and let the tree grow "upward."

Runge-Kutta Methods, Continued

— (32/47)

Rooted Tree	s Up to Orc	der 4				Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$: General condition
$\begin{tabular}{ c c } \hline Tree \\ Order \\ \Phi(t) \\ \gamma(t) \\ \hline Tree \\ Order \\ \Phi(t) \\ \gamma(t) \\ \hline \end{array}$	$ \begin{array}{c c} \bullet \\ 1 \\ \sum_{i} b_{i} \\ 1 \\ \bullet \\ \bullet \\ 4 \\ \sum_{i} b_{i} c_{i}^{3} \\ 4 \\ \end{array} $	2 $\sum_{i} b_{i}c_{i}$ 2 \downarrow 4 $\sum_{ij} b_{i}c_{i}a_{ij}c_{j}$ 8	$ \begin{array}{c} 3\\ \sum_{i} b_{i}c_{i}^{2}\\ 3\\ \end{array} $ $ \begin{array}{c} 4\\ \sum_{ij} b_{i}a_{ij}c_{j}^{2}\\ 12\\ \end{array} $	$ \begin{array}{c} 3\\\sum_{ij}b_{i}a_{ij}c_{j}\\6\end{array} $ $ \begin{array}{c} 4\\\sum_{ijk}b_{i}a_{ij}a_{jk}c_{k}\\24\end{array} $		In designing an <i>s</i> -stage RK-method, the coefficients must satisfy $\Phi(t)=rac{1}{\gamma(t)}, \ \ orall t: extbf{order}(t)\leq s$
Runge-Kutta Methods, Continued — (37/47)				, Continued	Runge-Kutta Methods, Continued — (38/47)	
Runge-Kutta A 4-stage yields 8 c	a Scheme B e explicit so conditions fo	ased on $\Phi(t)$ a cheme, where a or $\{b_1, b_2, b_3, b_1 + b_2 - b_2 + b_1 + b_2 - b_1 + b_2 + b_2 + + b$	and $\gamma(t)$: 4-stand $\gamma_{ij} = 0$ whenev $b_4, c_2, c_3, c_4, + b_3 + b_4 = 0$	age Example ver $i \ge j$, thus a_{32}, a_{42}, a_{43} }: 1 (1)		Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$: 4-stage Example Kutta identified five cases where a solution to this non-linear system is guaranteed to exist:
	b3 a32 b3 c3 a32 c2 + b3 a32	$b_{2}c_{2} + b_{3}c_{4}$ $b_{2}c_{2}^{2} + b_{3}c_{4}$ $b_{2}c_{2}^{2} + b_{4}a_{42}c_{2} + b_{4}c_{4}a_{42}c_{2} + b_{4}c_{4}a_{42}c_{2} + b_{4}c_{4}a_{42}c_{2} + b_{4}c_{4}a_{42}c_{2}^{2} + b_{4}a_{42}c_{2}^{2} + b_{4}a_{4}c_{4}c_{4}c_{4}c_{4}c_{4}c_{4}c_{4}c$	$c_{3} + b_{4}c_{4} =$ $c_{3}^{2} + b_{4}c_{4}^{2} =$ $+ b_{4}a_{43}c_{3} =$ $c_{3}^{3} + b_{4}c_{4}^{3} =$ $b_{4}c_{4}a_{43}c_{3} =$ $- b_{4}a_{43}c_{3}^{2} =$ $a_{4}a_{43}a_{32}c_{2} =$	$\begin{array}{cccc} \frac{1}{2} & (2) \\ \frac{1}{3} & (3) \\ \frac{1}{6} & (4) \\ \frac{1}{4} & (5) \\ \frac{1}{8} & (6) \\ \frac{1}{12} & (7) \\ \frac{1}{24} & (8) \end{array}$		Case 1 $c_2 \notin \{0, \frac{1}{2}, \frac{1}{2} \pm \frac{\sqrt{3}}{6}\}, c_3 = 1 - c_2$ Case 2 $b_2 = 0, c_2 \neq 0, c_3 = \frac{1}{2}$ Case 3 $b_3 \neq 0, c_2 = \frac{1}{2}, c_3 = 0$ Case 4 $b_4 \neq 0, c_2 = 1, c_3 = \frac{1}{2}$ Case 5 $b_3 \neq 0, c_2 = c_3 = \frac{1}{2}$
			Runge-Kutta Methods	, Continued	— (39/47)	Runge-Kutta Methods, Continued — (40/47)

Beyond 4 Stages	Beyond 4 Stages More Bad News
The number of rooted trees of order <i>s</i> increases rapidly as <i>s</i> goes beyond 4. For $s = 5$ we have the following 9 rooted trees: $\downarrow \downarrow $	Theorem (Butcher, 2008: p.187) If an explicit s-stage Runge-Kutta method has order p, then $s \ge p$. Theorem (Butcher, 2008: p.187) If an explicit s-stage Runge-Kutta method has order $p \ge 5$, then $s > p$. Theorem (Butcher, 2008: p.188) For any positive integer p, an explicit Runge-Kutta method exists with order p and s stages, where $s = \begin{cases} \frac{3p^2 - 10p + 24}{8}, & p = 2k, k \in \mathbb{Z} \\ \frac{3p^2 - 4p + 9}{8}, & p = 2k + 1, k \in \mathbb{Z} \end{cases}$
Runge-Kutta Methods, Continued — (41/47)	Runge-Kutta Methods, Continued — (42/47)
Beyond 4 Stages Consequences of the 3rd Theorem	Stability Polynomials, Comments
Note that the theorem gives an upper bound for the number of required stages (the theorem gives guarantees). The bound grows very quickly. For certain values of <i>p</i> , <i>s</i> -stage methods with <i>s</i> lower than this bound are known:	With every explicit Runge-Kutta method, we can find a stability polynomial $R(h\lambda)$ for which the condition $ R(h\lambda) \le 1$ defines the region of stability, We know that for orders $p = 1, 2, 3, 4$ there are explicit <i>s</i> -stage RK-methods with $s = p$, and for higher order methods $s > p$. $\boxed{\frac{\text{Order Stages Stability Polynomial}}{1}$
Order, $p = 5$ 6 7 8 9 10 11 12	2 2 $R(z) = 1 + z + \frac{1}{2}z^2$
Stages $s = 8.9.16.17.27.28.41.42$	3 3 $R(z) = 1 + z + \frac{1}{2}z^2 + \frac{1}{6}z^3$
	4 4 $R(z) = 1 + z + \frac{1}{2}z^2 + \frac{1}{6}z^3 + \frac{1}{24}z^4$
Scheme, $s = 6$ 7 9 11 17	$5 6 R(z) = 1 + z + \frac{1}{2}z^2 + \frac{1}{6}z^3 + \frac{1}{24}z^4 + \frac{1}{120}z^3 + Cz^3$
Project, anyone?	Where, in the case $p = 5$, $s = 6$, the constant C depends on the particular method.
Runge-Kutta Methods, Continued — (43/47)	Runge-Kutta Methods, Continued — (44/47)

Stability Polynomials, Comments	Additional Comments1 of 2
Fact Since the stability function $R(z)$ is a polynomial for all explicit Runge-Kutta methods, it is never possible to build such a method with unbounded region of stability.	 Butcher (2008) develops the theory of rooted trees and their usefulness far beyond what is indicated in the current lecture. I have deliberately taken a very narrow path through the material and only presented some key ideas that fit into the context of what we have explored so far (Low-order explicit methods). Some completely ignored topics include Two alternative, non-graphical, notations for trees. Expression of higher order derivatives in terms of rooted trees. Expression of ODEs (linear and non-linear) using rooted trees,
Runge-Kutta Methods, Continued — (45/47)	Runge-Kutta Methods, Continued — (46/47)
Additional Comments 2 of 2 For the mathematically inclined, the study of Runge-Kutta methods have several interesting connections to ares of mathematics which we sometimes consider "less applied," <i>e.g.</i> • Graph theory	2
• Group theory	
Also, in the context of step-size (h) management, there are some overlap with ideas in	
• Control theory	
We will revisit some of these topic, as needed, in future lectures.	
Runge-Kutta Methods, Continued — (47/47)	