Numerical Solutions to Differential Equations Lecture Notes #5 — Runge-Kutta Methods, Modern Approach

Peter Blomgren, (blomgren.peter@gmail.com)

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2015

Outline

Examples, and Recap

- Euler's, Heun's, and Runge's Methods
- Recap: Deriving Runge-Kutta Methods
- Recap: Pending Issues

2 Runge-Kutta: Outstanding Issues

- Error Estimation
- Stability Analysis
- Consistency

A Brief History, and RK-Construction Methods

- Runge-Kutta Methods, Historical Overview
- s-stage Runge-Kutta Methods, a recap
- Order Conditions

Rooted Trees

- Definitions
- The Quantities $\Phi(t)$, and $\gamma(t)$
- Designing a Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$

Stability of Explicit Runge-Kutta Methods

Some Notes...

Runge-Kutta Methods, continued

Recapping the mission...

• We are trying to solve the ODE

$$y'(t) = f(t,y), \quad y(t_0) = y_0, \quad t < T$$

using a numerical scheme applied to the discretization $t_n = t_0 + n \cdot h$, where *h* is the step-size (in time).

Runge-Kutta Methods, continued

Recapping the mission...

• We are trying to solve the ODE

$$y'(t) = f(t,y), \quad y(t_0) = y_0, \quad t < T$$

using a numerical scheme applied to the discretization $t_n = t_0 + n \cdot h$, where *h* is the step-size (in time).

In Euler's method we use the slope f(t, y) evaluated at the current (known) time level (t_n, y_n) and use that value as an approximation of the slope throughout the interval [t_n, t_{n+1}].

・ロン ・回と ・ヨン・

Runge-Kutta Methods, continued

Recapping the mission...

• We are trying to solve the ODE

$$y'(t) = f(t,y), \quad y(t_0) = y_0, \quad t < T$$

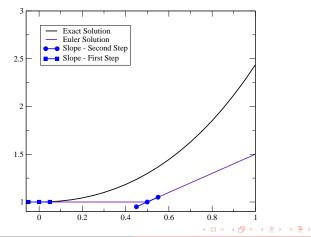
using a numerical scheme applied to the discretization $t_n = t_0 + n \cdot h$, where *h* is the step-size (in time).

- In Euler's method we use the slope f(t, y) evaluated at the current (known) time level (t_n, y_n) and use that value as an approximation of the slope throughout the interval [t_n, t_{n+1}].
- RK-methods improve on Euler's method by looking at the slope at multiple points.

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

Euler's Method — y'(t) = y(t) + 2t - 1, y(0) = 1 (h = 1/2)

Euler's Method samples the slope at the beginning of the step only.



Peter Blomgren, blomgren.peter@gmail.com

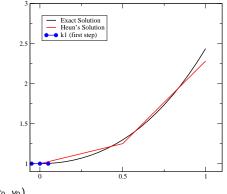
Runge-Kutta Methods, Continued

— (4/47)

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

Heun's Method — y'(t) = y(t) + 2t - 1, y(0) = 1 (h = 1/2)

Heun's method samples the slope at the beginning and the end, and uses the average as the final approximation of the slope.



Step#1: $k_1 = f(t_0, y_0)$.

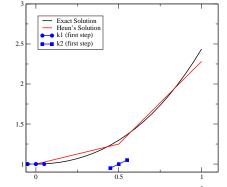
イロト イポト イヨト イヨト

— (5/47)

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

Heun's Method — y'(t) = y(t) + 2t - 1, y(0) = 1 (h = 1/2)

Heun's method samples the slope at the beginning and the end, and uses the average as the final approximation of the slope.

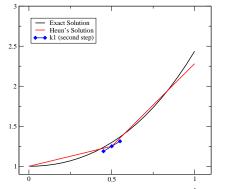


Step#1: $k_1 = f(t_0, y_0), k_2 = f(t_0 + h, y_0 + hk_1), y_1 = y_0 + \frac{h}{2}(k_1 + k_2).$

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

Heun's Method — y'(t) = y(t) + 2t - 1, y(0) = 1 (h = 1/2)

Heun's method samples the slope at the beginning and the end, and uses the average as the final approximation of the slope.



Step#1: $k_1 = f(t_0, y_0), k_2 = f(t_0 + h, y_0 + hk_1), y_1 = y_0 + \frac{h}{2}(k_1 + k_2)$. Step#2: $k_1 = f(t_1, y_1)$.

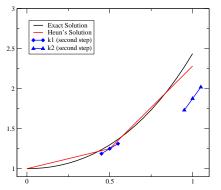
Peter Blomgren, (blomgren.peter@gmail.com) Runge-Kutta Methods, Continued

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

— (5/47)

Heun's Method — y'(t) = y(t) + 2t - 1, y(0) = 1 (h = 1/2)

Heun's method samples the slope at the beginning and the end, and uses the average as the final approximation of the slope.



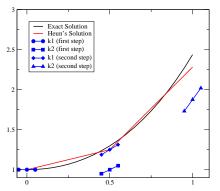
Step#1: $k_1 = f(t_0, y_0), k_2 = f(t_0 + h, y_0 + hk_1), y_1 = y_0 + \frac{h}{2}(k_1 + k_2).$ Step#2: $k_1 = f(t_1, y_1), k_2 = f(t_1 + h, y_1 + hk_1), y_2 = y_1 + \frac{h}{2}(k_1 + k_2).$

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

— (5/47)

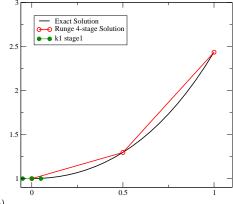
Heun's Method — y'(t) = y(t) + 2t - 1, y(0) = 1 (h = 1/2)

Heun's method samples the slope at the beginning and the end, and uses the average as the final approximation of the slope.



Step#1: $k_1 = f(t_0, y_0), k_2 = f(t_0 + h, y_0 + hk_1), y_1 = y_0 + \frac{h}{2}(k_1 + k_2).$ Step#2: $k_1 = f(t_1, y_1), k_2 = f(t_1 + h, y_1 + hk_1), y_2 = y_1 + \frac{h}{2}(k_1 + k_2).$

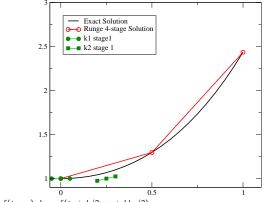
Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues



Stage#1: $k_1 = f(t_0, y_0)$

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

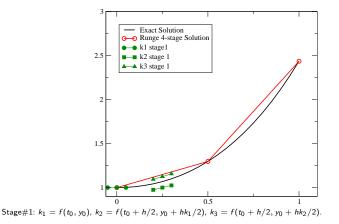
Runge's Method — y'(t) = y(t) + 2t - 1, y(0) = 1 (h = 1/2)



Stage#1: $k_1 = f(t_0, y_0), k_2 = f(t_0 + h/2, y_0 + hk_1/2).$

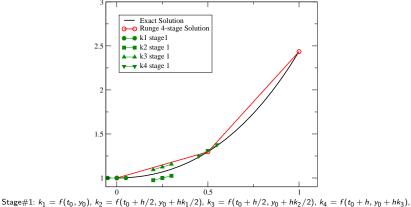
Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

Runge's Method — y'(t) = y(t) + 2t - 1, y(0) = 1 (h = 1/2)



Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

Runge's Method — y'(t) = y(t) + 2t - 1, y(0) = 1 (h = 1/2)

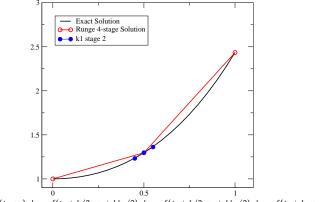


Stage#1: $k_1 = f(t_0, y_0), k_2 = f(t_0 + h/2, y_0 + hk_1/2), k_3 = f(t_0 + h/2, y_0 + hk_2/2), k_4 = f(t_0 + h, y_0 + hk_3), y_1 = y_0 + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4).$

— (6/47)

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

Runge's Method — y'(t) = y(t) + 2t - 1, y(0) = 1 (h = 1/2)

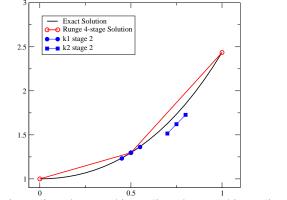


 $\begin{array}{l} {\rm Stage\#1:}\; k_1 = f(t_0,y_0), \; k_2 = f(t_0+h/2,y_0+hk_1/2), \; k_3 = f(t_0+h/2,y_0+hk_2/2), \; k_4 = f(t_0+h,y_0+hk_3), \\ y_1 = y_0 + \frac{h}{6}(k_1+2k_2+2k_3+k_4). \end{array} \\ {\rm Stage\#2:}\; k_1 = f(t_1,y_1). \end{array}$

— (6/47)

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

Runge's Method — y'(t) = y(t) + 2t - 1, y(0) = 1 (h = 1/2)

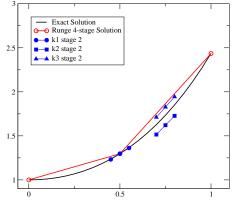


 $\begin{array}{l} {\rm Stage\#1:}\; k_1=f(t_0,y_0),\; k_2=f(t_0+h/2,y_0+hk_1/2),\; k_3=f(t_0+h/2,y_0+hk_2/2),\; k_4=f(t_0+h,y_0+hk_3),\\ y_1=y_0+\frac{h}{6}(k_1+2k_2+2k_3+k_4).\\ {\rm Stage\#2:}\; k_1=f(t_1,y_1),\; k_2=f(t_1+h/2,y_1+hk_1/2). \end{array}$

— (6/47)

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

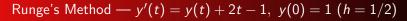
Runge's Method — y'(t) = y(t) + 2t - 1, y(0) = 1 (h = 1/2)

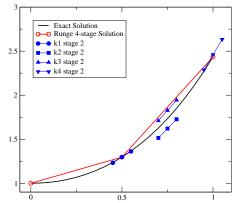


 $\begin{array}{l} \mathsf{Stage\#1:}\; k_1 = f(t_0,y_0), \; k_2 = f(t_0+h/2,y_0+hk_1/2), \; k_3 = f(t_0+h/2,y_0+hk_2/2), \; k_4 = f(t_0+h,y_0+hk_3), \\ y_1 = y_0 + \frac{h}{6}(k_1+2k_2+2k_3+k_4). \\ \mathsf{Stage\#2:}\; k_1 = f(t_1,y_1), \; k_2 = f(t_1+h/2,y_1+hk_1/2), \; k_3 = f(t_1+h/2,y_1+hk_2/2). \end{array}$

— (6/47)

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

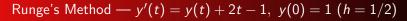


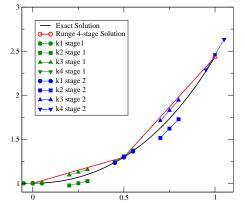


 $\begin{aligned} & \mathsf{Stage\#1:}\; k_1 = f(t_0,y_0), \, k_2 = f(t_0+h/2,y_0+hk_1/2), \, k_3 = f(t_0+h/2,y_0+hk_2/2), \, k_4 = f(t_0+h,y_0+hk_3), \\ & y_1 = y_0 + \frac{h}{6}(k_1+2k_2+2k_3+k_4). \end{aligned} \\ & \mathsf{Stage\#2:}\; k_1 = f(t_1,y_1), \, k_2 = f(t_1+h/2,y_1+hk_1/2), \, k_3 = f(t_1+h/2,y_1+hk_2/2), \, k_4 = f(t_1+h,y_1+hk_3), \\ & y_2 = y_1 + \frac{h}{6}(k_1+2k_2+2k_3+k_4). \end{aligned}$

— (6/47)

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues





 $\begin{aligned} & \mathsf{Stage\#1:}\; k_1 = f(t_0,y_0), \, k_2 = f(t_0+h/2,y_0+hk_1/2), \, k_3 = f(t_0+h/2,y_0+hk_2/2), \, k_4 = f(t_0+h,y_0+hk_3), \\ & y_1 = y_0 + \frac{h}{6}(k_1+2k_2+2k_3+k_4). \end{aligned} \\ & \mathsf{Stage\#2:}\; k_1 = f(t_1,y_1), \, k_2 = f(t_1+h/2,y_1+hk_1/2), \, k_3 = f(t_1+h/2,y_1+hk_2/2), \, k_4 = f(t_1+h,y_1+hk_3), \\ & y_2 = y_1 + \frac{h}{6}(k_1+2k_2+2k_3+k_4). \end{aligned}$

— (6/47)

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

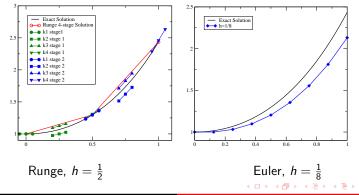
You may say... "No Big Surprise There!"

"Of course we do better with 8 measurements of the derivative (Runge with $h = \frac{1}{2}$), I bet if we used Euler's method with 8 measurements $(h = \frac{1}{8})$ we'd do just as good a job — and we wouldn't have to figure out the coefficients!"

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

You may say... "No Big Surprise There!"

"Of course we do better with 8 measurements of the derivative (Runge with $h = \frac{1}{2}$), I bet if we used Euler's method with 8 measurements $(h = \frac{1}{8})$ we'd do just as good a job — and we wouldn't have to figure out the coefficients!"



Peter Blomgren, (blomgren.peter@gmail.com)

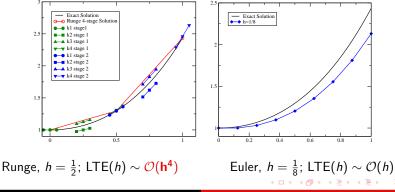
Runge-Kutta Methods, Continued

— (7/47)

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

You may say... "No Big Surprise There!"

"Of course we do better with 8 measurements of the derivative (Runge with $h = \frac{1}{2}$), I bet if we used Euler's method with 8 measurements $(h = \frac{1}{8})$ we'd do just as good a job — and we wouldn't have to figure out the coefficients!"



Peter Blomgren, (blomgren.peter@gmail.com)

Runge-Kutta Methods, Continued

— (7/47)

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

Summary: Runge-Kutta vs. Euler

- By combining multiple "measurements" of the slope y'(t) = f(t, y) in the step-interval, the RK-method builds up a more accurate final step.
 - In the previous example, where LTE_{RK}(h) ~ $O(h^4)$, cutting the step-size (h) in half (\Leftrightarrow doubling the number of measurements), reduces the error by a factor of $\frac{1}{2^4} = \frac{1}{16}$.
 - Roughly Work imes Error $\sim \mathcal{O}\left(h^3
 ight)$
- Euler's method with the same number of "measurements" (smaller step-size *h*) is still a first order method.
 - Doubling the number of measurements reduces the error by $\frac{1}{2}$
 - Roughly Work imes Error $\sim \mathcal{O}\left(1
 ight)$

・ロト ・聞ト ・ヨト ・ヨト

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

Flashback

Deriving Explicit 2-stage RK-methods, I/III

(D) (A) (A) (A) (A)

The Butcher array for a 2-stage explicit RK method has the form:

Hence,

$$\begin{cases} k_1 = f(t_n, y_n) \\ k_2 = f(t_n + c_2 h, y_n + c_2 h k_1) \\ y_{n+1} = y_n + h [b_1 k_1 + (1 - b_1) k_2] \end{cases}$$

Describes all possible explicit 2-stage RK-methods.

We Taylor expand to determine the parameters c_2 and b_1 ...

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

Flashback

Deriving Explicit 2-stage RK-methods, II/III

With the following Taylor expansions:

$$\begin{array}{rcl} y_{n+1} &=& y_n + hf_n + \frac{h^2}{2}f'_n + \mathcal{O}(h^3) \\ k_1 &=& f_n \\ k_2 &=& f(t_n + c_2h, y_n + c_2hk_1) \\ &=& f_n + (c_2h)\frac{\partial}{\partial t}f(t_n, y_n) + (c_2h)\frac{\partial}{\partial y}f(t_n, y_n)y'(t) + \mathcal{O}(h^2) \end{array}$$

We can define the Local Truncation Error

$$\mathsf{LTE}(h) = \frac{y_{n+1} - y_n}{h} - b_1 k_1 - (1 - b_1) k_2$$

$$= \left[f_n + \frac{h}{2} f'_n + \mathcal{O}(h^2) \right] - \left[b_1 f_n + (1 - b_1) \left(f_n + (c_2 h) \left[\frac{\partial}{\partial t} f_n + \frac{\partial}{\partial y} f_n \cdot f_n \right] \right) \right]$$

$$= \frac{h}{2} \left[\frac{\partial}{\partial t} f_n + \frac{\partial}{\partial y} f_n \cdot f_n \right] - \mathbf{b}_2 c_2 h \left[\frac{\partial}{\partial t} f_n + \frac{\partial}{\partial y} f_n \cdot f_n \right] + \mathcal{O}(h^2)$$

Peter Blomgren, {blomgren.peter@gmail.com}

Runge-Kutta Methods, Continued

-(10/47)

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

Deriving Explicit 2-stage RK-methods, III/III

We have

$$\mathsf{LTE}(h) = \frac{h}{2} \left[\frac{\partial}{\partial t} f_n + \frac{\partial}{\partial y} f_n \cdot f_n \right] - \mathbf{b}_2 c_2 h \left[\frac{\partial}{\partial t} f_n + \frac{\partial}{\partial y} f_n \cdot f_n \right] + \mathcal{O}(h^2)$$

Now, if

$$\frac{h}{2} - b_2 c_2 h = 0 \quad \Leftrightarrow 2b_2 c_2 = 1$$

we get $LTE(h) \sim O(h^2)$, *i.e.* our 2-stage RK-method is **second order**. The corresponding family of Butcher arrays is

$$\begin{array}{c|cccc} 0 & 0 & 0 \\ c_2 & c_2 & 0 \\ \hline & 1 - 1/(2c_2) & 1/(2c_2) \end{array}$$

Sanity check: $c_2 = 1/2$ gives Euler's Midpoint Method, and $c_2 = 1$ gives Heun's Method.

Flashback

Euler's, Heun's, and Runge's Methods Recap: Deriving Runge-Kutta Methods Recap: Pending Issues

イロト イポト イヨト イヨト

-(12/47)

Runge-Kutta Methods: Issues to clear up...

- Error Estimation using Richardson's Extrapolation
- Error Analysis
 - LTE(*h*)
 - consistency
- Stability Analysis

Error Estimation Stability Analysis Consistency

Estimating the Error "on the fly"

1/11

In addition to computing the numerical solution, we also need an estimate on the quality of the solution — an error estimate.

3

Error Estimation Stability Analysis Consistency

Estimating the Error "on the fly"

1/11

In addition to computing the numerical solution, we also need an estimate on the quality of the solution — an error estimate.

Suppose we have used a Runge-Kutta method (with step-size $h_1 = h$) of order p to get the numerical solution y_{n+1}^* at t_{n+1} , then the local error in the solution is:

$$e^* = y(t_{n+1}) - y_{n+1}^* = Ch^{p+1} + O(h^{p+2})$$

イロン イヨン イヨン イヨン

Error Estimation Stability Analysis Consistency

Estimating the Error "on the fly"

1/111

In addition to computing the numerical solution, we also need an estimate on the quality of the solution — an error estimate.

Suppose we have used a Runge-Kutta method (with step-size $h_1 = h$) of order p to get the numerical solution y_{n+1}^* at t_{n+1} , then the local error in the solution is:

$$e^* = y(t_{n+1}) - y_{n+1}^* = Ch^{p+1} + O(h^{p+2})$$

If we have another solution y_{n+1}^{**} , computed with $h_2=h/2$,

$$e^{**} = y(t_{n+1}) - y_{n+1}^{**} = C\left[\frac{h}{2}\right]^{p+1} + O(h^{p+2})$$

・ロン ・回 と ・ ヨン ・ ヨン

Error Estimation Stability Analysis Consistency

Estimating the Error "on the fly"

||/|||

Keeping only the leading order (principal part, h^{p+1} -term) of the error expansion we can write:

$$y_{n+1}^{**} - y_{n+1}^{*} = -\mathcal{C}h^{p+1}\left[rac{1}{2^{p+1}} - 1
ight]$$

We have

$$y_{n+1}^{**} - y_{n+1}^{*} = -\mathcal{C}h^{p+1}\left[\frac{1}{2^{p+1}} - 1\right] = -\mathcal{C}\left[\frac{h}{2}\right]^{p+1}\left[1 - 2^{p+1}\right]$$

Error Estimation Stability Analysis Consistency

 $\Pi I / \Pi I$

-(15/47)

Estimating the Error "on the fly"

Thus,

$$\underbrace{\mathcal{C}\left[\frac{h}{2}\right]^{p+1}}_{e^{**}} = \frac{\mathbf{y}_{n+1}^{**} - \mathbf{y}_{n+1}^{*}}{\mathbf{2}^{p+1} - \mathbf{1}}$$

is an estimate for principal local truncation error (PLTE).

This works well in practice. The only problem is that it is expensive to implement — 3 times the evaluations of the slope f(t, y) (a total of 12 evaluations for Runge's 4th order scheme) — **200% overhead**.

・ロン ・回と ・ヨン・

Error Estimation Stability Analysis Consistency

Finding a More Efficient Error Estimate

It'd be great if we could find an error estimate directly from the computed slopes (the k_i 's)...

3

・ロン ・回と ・ヨン・

Error Estimation Stability Analysis Consistency

Finding a More Efficient Error Estimate

It'd be great if we could find an error estimate directly from the computed slopes (the k_i 's)...

This idea was introduced by Merson in 1957. The idea is to derive two Runge-Kutta methods of orders p and p + 1 using the same set of k_i 's... In terms of the Butcher array:

$$\begin{array}{c|c} \tilde{\mathbf{c}} & A \\ & \tilde{\mathbf{b}}^T \\ & \tilde{\mathbf{b}}_2^T \\ & \tilde{\mathbf{E}}^T \\ \end{array}$$

Where $(A, \tilde{\mathbf{c}}, \tilde{\mathbf{b}})$ defines a method of order p, and $(A, \tilde{\mathbf{c}}, \tilde{\mathbf{b}}_2)$ a method of order p + 1. The vector $\tilde{\mathbf{E}}^T = \tilde{\mathbf{b}}_2 - \tilde{\mathbf{b}}$, and the error estimate is given by $h \sum_{i=1}^{s} E_i k_i$.

-(16/47)

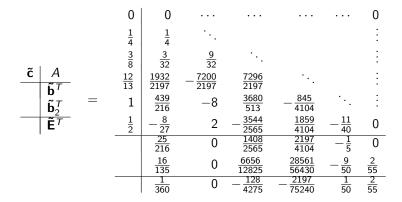
Error Estimation Stability Analysis Consistency

RKF45 — Runge-Kutta-Fehlberg 4th-5th Order Method

matlab's ode45

-(17/47)

The most commonly seen 4th-5th order method is RKF45:



RKF45 uses 6 evaluations of f(t, y) to obtain a 4th order method with an error estimate — **50% overhead**.

Peter Blomgren, (blomgren.peter@gmail.com)

Runge-Kutta Methods, Continued

Error Estimation Stability Analysis Consistency

Stability Analysis of RK-methods

By applying the RK-methods to the scalar test-problem $\mathbf{y}'(\mathbf{t}) = \lambda \mathbf{y}(\mathbf{t}), \ \mathbf{y}(\mathbf{t_0}) = \mathbf{y_0}$ we will find the regions of stability for the methods.

Consider Heun's Method

Hence

$$k_1 = f(t_n, y_n) = \lambda y_n$$

$$k_2 = f(t_n + h, y_n + hk_1) = \lambda (y_n + hk_1) = \lambda y_n + h\lambda^2 y_n$$

$$y_{n+1} = y_n \left[1 + \frac{h}{2} \left[2\lambda + h\lambda^2 \right] \right] = y_n \left[1 + h\lambda + \frac{(h\lambda)^2}{2} \right]$$

・ロト ・聞ト ・ヨト ・ヨト

2

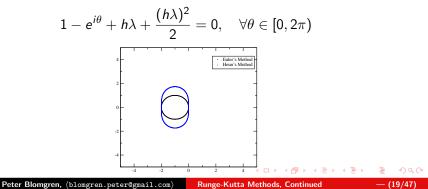
Error Estimation Stability Analysis Consistency

Stability of Heun's Method, continued

The stability region is given by

$$|R(h\lambda)| = \left|1+h\lambda+rac{(h\lambda)^2}{2}
ight| \leq 1$$

We find the boundary of the region by find the complex roots of



Error Estimation Stability Analysis Consistency

Stability Regions for RK-methods

I/II

For notational convenience we absorb $h\lambda
ightarrow \widehat{h}$.

Using the A from the Butcher array, we can write the k_i 's

$$\mathbf{\tilde{k}} = \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_s \end{bmatrix} = y_n \mathbf{\tilde{1}} + \hat{h} A \mathbf{\tilde{k}}, \text{ where } \mathbf{\tilde{1}} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} s \text{ ones}$$

thus, we can solve for $\tilde{\mathbf{k}}$:

$$\mathbf{\tilde{k}} = (I - \widehat{h}A)^{-1}\mathbf{\tilde{1}}y_n$$

Further,

$$y_{n+1} = y_n + \hat{h} \tilde{\mathbf{b}}^T \tilde{\mathbf{k}} = y_n + \hat{h} \tilde{\mathbf{b}}^T (I - \hat{h} A)^{-1} \tilde{\mathbf{1}} y_n$$

Error Estimation Stability Analysis Consistency

Stability Regions for RK-methods

We have

$$y_{n+1} = y_n + \widehat{h}\widetilde{\mathbf{b}}^T\widetilde{\mathbf{k}} = y_n + \widehat{h}\widetilde{\mathbf{b}}^T(I - \widehat{h}A)^{-1}\widetilde{\mathbf{1}}y_n$$

Thus, the stability function is

$$R\left(\widehat{h}\right) = 1 + \widehat{h}\widetilde{\mathbf{b}}^{T}\left(I - \widehat{h}A\right)^{-1}\widetilde{\mathbf{1}}$$

As usual, the method is stable for \widehat{h} such that $|R(\widehat{h})| \leq 1$.

For explicit methods, A strictly lower triangular, the quantity

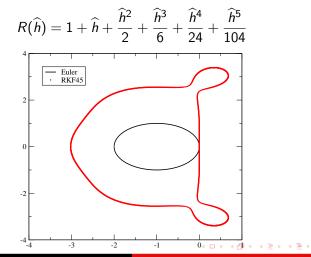
$$\mathbf{\tilde{d}} = \left(I - \widehat{h}A\right)^{-1}\mathbf{\tilde{1}}$$

is easily computable using forward substitution.

||/||

Error Estimation Stability Analysis Consistency

Stability Region for RKF45



Peter Blomgren, (blomgren.peter@gmail.com)

Runge-Kutta Methods, Continued

- (22/47)

Error Estimation Stability Analysis Consistency

Consistency for RK-methods

1 of 2

Theorem

An RK-method

$$\frac{y_{n+1}-y_n}{h}=\sum_{i=1}^s b_i k_i$$

where

$$k_i = f\left(t_i + c_i h, y_n + h \sum_{j=1}^s a_{ij} k_j\right)$$

is consistent with the ODE, y'(t) = f(t, y), if and only if $\sum b_i = 1$.

(日) (同) (E) (E) (E)

Error Estimation Stability Analysis Consistency

Consistency for RK-methods

2 of 2

"Proof" by vigorous hand-waving

We note that each $k_i = f(t_n, y_n) + O(h)$. Hence we have $LTE(h) = (1 - \sum b_i)f(t, y) + O(h)$. Since we need $\lim_{h \to 0} LTE(h) = 0$, we must have $1 - \sum b_i = 0$. \Box

(日) (종) (종) (종) (종)

Error Estimation Stability Analysis Consistency

Homework #2, Due 11:00am, 2/20/2015

- Find the stability function for Runge's 4th-order 4-stage method.
- Implement RKF45 (don't use matlab's ode45!). Solve

$$\left\{ egin{array}{l} y'(t) = y(t) + 2t - 1 \ y(0) = 1 \ t \in [0,1] \end{array}
ight.$$

with step-length $h \in \{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}\}.$

Plot the exact, and estimated errors at the terminating point (t = 1) vs. the step-length h on a log-log scale (in matlab: loglog(the_h_values, the_exact_errors, '-o', the_h_values, the_estimated_errors, '-*')

・ロン ・回 と ・ ヨン ・ ヨン

Runge-Kutta Methods, Historical Overview s-stage Runge-Kutta Methods, a recap Order Conditions

Chronology

- 1895 The idea of multiple evaluations of the derivative for each time-step is attributed to Runge.
- 1900 Heun makes several contributions.
- 1901 Kutta characterizes the set of Runge-Kutta methods of order4; proposed the first order 5 method.
- 1925 Nyström proposes special methods for second order ODEs.
- 1956 Huta introduces 6th order methods.

Modern analysis of Runge-Kutta methods developed by

- 1951 Gill
- 1957 Merson
- 1963 Butcher

イロト イポト イヨト イヨト

Runge-Kutta Methods, Historical Overview s-stage Runge-Kutta Methods, a recap Order Conditions

s-stage Runge-Kutta for { y'(t) = f(t, y), $y(t_0) = y_0$ }

The Butcher array for a general s-stage RK method is

is a compact shorthand for the scheme

$$y_{n+1} = y_n + h \sum_{i=1}^s b_i k_i$$

where the k_i s are multiple estimates of the right-hand-side f(t, y)

$$k_i = f\left(t_n + c_i h, y_n + h \sum_{j=1}^s a_{i,j} k_j\right), \quad i = 1, 2, \dots, s$$

Peter Blomgren, (blomgren.peter@gmail.com)

Runge-Kutta Methods, Continued

-(27/47)

Runge-Kutta Methods, Historical Overview s-stage Runge-Kutta Methods, a recap Order Conditions

イロト イポト イヨト イヨト

-(28/47)

Conditions on the Butcher Array

The Butcher array must satisfy the following row-sum condition

$$c_i = \sum_{j=1}^s a_{i,j} \quad i = 1, 2, \dots, s$$

and consistency requires

$$\sum_{j=1}^{s} b_j = 1.$$

Beyond that, we are left with the formidable task of selecting $\tilde{\mathbf{b}}$, $\tilde{\mathbf{c}}$, and the matrix A. Up to this point our only tool is (tedious) Taylor expansions.

Runge-Kutta Methods, Historical Overview s-stage Runge-Kutta Methods, a recap Order Conditions

Explicit 3-stage RK Methods

The Order Conditions

If we want to build an explicit 3-stage method,

 $\begin{array}{cccc} 0 & & & \\ c_2 & a_{21} & & \\ c_3 & a_{31} & a_{32} & \\ & & b_1 & b_2 & b_3 \end{array}$

it can be shown (Taylor expansion) that in order to achieve a 3rd order scheme, we must satisfy the **Order Conditions**:

$$b_1 + b_2 + b_3 = 1$$

$$b_2c_2 + b_3c_3 = \frac{1}{2}$$

$$b_2c_2^2 + b_3c_3^2 = \frac{1}{3}$$

$$b_3a_{32}c_2 = \frac{1}{6}$$

イロト イポト イヨト イヨト

Runge-Kutta Methods, Historical Overview s-stage Runge-Kutta Methods, a recap Order Conditions

イロト イヨト イヨト イヨト

-(30/47)

Finding the Order Conditions

Clearly, deriving a Runge-Kutta scheme boils down to a two-stage process:

- Find the order conditions: a set of non-linear equations in the parameters sought.
- **2** Find a solution, or family of solutions, to the order conditions.

As the desired order of the method increases, both deriving and solving these algebraic conditions become increasingly complicated.

We now consider a structured way of deriving the order conditions without explicit Taylor expansions.

Definitions The Quantities $\Phi(t)$, and $\gamma(t)$

Designing a Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$

(ロ) (部) (注) ()

Rooted Trees

Definition (Rooted Tree)

A rooted tree is a graph, which is connected, has no cycles, and has one vertex designated as the root.

Definition (Order of a Rooted Tree)

The order of a rooted tree is the number of vertices in the tree.

Definition (Leaves)

A leaf is vertex in a tree (with order greater than one) which has exactly one vertex joined to it.

Definitions The Quantities $\Phi(t)$, and $\gamma(t)$ Designing a Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$

イロト イポト イヨト イヨト

-(32/47)

Examples: Trees

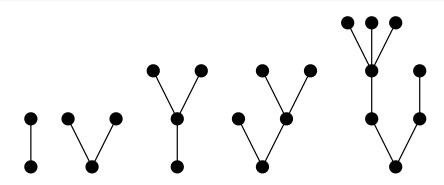


Figure: Trees of order 2, 3, 4, 5, and 8. By convention, we place to root at the bottom of the graph, and let the tree grow "upward."

Definitions The Quantities $\Phi(t)$, and $\gamma(t)$ Designing a Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$

イロト イヨト イヨト イヨト

-(33/47)

Associated Quantities

For each tree t, we define two quantities

- Φ(t): a polynomial in the coefficients which will define a Runge-Kutta method.
- **2** $\gamma(t)$: an integer

Definitions **The Quantities** $\Phi(t)$, and $\gamma(t)$ Designing a Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$

イロト イポト イヨト イヨト

Building $\Phi(t)$

We label each vertex of the tree, except the leaves, e.g.

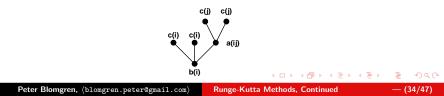
3

Definitions **The Quantities** $\Phi(t)$, and $\gamma(t)$ Designing a Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$

Building $\Phi(t)$

We label each vertex of the tree, except the leaves, e.g.

Next, we write down a sequence of factors, starting with b_i (the root factor). For each arc of the tree, write down a factor a_{jk} where j and k are the beginning and end of the arc (in the sense up upward growth). Finally, for the leaves write down a factor c_j , where j is the label attached to the beginning of the arc: *e.g.*



Definitions **The Quantities** $\Phi(t)$, and $\gamma(t)$ Designing a Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$

イロン イヨン イヨン イヨン

Now, sum the product of these factors, for all possible choices of the labels $\{1, 2, \ldots, s\}$:

$$\Phi(t) = \sum_{ij} b_i c_i^2 a_{ij} c_j^2$$

Definitions **The Quantities** $\Phi(t)$, and $\gamma(t)$ Designing a Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$

Building $\gamma(t)$

In order to build $\gamma(t)$, we associate a factor with each vertex in the tree:

- The factor for the leaves is 1.
- For all other vertices, the factor is 1 added to the sum of the factors of the upward growing neighbors

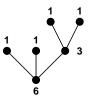
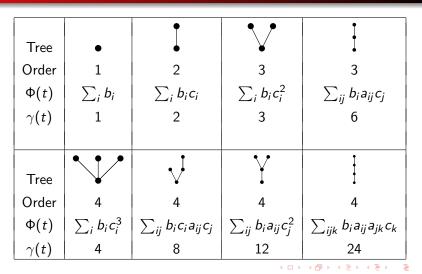


Figure: $\gamma(t)$ is the product of all the factors, here $\gamma(t) = 6 \cdot 3 \cdot 1^4 = 18$.

Definitions **The Quantities** $\Phi(t)$, and $\gamma(t)$ Designing a Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$

Rooted Trees Up to Order 4



Peter Blomgren, (blomgren.peter@gmail.com)

Runge-Kutta Methods, Continued

— (37/47)

Definitions The Quantities $\Phi(t)$, and $\gamma(t)$ Designing a Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$

イロト イヨト イヨト イヨト

-(38/47)

Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$: General condition

In designing an s-stage RK-method, the coefficients must satisfy

$$\Phi(t) = rac{1}{\gamma(t)}, \quad orall t \,:\, {f order}(t) \leq s$$

Definitions The Quantities $\Phi(t)$, and $\gamma(t)$ Designing a Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$

イロン 不同と 不良と 不良とう

Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$: 4-stage Example

A 4-stage **explicit** scheme, where $a_{ij} = 0$ whenever $i \ge j$, thus yields 8 conditions for $\{b_1, b_2, b_3, b_4, c_2, c_3, c_4, a_{32}, a_{42}, a_{43}\}$:

$$b_{1} + b_{2} + b_{3} + b_{4} = 1 \quad (1)$$

$$b_{2}c_{2} + b_{3}c_{3} + b_{4}c_{4} = \frac{1}{2} \quad (2)$$

$$b_{2}c_{2}^{2} + b_{3}c_{3}^{2} + b_{4}c_{4}^{2} = \frac{1}{3} \quad (3)$$

$$b_{3}a_{32}c_{2} + b_{4}a_{42}c_{2} + b_{4}a_{43}c_{3} = \frac{1}{6} \quad (4)$$

$$b_{2}c_{2}^{3} + b_{3}c_{3}^{3} + b_{4}c_{4}^{3} = \frac{1}{4} \quad (5)$$

$$b_{3}c_{3}a_{32}c_{2} + b_{4}a_{42}c_{2} + b_{4}c_{4}a_{43}c_{3} = \frac{1}{8} \quad (6)$$

$$b_{3}a_{32}c_{2}^{2} + b_{4}a_{42}c_{2}^{2} + b_{4}a_{43}c_{3}^{2} = \frac{1}{12} \quad (7)$$

$$b_{4}a_{43}a_{32}c_{2} = \frac{1}{24} \quad (8)$$

Definitions The Quantities $\Phi(t)$, and $\gamma(t)$ Designing a Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$

イロト イポト イヨト イヨト

-(40/47)

Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$: 4-stage Example

Kutta identified five cases where a solution to this non-linear system is guaranteed to exist:

Case 1
$$c_2 \notin \{0, \frac{1}{2}, \frac{1}{2} \pm \frac{\sqrt{3}}{6}\}, c_3 = 1 - c_2$$

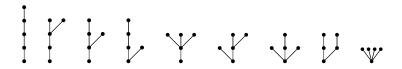
Case 2 $b_2 = 0, c_2 \neq 0, c_3 = \frac{1}{2}$
Case 3 $b_3 \neq 0, c_2 = \frac{1}{2}, c_3 = 0$
Case 4 $b_4 \neq 0, c_2 = 1, c_3 = \frac{1}{2}$
Case 5 $b_3 \neq 0, c_2 = c_3 = \frac{1}{2}$

Definitions The Quantities $\Phi(t)$, and $\gamma(t)$ Designing a Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$

-(41/47)

Beyond 4 Stages...

The number of rooted trees of order *s* increases rapidly as *s* goes beyond 4. For s = 5 we have the following 9 rooted trees:



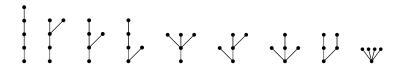
Each which leads to a nonlinear condition. (Fun!)

Definitions The Quantities $\Phi(t)$, and $\gamma(t)$ Designing a Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$

(ロ)(同)(日)(日)(日)(日)

Beyond 4 Stages...

The number of rooted trees of order *s* increases rapidly as *s* goes beyond 4. For s = 5 we have the following 9 rooted trees:



Each which leads to a nonlinear condition. (Fun!)

For $s \in \{6, 7, 8, 9, 10\}$ we get $\{20, 48, 115, 286, 719\}$ corresponding rooted trees.

Definitions The Quantities $\Phi(t)$, and $\gamma(t)$ Designing a Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$

Beyond 4 Stages...

More Bad News

Theorem (Butcher, 2008: p.187)

If an explicit s-stage Runge-Kutta method has order p, then $s \ge p$.

Theorem (Butcher, 2008: p.187)

If an explicit s-stage Runge-Kutta method has order $p \ge 5$, then s > p.

Theorem (Butcher, 2008: p.188)

For any positive integer p, an explicit Runge-Kutta method exists with order p and s stages, where

$$s = \left\{ egin{array}{ccc} rac{3p^2 - 10p + 24}{8}, & p = 2k, \, k \in \mathbb{Z} \ rac{3p^2 - 4p + 9}{8}, & p = 2k + 1, \, k \in \mathbb{Z} \end{array}
ight.$$

イロン イヨン イヨン イヨン

3

Definitions The Quantities $\Phi(t)$, and $\gamma(t)$ Designing a Runge-Kutta Scheme Based on $\Phi(t)$ and $\gamma(t)$

Consequences of the 3rd Theorem

イロン イヨン イヨン イヨン

-(43/47)

Note that the theorem gives an upper bound for the number of required stages (the theorem gives guarantees). The bound grows very quickly.

For certain values of p, s-stage methods with s lower than this bound are known:

Order, $p =$	5	6	7	8	9	10	11	12
Stages, <i>s</i> =	8	9	16	17	27	28	41	42
Scheme, <i>s</i> =	6	7	9	11		17		

Project, anyone?

Some Notes...

Stability Polynomials, Comments

With every explicit Runge-Kutta method, we can find a stability polynomial $R(h\lambda)$ for which the condition $|R(h\lambda)| \leq 1$ defines the region of stability,

We know that for orders p = 1, 2, 3, 4 there are explicit *s*-stage RK-methods with s = p, and for higher order methods s > p.

Order	Stages	Stability Polynomial
1	1	R(z) = 1 + z
2	2	$R(z)=1+z+\tfrac{1}{2}z^2$
3	3	$R(z) = 1 + z + rac{1}{2}z^2 + rac{1}{6}z^3$
4	4	$R(z) = 1 + z + rac{1}{2}z^2 + rac{1}{6}z^3 + rac{1}{24}z^4$
5	6	$R(z) = 1 + z + \frac{1}{2}z^{2} + \frac{1}{6}z^{3} + \frac{1}{24}z^{4} + \frac{1}{120}z^{5} + Cz^{6}$

Where, in the case p = 5, s = 6, the constant *C* depends on the particular method.

Some Notes...

Stability Polynomials, Comments

Fact

Since the stability function R(z) is a polynomial for all explicit Runge-Kutta methods, it is never possible to build such a method with unbounded region of stability.

イロト イヨト イヨト イヨト

Additional Comments

Some Notes...

Butcher (2008) develops the theory of rooted trees and their usefulness far beyond what is indicated in the current lecture.

I have deliberately taken a very narrow path through the material and only presented some key ideas that fit into the context of what we have explored so far (Low-order explicit methods).

Some completely ignored topics include

- Two alternative, non-graphical, notations for trees.
- Expression of higher order derivatives in terms of rooted trees.
- Expression of ODEs (linear and non-linear) using rooted trees,

Additional Comments

For the mathematically inclined, the study of Runge-Kutta methods have several interesting connections to ares of mathematics which we sometimes consider "less applied," *e.g.*

- Graph theory
- Group theory

Also, in the context of step-size (h) management, there are some overlap with ideas in

Control theory

We will revisit some of these topic, as needed, in future lectures.

イロト イポト イヨト イヨト