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Introduction Our Problem

Improvements over Euler’s Method: Old Ideas
Improvements over Euler’s Method: New Ideas

Quick Recap...

Our favorite problem is
Y'(t) =f(t,y(t)), y(to)=yo, t€][to, T]
The simplest numerical method is Euler's method:

Yn+1 ZYn+hf(tnaYn)a t, = to + nh.

Euler's method, is
@ only first order accurate, and

@ has a fairly small region of stability.

At this point we are mostly concerned with the first problem — we
have looked for higher order accurate methods.
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Introduction Our Problem

Improvements over Euler’s Method: Old Ideas
Improvements over Euler’s Method: New ldeas

The Search for Higher Order Methods

Taylor Series Methods
If we can Taylor expand f(t, y) further (remember f(t,y) may
only be available from experiments, or measurements), we can
build higher order methods using more terms from the Taylor
series.

Runge-Kutta Methods
When the Taylor expansion of f(t,y) is not available (or
expensive to compute) but f(t,y) is cheap/easy to evaluate,
Runge-Kutta methods are a good choice. In order to move
from time level t, to t,y1 we compute (sample) f(t,y)
in (carefully selected) multiple locations and combine the
measurements to generate an accurate step.
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Introduction Our Problem

Improvements over Euler’s Method: Old Ideas
Improvements over Euler’s Method: New Ideas

Linear Multistep Methods — The Preview

The Idea
Use values of y and f on multiple time levels to compute y,1:

h
eg. Ynt1=Yn+ E [5fn+1 + 8fn - fn—l]

The Connection
Strongly connected to polynomial interpolation ideas intro-
duced in Math 541.
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Introduction Our Problem

Improvements over Euler’s Method: Old Ideas
Improvements over Euler’s Method: New Ideas

As Usual: Bad and Good News

The Bad News

@ LMMs are not self-starting
@ They depend on a potentially unavailable history.

© Hard to change the step-size h on-the-fly

@ Complicated formulas (from Taylor expansions) when step
sizes change between steps.

The Good News

@ Only one (new) evaluation of f needed per step — less
computational effort (faster) than RK-methods.
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Introduction: Notation and Language
Subclass: Adams Methods
Other LMM Subclasses

Linear Multistep Methods, General Discussion

Linear Multistep Methods — The Language

Notation

forj = f(tatjs Yntj)-

LMM in standard form:

K K
> iyarj=h>_ Bifarj, ak=1, |ao|+|Bo| #0.
=0 =0

Euler’'s Method:

kzl, alzl, aoz—l, ,81:0, ﬂ(]:]_
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Introduction: Notation and Language
Subclass: Adams Methods
Other LMM Subclasses

Linear Multistep Methods, General Discussion

Linear Multistep Methods — The Language, |l

LMM in standard form:
K K
> aynii=h> Bifars, =1, |ao|+ || #0.
j=0 j=0
Characteristic Polynomials: (same a's and §'s)
K K
p(Q) =D o, o(Q)=> B
j=0 j=0

E is the Forward Shift Operator (FSO):

E)/n = Yn+1
LMM using Characteristic Polynomials 4+ FSO:

p(E)yn = ho(E)f,

Peter Blomgren (blomgren.peter@gmail.com) Linear Multistep Methods — (8/33)



Linear Multistep Methods, General Discussion e Wi il Laggige
Subclass: Adams Methods

Other LMM Subclasses

Linear Multistep Methods — Explicit and Implicit

LMM in standard form:
k k
Yoyt =hY Bifarj, ax=1, |ao| +|Bo| #0.
j=0 j=0

o If B = 0, the method is explicit — which means the
sequence {y,}M_, can be computed directly (once we are
given additional starting values).

o If Bk # 0, the method is implicit — at each step we have to
solve the (usually) non-linear system of equations:

Ynt+k = hBk f(tn+k7 ynJrk) + {previously computed values of y; and ﬂ}

Gn+k
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Introduction: Notation and Language
Subclass: Adams Methods
Other LMM Subclasses

Linear Multistep Methods, General Discussion

Implicit Linear Multistep Methods (technical details)

If f is Lipschitz continuous wrt. y, i.e

1£(t,y) = f(t,y")l < Llly =yl
and the step size is small enough (usually not very restrictive)

o b
|Bi|L’

then the nonlinear system of equations
Ynt+k = hﬂkf(tnﬂ—k?)/n—i-k) + Gnyk

can be solved by fixed point iteration

1 0 .
,[,fk] = hBkf(t n+k,y£”+]k) + Gptks yﬂk arbitrary
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Introduction: Notation and Language
Subclass: Adams Methods
Other LMM Subclasses

Linear Multistep Methods, General Discussion

Adams Methods

We are mainly going to look at a sub-class of the Linear Multistep
Methods known as Adams Methods. They are characterized by

p(¢) = ¢k — ¢

@ Adams-Bashforth methods are explicit: e.g. 1-step
Adams-Bashforth method (Euler's Method):

Yn+tl1 — Yn = hfn

@ Adams-Moulton methods are implicit: e.g. 1-step
Adams-Moulton method (Trapezoidal Rule):

h
Yn+1 — Yn = 5 [fn+1 + fn] .
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Introduction: Notation and Language
Subclass: Adams Methods
Other LMM Subclasses

Linear Multistep Methods, General Discussion

Other LMM Subclasses

@ Nystrom Methods are explicit methods characterized by
p¢) = ¢k =2

@ Generalized Milne-Simpson Methods are implicit methods
characterized by

pC) =¢F =2

e Backward Differentiation Formulas (BDF) are implicit
methods with

o(¢) = B¢k

We will revisit some of these methods later, especially when we
start worrying about the size of the stability region.
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Introduction: Notation and Language
Subclass: Adams Methods
Other LMM Subclasses

Linear Multistep Methods, General Discussion

Examples of LMMs (end of introduction)

@ Mid-point rule (Nystrom method)
Yn+2 = Yn = 2hfnyq.
@ Simpson’s Rule (Generalized Milne-Simpson method)
h
Ynt2 = Yn = 3 [fot2 + 4fn1 + fi] -
@ 3rd order Adams-Bashforth
Vbl — Yn = Thz [23f, — 16f,_1 + 5f,_2] + O (h*).

@ 4th order Adams-Moulton

h
Vo1 = Yo = 5 s +19f = Spt 4 o] + O ().
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Blast from the Past: Math 541

Example: A 3rd Order Adams-Bashforth Method
Linear Multistep Methods, Tools and Development Reference: Adams-Bashforth Methods

Building Adams-Moulton Methods

Finite Difference Approximations (Tools from Math 541)

We frequently use

LI =y () + O (h).

We are going to need finite difference approximations for higher
derivatives, and also higher-order-accurate approximations.

Finding these formulas is an exercise in Taylor expansions, and is
strongly connected to polynomial interpolation...

Here we will boldly state some common finite difference formulas,
and sweep all the Taylor expansions under the rug!
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Blast from the Past: Math 541

Example: A 3rd Order Adams-Bashforth Method
Linear Multistep Methods, Tools and Development Reference: Adams-Bashforth Methods

Building Adams-Moulton Methods

Finite Difference Formulas — Error ~ O (h)

Forward Differences, truncation error O (h)

Yo = [ynt1—ysl/h
YW~ Yni2 — 2¥ni1 + yal /PP
y,’fl ~ [Yn+3 — 3Yn+2 + 3ynJrl - yn]/h3
y,(,4) X [Vo+s — 4Yn+3 + 6Yni2 — Ayni1 + yn)/H*

Backward Differences, truncation error O (h)

Yh = [Yn—yn-1]/h
V! & [Yn—2Yn1 + Yao2]/H?
y,’7” ~ [y,, —3yn—1+ 3VYn—2 — Yn—3]/h3
v % e 4Yn-1+ 6Yn2 — Va3 + Yo al/H*
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Blast from the Past: Math 541

Example: A 3rd Order Adams-Bashforth Method
Linear Multistep Methods, Tools and Development Reference: Adams-Bashforth Methods

Building Adams-Moulton Methods

Finite Difference Formulas — Error ~ O (h2)

Central Differences, truncation error O (h?)

y,’, ~ [}/n+1 - Ynfl]/zh
Yo & Wat1 = 200+ ya-1l/H?
YV~ [Ynt2 — 2ne1 + 2Yn-1 — Ya2]/2P°
VS x [ynr2 — 4Yner + 6yn — yn_1 + yaol/H

Forward Differences, truncation error O (h?)

Yo ~ [=Ynt2 + 4ynt1 — 3yn)/2h
YW~ [=Ynt3+4Ynr2 — 5Yny1 + 2yl /WP
vy~ [=3Ynta + 14yny3 — 24yni0 + 18y,i1 — Bys]/2h°
_Vr(14) ~ [—2¥n+5 + 11yt — 24ypi3 + 26yn10 — L4ypy1 + 3)/n]/h4
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Blast from the Past: Math 541

Example: A 3rd Order Adams-Bashforth Method
Linear Multistep Methods, Tools and Development Reference: Adams-Bashforth Methods

Building Adams-Moulton Methods

Finite Difference Formulas — Errors ~ O (h2) or O (h4)

Backward Differences, truncation error O (h?)

¥y & [3Yn—4Yn-1+ yn—2]/2h

Y~ (20— 5Yn1+4yn-2 — Ya3]/ W
Y~ [5Yn— 18yn_1 + 24yn_2 — 14yn_3 + 3y,_4]/2h°
Yr(74) ~ [3Yn — 14y, 1 + 26y 2 — 24y, 3+ 11yn 4 — 2)/n—5]/h4

Central Differences, truncation error O (h*)

Yo & [~Yo+2 +8Yn+1 — 8Yn—1+ yn2]/12h

Y} & [=Ynt2 + 16yns1 — 30yn + 16yn_1 — yn—2]/12h?

Yr/1// ~ [_yn+3 +8yn+2 — 13yn+1 + 13yn—1 — 8Byn—2 + Yn—3]/8h3
VS x [ Ynrs + 12ne2 — 39yns1 + 56y, — 39yn1 + 1252

_Ynf3]/6h4
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Blast from the Past: Math 541

Example: A 3rd Order Adams-Bashforth Method
Linear Multistep Methods, Tools and Development Reference: Adams-Bashforth Methods

Building Adams-Moulton Methods

Building a 3rd Order Adams-Bashforth Method, 1/III

We use a Taylor expansion of y around t, to get an expression for
Yn+1-

00 hk .
Yn+1 =Yn+ Z Fyrg )
k=1

Using the equation y/(t) = f(t,y), we get

k—
Yn+1 = Yn+z f( 2

If we keep the first four terms:

2 3

h h
Ynt1 =Yn+ hf, + —f +

o+ O ()
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Blast from the Past: Math 541
Example: A 3rd Order Adams-Bashforth Method
Reference: Adams-Bashforth Methods

Linear Multistep Methods, Tools and Development
Building Adams-Moulton Methods

Building a 3rd Order Adams-Bashforth Method, 11/11I

We have
h2 / h3 " 4
Yn+1 :}/n‘i‘hfn‘i‘?fn"f'gfn +O(h )

Now, use a finite difference approximation for £,

="l o)
and get
W [fy—fo1 h., N .
Yot = Yot hfat = T+§f"+o(h )} + 5O (hY)
= Yat g [3f — fo1] + 51/’23fn” +0 (h)

Linear Multistep Methods — (19/33)

Peter Blomgren (blomgren.peter@gmail.com)



Blast from the Past: Math 541

Example: A 3rd Order Adams-Bashforth Method
Linear Multistep Methods, Tools and Development Reference: Adams-Bashforth Methods

Building Adams-Moulton Methods

Building a 3rd Order Adams-Bashforth Method, I11/11I

We have

h 5h3
Ynt1=Yn+ = [3fn - fn—l] + Ef,/,/ +0 (h4)

2
Now, we use a first order finite difference approximation for f.':

fn - 2f-n—l + fn—2

and we get
h 5h3[f, — 2f,_1 +f,_
Yol = Yo+ [Bf—foa] + 2n | O > 21 0m)|+0(nY

2 12 h
h 5h

= Yn + 5 [3fn - n 1] + — 12 [fn - 2fn—l + fn—2] + O (h4)

23 4 5 4
= YH+h 12f —3fn—1+12fn—2:| +O(h )
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Blast from the Past: Math 541

Example: A 3rd Order Adams-Bashforth Method
Linear Multistep Methods, Tools and Development Reference: Adams-Bashforth Methods

Building Adams-Moulton Methods

Building a 3rd Order Adams-Bashforth Method alternative

If we instead use

3fn - 4f,,,1 + fn72 fn - 2fnfl + fnf2

f, = T +0(n), fl= 5 + O (h)
in
= hf, hzf/ il 7+ 0 (h*
_Vn+l—_)/n+ n+ €n+ ( )
we get
h h
Yn+1 = Yn+hfn+z[3f 4'fn 1+fn+2]+ [ 2fn 1+fn+2]
3 1 1 1
= _)/n+h (1+ + >f+< 3>fn1+<4+6>fn2:|
23 4
wt+th|—f —=f_ —
Yn+ D 3 1+ D 2]
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Blast from the Past: Math 541

Example: A 3rd Order Adams-Bashforth Method
Linear Multistep Methods, Tools and Development Reference: Adams-Bashforth Methods

Building Adams-Moulton Methods

A Note on the Order

The scheme

23 4 5 4
Yn+1 = Yn + h |:12fn - gfnfl + 12fn2:| + (@) (h )

is 3rd Order, since

Yn+1 — Yn o § ﬁ 3 3
h - |:12fn 3fn71+ ]_2)(”72 +O(h )

This form, where the left-hand-side converges to y’(t) as h — 0 is
sometimes referred to as the consistent form.
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Blast from the Past: Math 541

Example: A 3rd Order Adams-Bashforth Method
Linear Multistep Methods, Tools and Development Reference: Adams-Bashforth Methods

Building Adams-Moulton Methods

Adams-Bashforth Methods, with Error Terms

h2
Yn+l1 = Yn + hfn + ?f/(f)

Ynel = Yn+ g [3fn — fa1] + 57h3f"(f)

Yotl = Ynt i 7 [55f0 = 59fp 1 + 37f, 5 — Of, 5] + %f” 6)

Yol = Yot 2 5 [1901f, — 2774f, 1 + 2616f, > — 1274f, 3
+251f,_4] + ‘ﬁf@(g)

Yol = Ynt 0 (42776, — 79236, 1 + 9982f, 5 — 7298f, 3

7
19087 " _(5)

2877f,_4 — 475f,_
+ 287764 — 47565 ]+ =~

(©)

Peter Blomgren (blomgren.peter@gmail.com) Linear Multistep Methods — (23/33)



Linear Multistep Methods, Tools and Development

Blast from the Past: Math 541

Example: A 3rd Order Adams-Bashforth Method
Reference: Adams-Bashforth Methods

Building Adams-Moulton Methods

Building Adams-Moulton Methods, 1/

We use a Taylor expansion of y around t,;1 to get an expression

for y, (with step-length —h):

Yn = Yn+1 +Z

K
y,(1+)1

Using the equation y’(t) = f(t,y), we get

Yn —)/n-l—l"‘z

We re-arrange

Yn+1 = Yn — Z
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Blast from the Past: Math 541

Example: A 3rd Order Adams-Bashforth Method
Linear Multistep Methods, Tools and Development Reference: Adams-Bashforth Methods

Building Adams-Moulton Methods

Building Adams-Moulton Methods, 11/

©0 k pk
(=1)*h* (k-1
Yn+1 = Yn — Z Tfn(—kl )7
k=1 '
Starting from the re-arranged expression, we: —
Q Keep as many terms as needed to get an m™ order scheme.
The first error term is
(71)m+1hm+1

a9 =0 0m

© Use finite-difference approximations of high enough order for
the derivatives — so that the size of the error from each
approximation gets absorbed into the O (h™*1) term.

Peter Blomgren (blomgren.peter@gmail.com) Linear Multistep Methods — (25/33)



Blast from the Past: Math 541
Example: A 3rd Order Adams-Bashforth Method

Linear Multistep Methods, Tools and Development Reference: Adams-Bashforth Methods

Building Adams-Moulton Methods

Adams-Moulton Methods, with Error Terms

Yn+1

Yn+1

Ynt1

Yn+1

Ynt1

Yn+1

h2
= Yo+ hfoy1 — 7f,(£)
h3
= [fn+1 + ] = 7517(€)
h4
= Yn + A [5fn+1 + 8fn - fnfl] - 7fm(f)
190

= [9fn+1 + 19f, — 5fp1 + fr_2] — 71"(4)(5)
[251f,.1 -+ 646f, — 264f,_1 + 106f,_»
27 h®

£(5)
1440 (€)

h

= [475fp11 + 14271, — 798f,_1 + 482f,_»

* Taa0 663 7
_ (6)
173f, 3+ 27f_s | + 50480 FO)(€)

= Yt 720

—19f, 3] —
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Problems and Questions

Issue #1: Starting

Issue #2: The Fixed Point lteration
Linear Multistep Methods: Issues Issue #3: Stability

Issues, Issues, Issues...

Now that we “know” what some of the LMMs look like, we have
some issues to iron out.

@ LMMs are not self-starting — so how do we start?

@ We can (usually) use the fixed point iteration

y’[’ljj(l] = h/ka(tn-l-k?y:Elﬂk) + Gn+k7 .yr[g]-k arbitrary

for the implicit LMMs — How do we start, and what is the
stopping criterion?

o Stability issues — We know we can build high-order accurate
schemes, but [when] are they stable?
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Problems and Questions

Issue #1: Starting

Issue #2: The Fixed Point lIteration
Linear Multistep Methods: Issues Issue #3: Stability

Issue #1: Starting the LMM

We have seen that a p™ order method requires the values f,, f,_1,
., fa—p+1 in order to compute yp;1.

If we, for instance, want to use a 4th order method, we need the
values of fy, f1, f> and f3 in order to start the LMM.

We must use some other method to compute these values.

Further, the values must be computed with the same accuracy
as the LMM. — Say we compute the starting values with Euler's
Method (1st order), when what's the point of propagating those
values using a 4th order method?7?

Commonly, a more expensive Runge-Kutta method is used as the
“starter.”
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Problems and Questions

Issue #1: Starting

Issue #2: The Fixed Point lIteration
Linear Multistep Methods: Issues Issue #3: Stability

Issue #2: Fixed Point Iteration for Implicit LMMs

In each (implicit) step we must perform the following iteration

v v 0 .
y,[,ﬁl] = hﬁkf(tn+k,}/,[,41k) + Gptk, ka arbitrary

It would make sense to start with y,[gl_k = y,, and iterate until

y[v+1] _ y[V]
k k v+1 v
otk Jntk ] nt <€ oOr y,[1+k] — y,uk < €

yn+k

for some tolerance e.

Note: Each stopping criterion comes with its own set of examples
where it breaks down.
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Problems and Questions

Issue #1: Starting

Issue #2: The Fixed Point lIteration
Linear Multistep Methods: Issues Issue #3: Stability

Introducing Zero-Stability (Issue #3)

Consider the LMM applied to a noise-free problem:

and the same LMM applied to a slightly perturbed system

k k
> jynii=hY_ Bifarj+ 0nik

j=0 j=0
Yu=1u(h) + 0, p=0,1,...,k—1

Perturbations are typically due to discretization and round-off.
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Problems and Questions

Issue #1: Starting

Issue #2: The Fixed Point lIteration
Linear Multistep Methods: Issues Issue #3: Stability

Defining Zero-Stability

Definition (Zero-stability)

Let {6,,n=0,1,...,N} and {0},n=0,1,..., N} be any two
perturbations of the LMM, and let {y,,n=0,1,..., N} and
{ys,n=0,1,..., N} be the resulting solutions. If there exists
constants S and hg such that, for all h € (0, hp],

lyn—yill <Se, 0<n<N

whenever
10n = dpll <€, 0<n<N

the method is said to be zero stable.
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Problems and Questions

Issue #1: Starting

Issue #2: The Fixed Point lIteration
Linear Multistep Methods: Issues Issue #3: Stability

Interpreting Zero-Stability

No computer can calculate to infinite precision, so that inevitably
round-off errors arise when [the linear combination ijzo Bjfnyj] is
computed. The perturbations {6,,n =k, k+1,..., N} could be
interpreted as round-off errors.

Likewise, the starting values cannot be represented to infinite
precision, the perturbations {5,,n =0,1,..., k} could be
interpreted as round-errors in the starting values.

If the method is not zero-stable then the solutions generated by
different rounding procedures (e.g. using different computers) —
could result in two numerical solutions being finitely separated, not
matter how fine the precision. In other words, if the method is
not zero-stable, then the solution is essentially not
computable.

Paraphrased from J.D. Lambert (1991).
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Problems and Questions

Issue #1: Starting

Issue #2: The Fixed Point lIteration
Linear Multistep Methods: Issues Issue #3: Stability

A Simple Criterion for Zero-Stability

If the roots of the characteristic polynomial
k
> iy =0, & p(¢)=0
Jj=0

satisfies the root criterion
<1, j=1,2...k

then the method is zero-stable.

Theorem (Convergence)

The method is convergent if and only if it is consistent and
zero-stable.
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