

Convergence of Fixed Point Iteration	Predictor-Corrector Methods
 Although the fixed point iteration will converge for arbitrary starting values y^[0]_{n+k}, convergence may be slow (linear unless we are extremely lucky.) Obviously, it would help to have a good initial guess! We will obtain the good initial guess from an explicit Linear Multistep Method. The explicit method is called the predictor, and the implicit method the corrector. Together they are a predictor-corrector pair. 	It is an advantage to have the predictor and corrector to be accurate to the same order. This usually means the step-number for the explicit predictor is greater than that of the implicit corrector, <i>e.g.</i> $(p) y_{n+2} - y_{n+1} = \frac{h}{2}(3f_{n+1} - f_n)$ $(c) y_{n+2} - y_{n+1} = \frac{h}{2}(f_{n+2} + f_{n+1})$ is regarded a PC-method with step-number 2, even though the corrector is a 1-step method (and, as written, it also violates $ \alpha_0 + \beta_0 \neq 0$, <i>i.e.</i> it does not have any term on the <i>n</i> -level).
Predictor-Corrector Methods - (5/30)	Predictor-Corrector Methods - (6/30)

A General Predictor-Corrector Pair

We write a general *k*-step PC-method:

(p)
$$\sum_{j=0}^{k} \alpha_{j}^{*} y_{n+j} = h \sum_{j=0}^{k-1} \beta_{j}^{*} f_{n+j}$$

(c) $\sum_{j=0}^{k} \alpha_{j} y_{n+j} = h \sum_{j=0}^{k} \beta_{j} f_{n+j}$

We will look at different types of predictor-corrector pairs, initially we will be concerned with predictors of Adams-Bashforth type, and correctors of Adams-Moulton type.

Predictor-Corrector Modes

Remember:

We are using the predictor to get an initial guess for the fixed point iteration for the corrector method. How many fixed point steps should we take???

[Mode] Correcting to convergence:

In this mode we iterate until

$$\|y_{n+k}^{[\nu+1]} - y_{n+k}^{[\nu]}\| < \epsilon, \quad \text{or} \quad \frac{\|y_{n+k}^{[\nu+1]} - y_{n+k}^{[\nu]}\|}{\|y_{n+k}^{[\nu+1]}\|} < \epsilon,$$

where ϵ usually is of the order of machine-precision (round-off error).

I/IV

Predictor-Corrector Modes II/IV	Predictor-Corrector Modes III/IV
[Mode] Correcting to convergence: In this mode the predictor plays a very small role. The local truncation error and the linear stability characteristics of the PC-pair are those of the corrector alone. This mode is not very attractive since we cannot <i>a priori</i> predict how many fixed-point iterations will be needed. In a real-time system (<i>e.g.</i> the auto-pilot in an aircraft), this may be danger- ous.	[Mode] Fixed number of Fixed-Point Corrections:In this mode we perform a fixed number of FP-iteration at each step — usually 1 or 2.The local truncation error and the linear stability properties of the PC-method depend both on the predictor and corrector (more complicated analysis — more work for us!)We will use the following short-hand P — Apply the predictor once E — Evaluate f given t and y C — Apply the corrector onceThe methods described above are PEC and P(EC) ² .
Predictor-Corrector Methods - (9/30)	Predictor-Corrector Methods - (10/30)
Predictor-Corrector Modes IV/IV At the end of P(EC) ² we have the values $v^{[2]}$, for v_{a+k} and $f^{[1]}$.	P(EC) ^{μ} E ^t P: $y_{n+k}^{[0]} = -\sum_{k=1}^{k-1} \alpha_j^* y_{n+j}^{[\mu]} + h \sum_{k=1}^{k-1} \beta_j^* f_{n+j}^{[\mu-1+t]}$
for $f(t_{n+k}, y_{n+k})$, sometimes we want to update the value of f by performing a further evaluation $f_{n+k}^{[2]} = f(t_{n+k}, y_{n+k}^{[2]})$; this mode would be described as $P(EC)^2E$.	$\begin{cases} f_{n+k}^{[\nu]} = f(t_{n+k}, y_{n+k}^{[\nu]}) \end{cases}$
The two classes of modes can be written as $P(EC)^\muE^t$, $\mu\geq 1$, $t\in\{0,1\}.$	$(EC)^{\mu}: \begin{cases} y_{n+k}^{[\nu+1]} = -\sum_{j=0}^{k-1} \alpha_j y_{n+j}^{[\mu]} + h\beta_k f_{n+k}^{[\nu]} + h\sum_{j=0}^{k-1} \beta_j f_{n+j}^{[\mu-1+t]} \\ \nu = 0, 1, \dots, \mu - 1 \end{cases}$
	$E^{t}:$ $f_{n+k}^{[\mu]} = f(t_{n+k}, y_{n+k}^{[\mu]}),$ if $t = 1.$
Predictor-Corrector Methods	Predictor-Corrector Methods — (12/30)

Error Analysis of $P(EC)^{\mu}E^{t}$	[Lambert 105–107]	Milne's Error	Estimate	
If the predictor is a p^* -order method and the omethod, then (using notationally non-consistent	corrector a <i>p</i> -order nt LTEs)	If $p^* = p$ local trun — Somet	it is possible to get an estimate of the leading part cation error with two subtractions and a multiplica hing for (almost) nothing!	of the tion.
(p) $LTE^{*}(h) = C^{*}h^{p^{*}+1}y^{(p^{*}+1)}(\xi)$ (c) $LTE(h) = Ch^{p+1}y^{(p+1)}(\xi) + Ch^{p+1}y^{(p+1)}(\xi)$	$\mathcal{O}(h^{p^*+2})$ $\mathcal{O}(h^{p+2})$	(p) LT (c) LT	$E^{*}(h) = C^{*}h^{p+1}y^{(p+1)}(t_{n}) = y(t_{n+k}) - y_{n+k}^{[0]}$ $E(h) = Ch^{p+1}y^{(p+1)}(t_{n}) = y(t_{n+k}) - y_{n+k}^{[\mu]}$	$+ \mathcal{O}(h^{p+2}) + \mathcal{O}(h^{p+2})$
The local truncation error for $P(EC)^\muE^t$ is \mathcal{C}^{**}	$h^{p^{**}+1}$, where:	Subtractio	on gives	
(i) if $p^* \geq p$ or $(p^* < p$ and $\mu > p - \mathcal{C}^{**} = \mathcal{C} \gamma^{(p+1)}(\xi)$	$p^*)$, $p^{**}=p$ and	($\mathcal{C}^* - \mathcal{C}(h^{p+1}y^{(p+1)}(t_n)) = y_{n+k}^{[\mu]} - y_{n+k}^{[0]} + \mathcal{O}(h^{p+2})$	
(ii) if $p^* < p$ and $\mu = p - p^*$, $p^{**} = p$, but \mathcal{C}	$\mathcal{F}^{**} \neq \mathcal{C} y^{(p+1)}(\xi)$	Hence (m	ultiply by $\frac{C}{C^*-C}$)	
(iii) if $p^* < p$ and $\mu , p^{**} = p^* + \mu < p^*$	< <i>p</i> .	L1	$FE(h) \approx \mathcal{C}h^{p+1}y^{(p+1)}(t_n) = \frac{\mathcal{C}}{\mathcal{C}^* - \mathcal{C}} \left[y_{n+k}^{[\mu]} - y_{n+k}^{[0]} \right]$	
Predictor-Correcto	or Methods — (13/30)		Predictor-Corrector Methods	— (14/30)
Local Extrapolation		P(EC) ^µ LE ^t		
c.f. Richardson Extrapolation. ^{Math 541}		P :	$y_{n+k}^{[0]} = -\sum_{j=0}^{k-1} \alpha_j^* y_{n+j}^{[\mu]} + h \sum_{j=0}^{k-1} \beta_j^* f_{n+j}^{[\mu-1+t]}$	
Now that we have an estimate for the error estimate as another correction of the solution?	Why not use that ?!?		$ \begin{pmatrix} f_{n+k}^{[\nu]} &= f(t_{n+k}, y_{n+k}^{[\nu]}) \end{pmatrix} $	
It is really a case of being greedy and trying to still have it. However, local extrapolation (sym accepted feature in many modern codes.	o eat the cake and nbol: L) is an	(<i>EC</i>) ^{<i>µ</i>} :	$\begin{cases} y_{n+k}^{[\nu+1]} = -\sum_{j=0}^{k-1} \alpha_j y_{n+j}^{[\mu]} + h\beta_k f_{n+k}^{[\nu]} + h \sum_{j=0}^{k-1} \beta_j f_{n+j}^{[\mu-1]} \\ y_{n+k}^{[\nu-1]} = -\sum_{j=0}^{k-1} \alpha_j y_{n+j}^{[\mu]} + h \beta_k f_{n+k}^{[\nu]} + h \sum_{j=0}^{k-1} \beta_j f_{n+j}^{[\mu-1]} \end{cases}$.+ <i>t</i>]
It can be applied in more than one way: P(EC P(EC) ^µ LE ^t .	L) $^{\mu}E^{t}$, or	L :	$ \begin{array}{c} \nu = 0, 1, \dots, \mu - 1 \\ y_{n+k}^{[\mu]} \stackrel{\text{update}}{\leftarrow} \left[1 + \frac{\mathcal{C}}{\mathcal{C}^* - \mathcal{C}} \right] y_{n+k}^{[\mu]} - \left[\frac{\mathcal{C}}{\mathcal{C}^* - \mathcal{C}} \right] y_{n+k}^{[0]} \end{array} $)
		<i>E^t</i> :	$f_{n+k}^{[\mu]} = f(t_{n+k}, y_{n+k}^{[\mu]}), \text{if } t = 1.$	
Predictor. Corrects	nr Methods — (15/30)		Predictor-Corrector Methods	— (16/30)

$P(ECL)^{\mu}E^{t}$

$$egin{aligned} M_\mu(H) &= rac{H^\mu(1-H)}{1-H^\mu} \ W &= rac{\mathcal{C}}{\mathcal{C}^*-\mathcal{C}} \end{aligned}$$

Notice:

Li

$$\lim_{\mu o\infty}M_\mu(H)=0, \hspace{1em}$$
 when $|H|<1$

Predictor-Corrector Methods

Linear Stability Analysis for Predictor-Corrector Methods

By applying our methods to the linear model problem

$$y'(t) = \lambda y(t), \quad y(t_0) = y_0$$

we can again find the region in $\hat{h} = h\lambda$ space where the method produces non-exponentially growing solutions.

The idea and framework is the same as in our previous cases (LMMs, Runge-Kutta methods), but the algebra involved becomes "somewhat" tedious.

Here, we will summarize some of the key results.

Predictor-Corrector Methods

Some Stability Polynomials

— (19/30)

P(EC)^{μ}: (order 2k polynomial)

$$\pi(r,\widehat{h}) = \beta_k r^k \left[\rho(r) - \widehat{h}\sigma(r) \right] + M_\mu(H) \left[\rho^*(r)\sigma(r) - \rho(r)\sigma^*(r) \right]$$

Adding an extra evaluation changes the stability polynomial quite a bit:

 $P(EC)^{\mu}E$: (order k polynomial)

$$\pi(r,\widehat{h}) = \rho(r) - \widehat{h}\sigma(r) + M_{\mu}(H) \left[\rho^*(r) - \widehat{h}\sigma^*(r)\right]$$

We notice that (in general) the stability polynomials are non-linear in \hat{h} , which means plotting the region of absolute stability \mathcal{R}_A or its boundary, becomes a challenge. [One exception...]

Predictor-Corrector Methods

— (20/30)

— (18/30)

Stability Polynomial in PEC mode

In PEC mode the stability polynomial is linear in \hat{h} :

$$\pi(r,\widehat{h}) = \beta_k r^k \left[\rho(r) - \widehat{h}\sigma(r) \right] + \beta_k \widehat{h} \left[\rho^*(r)\sigma(r) - \rho(r)\sigma^*(r) \right]$$

These are easy to plot, but the regions of stability are not great. — In fact PEC of order k has a smaller stability region than explicit Adams-Bashforth of the same order!

In general we have to solve a non-linear equation to find the roots of $\pi(r, h)$ — using *e.g.* Newton's method^{Math 541}.

Adding local extrapolation to the picture makes the stability polynomial more "interesting..."

Stability Polynomials with Local Extrapolation

$$P(ECL)^{\mu}E:$$

$$\pi(r,\hat{h}) = (1+W) \left[\rho(r) - \hat{h}\sigma(r)\right] + \left[M_{\mu}(H+WH) - W\right] \left[\rho^{*}(r) - \hat{h}\sigma^{*}(r)\right]$$

$$P(ECL)^{\mu}:$$

$$\pi(r,\hat{h}) = \beta_{k}r^{k} \left\{(1+W) \left[\rho(r) - \hat{h}\sigma(r)\right] - W \left[\rho^{*}(r) - \hat{h}\sigma^{*}(r)\right]\right\}$$

$$+M_{\mu}(H+WH) \left[\rho^{*}(r)\sigma(r) - \rho(r)\sigma^{*}(r)\right]$$

$$P(EC)^{\mu}LE:$$

$$\pi(r,\hat{h}) = (1+W) \left[\rho(r) - \hat{h}\sigma(r)\right] + \left[M_{\mu}(H) + (H-1)W\right] \left[\rho^{*}(r) - \hat{h}\sigma^{*}(r)\right]$$

$$P(EC)^{\mu}L:$$

$$\pi(r,\hat{h}) = \beta_{k}r^{k} \left\{(1+W) \left[\rho(r) - \hat{h}\sigma(r)\right] - W \left[\rho^{*}(r) - \hat{h}\sigma^{*}(r)\right]\right\}$$

$$+ \left[M_{\mu}(H) + HW\right] \left[\rho^{*}(r)\sigma(r) - \rho(r)\sigma^{*}(r)\right]$$

— (22/30)

k = 1

— (24/30)

Stability Analysis when $k=1$	Homework #4, Due 3/20/2015		
P(EC) ^μ Ε	Pick your favorite Adams-Bashforth (P)redictor (order p^*), and Adams-Moulton (C)orrector (order p) methods, and plot the stability regions for		
$\pi(r,h)=(r-1)-hr+rac{h^\mu(1-h)}{1-h^\mu}\left[(r-1)-h ight]$ Multiply through by $1-h^\mu$ and solve	P(ECL)E		
	P(ECL) ² E		
	P(EC)LE		
$(1-h^\mu)((r-1)-hr)+h^\mu(1-h)\left[(r-1)-h ight]=0$	P(EC) ² LE		
$h^{\mu+2}-rh+(r-1)=0$ Now we can use matlab's friendly roots command to solve for $h!$	Note: The problem is least challenging for $p^* = p = 1$ <i>Project Idea?</i> — Write a piece of code which can plot the stability regions for any PC-method, as described by $P(ECL^k)^{\ell}L^mE^n$, $(k + m \le 1, k, m, n \in \{0, 1\})$.		
Predictor-Corrector Methods — (29/30)	Predictor-Corrector Methods - (30/30)		