Linear Multistep Methods & Stiffness LMMs & Stiffness, ctd. Initial Value Problems (pass #1) — Wrap-up

	Outline
Numerical Solutions to Differential Equations Lecture Notes #12 Inear Multistep Methods for Stiff Systems Peter Blomgren, (blomgren.peter@gmail.com) Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://terminus.sdsu.edu/	 Linear Multistep Methods & Stiffness Limited Stability Regions The 2nd Dahlquist Barrier Trapezoidal Rule, with Enhancements LMMs & Stiffness, ctd. Widlund's LMM Limitation BDF Methods Initial Value Problems (pass #1) — Wrap-up Checking the Road Map Quick Summary and Recap Key Building Block: The Newton Solver
Peter Blomgren, (blomgren.peter@gmail.com) Linear Multistep Methods for Stiff Systems (1/26)	Peter Blomgren, (blomgren.peter@gmail.com) Linear Multistep Methods for Stiff Systems — (2/26)
Linear Multistep Methods & Stiffness LMMs & Stiffness, ctd. Initial Value Problems (pass #1) — Wrap-up	Linear Multistep Methods & Stiffness Limited Stability Regions LMMs & Stiffness, ctd. The 2nd Dahlquist Barrier Initial Value Problems (pass #1) — Wrap-up Trapezoidal Rule, with Enhancements
oday's Lecture	Linear Multistep Methods and Stiffness
 Wrap up the discussion of solutions of stiff initial value problems. An overview of how to use linear multistep methods for stiff problems. How to build an efficient scheme for stiff ODEs. 	Linear Multistep Methods tend to have small regions of absolute stability and are therefore not particularly well suited for stiff problems. The notable exception are the Backward Differentiation Formula (BDF) methods. BDF Methods

Linear Multistep Methods & Stiffness LMMs & Stiffness, ctd. Initial Value Problems (pass #1) — Wrap-up

0

Linear Multistep Methods & Stiffness Limited Stability Regions LMMs & Stiffness, ctd. The 2nd Dahlquist Barrier Initial Value Problems (pass #1) — Wrap-up Trapezoidal Rule, with Enhancements	Linear Multistep Methods & Stiffness LMMs & Stiffness, ctd. Limited Stability Regions Initial Value Problems (pass #1) — Wrap-up Trapezoidal Rule, with Enhancements
The Second Dahlquist Barrier	Implementing Trapezoidal Rule for Stiff Systems
 Dahlquist (1963) quantified how difficult it is for Linear Multistep Methods to achieve A-stability: Theorem (The Second Dahlquist Barrier) An explicit linear multistep method cannot be A-stable. The order of an A-stable linear multistep method cannot exceed 2. The second-order A-stable linear multistep method with smallest error constant is the Trapezoidal Rule. 	 Recall: Trapezoidal rule is not L-stable, and if we have an eigenvalue with large negative real part we may have a damped oscillatory behavior until the associated transient has decayed. Real-world implementation of Trapezoidal rule for stiff systems usually employ 3 "tricks" — A smoothing procedure to lessen the oscillatory behavior. Extrapolation to raise the order to 4. Local error estimation by Richardson Extrapolation.
Peter Blomgren, (blomgren.peter@gmail.com) Linear Multistep Methods for Stiff Systems — (5/26)	Peter Blomgren, (blomgren.peter@gmail.com) Linear Multistep Methods for Stiff Systems — (6/26)
Linear Multistep Methods & Stiffness, LMMs & Stiffness, ctd. Initial Value Problems (pass #1) — Wrap-up Smoothing for the Trapezoidal Rule	Linear Multistep Methods & Stiffness LMMs & Stiffness, ctd. Initial Value Problems (pass #1) — Wrap-up Smoothing for the Trapezoidal Rule
Smootning for the Trapezoidal Rule	
The oscillations for the fast transients can be alleviated in two ways — • by taking a smaller step initially (adaptive scheme), or • by smoothing the solution. The smoothing idea was introduced by Lindberg (1971) — We replace $\mathbf{y_n}$ by $\hat{y_n} = \frac{y_{n-1} + 2y_n + y_{n+1}}{4}$ and then propagate the solution. This weighted average smooths out the oscillations.	 The smoothing procedure is active for the first couple of steps, while the fast transients are still alive, and/or introduced automatically whenever the solution exhibits lack of smoothness. Of course, the smoothing affects the local truncation error; the complete analysis is in Lindberg's paper: Reference B. Lindberg, On Smoothing and Extrapolation for the Trapezoidal Rule, BIT, 11, pp. 29–52, 1971. BIT is a suitable permutation of the letters T, I, and B from Nordisk Tidskrift för Informations Behandling. (Obviously!)
Peter Blomgren, (blomgren.peter@gmail.com) Linear Multistep Methods for Stiff Systems — (7/26)	Peter Blomgren, (blomgren.peter@gmail.com) Linear Multistep Methods for Stiff Systems — (8/26)

Linear Multistep Methods & Stiffness LMMs & Stiffness, ctd. Initial Value Problems (pass #1) — Wrap-up	Linear Multistep Methods & Stiffness LMMs & Stiffness, ctd. Initial Value Problems (pass #1) — Wrap-up	
Another Theorem for Linear Multistep Methods	Another Theorem for Linear Multistep Methods	
 If we relax the requirement for complete A-stability, there are some options Theorem (Widlund, 1967) An explicit linear multistep method cannot be A(0)-stable. There is only one A(0)-stable linear k-step method whose order exceeds k, the Trapezoidal Rule. For all α ∈ [0, π/2) there exists A(α)-stable linear k-step methods of order p for which k = p = 3, and k = p = 4. If we relax the "for all" requirement in (3) 	If we relax the "for all" requirement in (3) then we can find k-step methods of order $k > 4$ that are A(α)- stable for some value of α — most notably the BDF methods for $k = 4, 5, 6$. Recall that the BDF methods are zero-stable for $k \le 6$.	
Peter Blomgren, (blomgren.peter@gmail.com) Linear Multistep Methods for Stiff Systems — (9/26)	Peter Blomgren, (blomgren.peter@gmail.com) Linear Multistep Methods for Stiff Systems — (10/26)	
Linear Multistep Methods & Stiffness LMMs & Stiffness, ctd. Initial Value Problems (pass #1) — Wrap-up	Linear Multistep Methods & Stiffness LMMs & Stiffness, ctd. Initial Value Problems (pass #1) — Wrap-up	
BDF methods — The Choice for Stiff Problems	Building an Efficient Algorithm for Stiff Problems	
Recall: The stability polynomial for a linear multistep method is $\pi(r, \hat{h}) = \rho(r) - \hat{h}\sigma(r)$ For a stiff system $ \hat{h} $ is very large, hence the stability properties would be dominated by $\sigma(r)$. For stability, we want the roots of $\sigma(r)$ to be inside the unit circle. The safest place would be the center of the unit circle! $-$ With $\sigma(r) = r^k$ we achieve just that. $\sigma(r) = r^k$ & implicit method & maximal order \Rightarrow BDF-methods!!!	 We will use the BDF methods to construct a efficient algorithms for the solution of stiff ODEs. Starting from the predictor-corrector P(EC)^µ framework: The BDF-method will play the role of the corrector — C — i the Adams-Bashforth-Moulton predictor-corrector framework The fixed point iteration — (EC)^µ — is replaced by a Newtor iteration pursued to convergence (thus the stability properties of the predictor does not influence the overall stability properties.) 	
Peter Blomgren, (blomgren.peter@gmail.com) Linear Multistep Methods for Stiff Systems — (11/26)	Peter Blomgren, (blomgren.peter@gmail.com) Linear Multistep Methods for Stiff Systems — (12/26)	

BDF Methods

Building an Efficient Algorithm for Stiff Problems

Newton iteration — advantage, convergence

Newton iteration converges quadratically (\approx doubling the number of accurate digits in each iteration), whereas fixed point iteration converges linearly.

Newton iteration — disadvantage, starting point

Unlike the fixed point iteration, the Newton iteration **does not** converge for arbitrary starting values — a good starting value is required.

Warning An explicit predictor is likely not to give a good enough starting value.	error is still available: $LTE \sim \frac{C_{k+1}}{1 - C_{k+1}} \left[y_{n+k} - y_{n+k}^{[0]} \right].$	
Peter Blomgren, (blomgren.peter@gmail.com) Linear Multistep Methods for Stiff Systems — (13/26)	Peter Blomgren, {blomgren.peter@gmail.com} Linear Multistep Methods for Stiff Systems — (14/26)	
Linear Multistep Methods & Stiffness LMMs & Stiffness, ctd. Initial Value Problems (pass #1) — Wrap-up	Linear Multistep Methods & Stiffness LMMs & Stiffness, ctd. Checking the Road Map Initial Value Problems (pass #1) — Wrap-up Wrap-up Key Building Block: The Newton Solver	
Putting it Together — BDF-based Solver for Stiff ODEs	Checking the Road Map	
[P] Extrapolate to get an initial value for the Newton iteration: $y_{n+k}^{[0]} = \sum_{i=0}^{k} \nabla^{i} y_{n+k-1}.$ [(EC) ^{\infty}] Use the implicit BDF-method as the corrector, and	Besides covering the Newton solver, which we need both for the BDF-based solver, and for the Implicit Runge-Kutta methods, we have covered the solution of the Initial Value Problem for ODEs in	

quite a bit of detail.

found so far...

11/111

- solve to convergence using a quadratically convergent Newton solver.
- [(Err)] Estimate the error using Milne's Error estimate:

$$\mathsf{LTE} \sim rac{C_{k+1}}{1 - C_{k+1}} \left[y_{n+k} - y_{n+k}^{[0]}
ight].$$

[(Tol)] Is the error small enough? If not, either (1) reduce the step size, or (2) increase the order of the method.

Widlund's LMM Limitation **BDF** Methods

111/111

- Building an Efficient Algorithm for Stiff Problems
 - 3. We replace the Adams-Bashforth Predictor P by an extrapolation of previously computed y-values. For a k-step k-order method, the extrapolation must be based on the previous (k + 1) points $\{y_{n+k-1}, y_{n+k-2}, ..., y_{n-1}\}$:

$$y_{n+k}^{[0]} = \sum_{i=0}^{k} \nabla^{i} y_{n+k-1}.$$

This extrapolant-predictor has an error constant $C_{k+1}^* = 1$, hence the Milne's estimate for the principal part of the local truncation

Peter Blomgren, blomgren.peter@gmail.com Linear Multistep Methods for Stiff Systems (15/26) Before reviewing Newton's Method, lets summarize what we have

Linear Multistep Methods & Stiffness LMMs & Stiffness, ctd. Initial Value Problems (pass #1) — Wrap-up	Linear Multistep Methods & Stiffness, LMMs & Stiffness, ctd. Checking the Road Map Quick Summary and Recap Key Building Block: The Newton Solver
Summary: Numerical Solution to the Initial Value Problem	Summary: Numerical Solution to the IVP
The Initial Value Problem	Runge-Kutta Methods
$y'(t) = f(t, y(t)), y(t_0) = y_0$	When the Taylor expansion of $f(t, y(t))$ is not easily computable (or prohibitively expensive), but multiple evaluation of $f(t, y(t))$ incur a reasonable amount of work, then RK-methods are a good
Taylor Series Methods	choice.
Best used when the Taylor expansion of $f(t, y(t))$ is available and cheap/easy to compute.	Stiffness: When the problem is stiff, we have to use fully implicit RK-methods. We have seen that there are A-stable <i>s</i> -stage 2 <i>s</i> -
	Under methods (Gauss-Legendre) for arbitrary 5, as well as L-stable

Stiffness: Small stability region. Step-size h very restrictive.

s-stage (2s-1)-order methods (Radau I-A, and II-A).

Peter Blomgren, $\langle blomgren.peter@gmail.com \rangle$	Linear Multistep Methods for Stiff Systems	— (17/26)	Peter Blomgren, <code>{blomgren.peter@gmail.com}</code>	Linear Multistep Methods for Stiff Systems	— (18/26)
Linear Multistep Methods & Stiffness LMMs & Stiffness, ctd. Initial Value Problems (pass #1) — Wrap-up	Checking the Road Map Quick Summary and Recap Key Building Block: The Newton Solver		Linear Multistep Methods & Stiffness LMMs & Stiffness, ctd. Initial Value Problems (pass #1) — Wrap-up	Checking the Road Map Quick Summary and Recap Key Building Block: The Newton Solver	
Summary: Numerical Solution to the	IVP	111/111	The Final(?) Piece: the Newton Solv	/er	

Linear Multistep Methods

Explicit LMMs only require one new function evaluation per step, making them very competitive (fast and cheap). Used in the predictor-corrector context $P(EC)^{\mu}$, only $(1+\mu)$ evaluations per step are required.

The main **drawback** is that LMMs are not self-starting, so we need an RK- or Taylor-series method (possibly with Richardson Extrapolation) to generate enough accurate starting information.

Stiffness: If/when we can live with an A(α)-stable method, implementing efficient LMM-based stiff solvers is quite straight forward (at least up to order 6...)

In both implicit RK-methods and the BDF-based LMM methods for stiff problems we run into the problem of solving a non-linear equation

$$F(\mathbf{\tilde{y}}_{n+1},\ldots)=G(\mathbf{\tilde{y}}_{n+1},\ldots),$$

we can always rewrite this problem as

$$f(\tilde{\mathbf{y}}_{n+1}) = F(\tilde{\mathbf{y}}_{n+1},\dots) - G(\tilde{\mathbf{y}}_{n+1},\dots) = 0,$$

which means we are trying to solve

 $f(\tilde{\mathbf{y}}_{n+1}) = 0.$

If our problem is scalar (one-dimensional), then $\tilde{\mathbf{y}}_{n+1} = y_{n+1}$ is a scalar, and we can use Newton's method as described in Math 541.

Checking the Road Map Quick Summary and Recap Key Building Block: The Newton Solve

Newton's Method for Scalar Problems

We are trying to find the roots, y^* of the equation

f(y) = 0.

If/when we have a guess close to a root, *i.e.* $|y - y^*|$ is small, then we can formally Taylor expand around y and get

$$f(y^*) = f(y) + (y^* - y)f'(y) + \frac{(y^* - y)^2}{2}f''(\xi(y, y^*))$$

$$\xi(y, y^*) \in [\min(y, y^*), \max(y, y^*)].$$

Since $|y - y^*|$ is small, $|y - y^*|^2$ is even smaller, so we neglect the quadratic term in the expansion. Also $f(y^*) = 0$ by assumption, hence we have

$$0 \approx f(y) + (y^* - y)f'(y).$$

Newton's Method for Scalar Problems, II

We solve for y^* and get

$$y^* \approx y - rac{f(y)}{f'(y)}.$$

A Newton (iterative) solver implements

$$y^{[\nu+1]} = y^{[\nu]} - rac{f(y^{[\nu]})}{f'(y^{[\nu]})},$$

and converges quadratically as long as $f'(y^*) \neq 0$.

If, *a priori* we know that the derivative will be zero at the root, then we can implement the more costly version of Newton's method:

$$y^{[\nu+1]} = y^{[\nu]} - rac{f(y^{[\nu]})f'(y^{[\nu]})}{[f'(y^{[\nu]})]^2 - f''(y^{[\nu]})f(y^{[\nu]})}.$$

Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Linear Multistep Methods for Stiff Systems	— (21/26)	Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Linear Multistep Methods for Stiff Systems	— (22/26)
Linear Multistep Methods & Stiffness LMMs & Stiffness, ctd. Initial Value Problems (pass #1) — Wrap-up	Checking the Road Map Quick Summary and Recap Key Building Block: The Newton Solver		Linear Multistep Methods & Stiffness LMMs & Stiffness, ctd. Initial Value Problems (pass #1) — Wrap-up	Checking the Road Map Quick Summary and Recap Key Building Block: The Newton Solver	
wton's Method for more Than One	Dimension	1/11	Newton's Method for more Than On	e Dimension	11/11

When we have *n* simultaneous ODEs

Ne

$$y'_1(t) = g_1(t, y_1, \dots, y_n)$$

$$\vdots$$

$$y'_n(t) = g_n(t, y_1, \dots, y_n)$$

by the same procedure (Taylor expansion for a vector-valued function of a vector-valued argument) we get

$$0 \approx \mathbf{\tilde{f}}(t, \mathbf{\tilde{y}}) - \underbrace{\left[\frac{\partial g_r}{\partial y_c}(t, \mathbf{\tilde{y}})\right]_{r,c=1,\dots,n}}_{J(t, \mathbf{\tilde{y}})} (\mathbf{\tilde{y}}^* - \mathbf{\tilde{y}})$$

The matrix $J(t, \mathbf{\tilde{y}})$ is usually referred to as the "Jacobian."

Again we solve for y^* and define our iterative scheme

$$\tilde{\mathbf{y}}^{[\nu+1]} = \tilde{\mathbf{y}}^{[\nu]} - [J(t, \tilde{\mathbf{y}}^{[\nu]})]^{-1}\tilde{\mathbf{f}}(t, \tilde{\mathbf{y}}^{[\nu]})$$

How to solve this iteration **efficiently** (especially for large systems) is a matter which will be covered in Math 693a (and there are some useful ideas in Math 543).

Linear Multistep Methods & Stiffness, LMMs & Stiffness, ctd. Initial Value Problems (pass #1) — Wrap-up	Linear Multistep Methods & Stiffness LMMs & Stiffness, ctd. Checking the Road Map Quick Summary and Recap Key Building Block: The Newton Solver
Wrapping Up IVPs I/II	Wrapping Up IVPs II/II
 We now have a pretty complete picture of how to solve the initial value problem, even when it fights back (stiff problems). The past few lectures on stiff problems have covered some pretty "mature" topics which put together quite a few ideas from (vector) calculus, complex analysis, previous knowledge of numerical methods, etc. 	 Being a "computational scientist" means you have to understand how your problem fits into the numerical framework, and make sure your starting methods, error checking, and stability analysis are done right. — At some point you have to understand every aspect of the problem in enough detail that you can implement it in your favorite computer language. Given the complexity of the methods we have covered, it is a daunting task to try to give (non-silly) examples of all of them. However, in the next lecture(s) some examples will be given.
Peter Blomgren, {blomgren.peter@gmail.com} Linear Multistep Methods for Stiff Systems — (25/26)	Peter Blomgren, {blomgren.peter@gmail.com} Linear Multistep Methods for Stiff Systems — (26/26)