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Boundary Value Problems

We will now consider Ordinary Differential Equations where
conditions (constraints) are specified at more than one point
(typically at the start and end points) of the independent variable.

The ODE itself can be linear or non-linear.

The boundary conditions (BCs) can also be linear or non-linear.

Further, the boundary conditions can be separated or mixed.

A Boundary Value Problem (BVP) is considered
non-homogeneous if the ODE or any of the BCs contain at least
one non-zero term which is independent of the function we are
solving for (or its derivatives).
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Applications which give rise to Boundary Value Problems

The favorite example, which appeared in every reference I looked
at, is the deflection of a beam subject to load: (books on a
bookshelf?)

Clearly the deflection is zero at the endpoints

y(0) = y(L) = 0,

since the beam is resting on supports.
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Deflection of a Beam Subject to Load

If it is a bookshelf, the end-points are usually clamped in, which
means there is no slope at the end-points:

y(0) = y(L) = 0, y ′(0) = y ′(L) = 0.

More twists to the problem:

The load can be either uniform, or distributed.

The shelf (beam) itself can have varying geometry.
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Deflection of a Beam Subject to Load — Questions

Engineering Questions of Interest:

Maximal load — deflection is too large?

Maximal load — permanent shape change (some materials)?

Maximal load — catastrophic shape change (breakage)?
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Deflection of a Beam Subject to Load: Equation

Transverse deflection of a beam w(x) subject to distributed load,
p(x)

d2

dx2

[
E (x)I (x)

d2w(x)

dx2

]
= p(x)

E (x) — Young’s Modulus
Young’s Modulus is the stress of a material divided by its strain.
That is how much the material yields for each unit of force loading
it. Put another way, it is a measure of the strength of a material,
and is commonly used to measure the strength of metals and other
materials used in for instance aircraft and building materials.

I (x) area moment of inertia∗ of the beam.
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The Area Moment of Inertia 1 of 8

From http://em-ntserver.unl.edu/NEGAHBAN/EM223/note18/note18.htm:

The area moment of inertia is the second moment of area
around a given axis. For example, given the axis O-O and the
shaded area shown, one calculates the second moment of the area
by adding (integrating) together ℓ2dA for all the elements

of area dA in the shaded area.
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The area moment of inertia, denoted by I, can, therefore, be
calculated from

I =

∫

A

ℓ(A)2dA.

If we have a rectangular coordinate system as shown, one can
define the area moment of inertial around the x-axis, denoted by
Ix , and the area moment of inertia about the y-axis, denoted by Iy .
These are given by

Ix =

∫

A

y2dA, Iy =

∫

A

x2dA.
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The polar area moment of inertia, denoted by JO , is the area
moment of inertia about the z-axis given by

JO =

∫

A
r2dA.

Note that since r2 = x2 + y2 one has the relation

JO = Ix + Iy .

The radius of rotation is the distance k away from the axis that all
the area can be concentrated to result in the same moment of
inertia. That is,

I = k2A.
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For a given area, one can define the radius of rotation around the
x-axis, denoted by kx , the radius of rotation around the y-axis,
denoted by ky , and the radius of rotation around the z-axis,
denoted by kO . These are calculated from the relations

k2x =
Ix
A
, k2y =

Iy
A
, k2O =

JO
A
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From the relation JO = Ix + Iy it is easy to show that

k2x + k2y = k2O .

The parallel axis theorem is a relation between the moment of
inertia about an axis passing through the centroid and the moment
of inertia about any parallel axis.

Note that from the picture we have

Ix =

∫

a
y2dA =

∫

A
(yc + y ′)2dA =

∫

a
y2c dA +

∫

A
y ′2dA + 2

∫

A
yc y

′dA

= y2c A + Ix′ + 2yc

∫

A
y ′dA
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Since 1
A

∫
a y

′dA gives the distance of the centroid above the
x ′-axis, and since the this distance is zero, one must conclude that
the integral in the last term is zero so that the parallel axis
theorem states that

Ix = Ix′ + Ay2
c

where x ′ must pass through the centroid of the area. In this same
way, one can show that

Iy = Iy ′ + Ax2c , JO = JO′ + AR2
c = JO′ + A(x2c + y2

c )
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In general, one can use the parallel axis theorem for any two
parallel axes as long as one passes through the centroid. As shown
in the picture, this is written as

I = I + Ad2

where I is the moment of inertia about the axis O ′-O ′ passing
through the centroid, I is the moment of inertia about the axis
O-O, and d is the perpendicular distance between the two parallel
axes.
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The moment of inertia of composite bodies can be calculated by
adding together the moment of inertia of each of its sections. The
only thing to remember is that all moments of inertia must be
evaluated bout the same axis. Therefore, for example,

Ix =
n∑

j=1

I
(j)
x

To calculate the area moment of inertia of the composite body
constructed of the three segments shown, one evaluates the
moment of inertial of each part about the x-axis and adds the
three together.

That’s definitely more detail than we need for this class!!!
But it was a very nice explanation...
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(Area) Moments of Inertia

Figure: Source tutorvista.com, 3/22/2013.
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Back to the Beam Equation

We had

d2

dx2

[
E (x)I (x)

d2w(x)

dx2

]
= p(x).

If/When the beam is uniform, then E (x) = E , and I (x) = I are
constants, and the equation simplifies to

d4w(x)

dx4
=

p(x)

EI
.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Boundary Value Problems – Introduction — (17/31)

Boundary Value Problems
Necessary Engineering Detour: The Area Moment of Inertia

Back to the Lecture at Hand...

Problems with Beams and Fins...
Method #1: Shooting

Boundary Conditions for the Beam Equation

For a fixed beam (shelves) the deflection and slope are zero at the
end-points

w(0) = w(L) =
dw(0)

dx
=

dw(L)

dx
= 0.

For a simply supported beam, the deflection and bending are zero
at the end-points

w(0) = w(L) =
dw2(0)

dx
=

dw2(L)

dx
= 0.
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Alternative ways to Abuse Beams...

A pin-ended uniform column of length L is
subject to an axial load P as shown in the
figure to the right. The transverse deflection of
the column w(x) is described by the following
equation

EI
d2w(x)

dx2
+ Pw(x) = 0.

Since the column is pin-connected at the ends,
the transverse deflection is zero

w(0) = w(L) = 0.
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Cooling Fins

There’s quite a bit metal cooling fins sitting on top of a modern
CPU!
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The fin extends from the heat source (left) which has temperature
T0; the surrounding air temperature is T∞. The temperature in
the cooling fin (at steady-state) is described by the following ODE

kA
d2T

dx2
− hP(T − T∞) = 0.

We’re assuming heat-flow only in the x-direction; k is the thermal
conductivity, A the area of the cross-section, h the convection heat
transfer coefficient, P the perimeter of the fin.
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Cooling Fins — Boundary Conditions

At the heat source the temperature in the fin equals the
temperature of the source

T (0) = T0.

At the “free” end of the fin, the convection loss of the fin must
equal the heat transfer by conduction (no local build-up of heat)

−k
dT (L)

dx
= h(T (L)− T∞).
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∃ Useful Applications == TRUE

Now that we have seen that if we want to build bridges and buildings, or
cool computer chips, we must solve some boundary value problems the
natural question is how???

There are several approaches to solving BVPs:

• Shooting methods — we convert the BVP into a sequence of
Initial Value Problems, thus re-using all the tools we talked about
previously!

• Finite difference methods — the ODE is converted into a set of
simultaneous algebraic equations (directly applicable to higher order
derivatives).

• Finite element methods (The Rayleigh-Ritz method) — A com-
pletely different point of view! Can be seen as the selection from the
set of all sufficiently differentiable functions satisfying the boundary
conditions, the function which minimizes a certain integral.
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Shooting Methods

Applicable to: Linear and non-linear BVPs.

Easy to implement.

Fast convergence, when it works.

However, no guarantee of convergence!!!
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Shooting Methods — The Procedure

[1] The unspecified initial conditions of the differential equation
are guessed so that the problem can be solved as an initial
value problem.

[2] The variational equations denoting the sensitivity of the de-
pendent variables with respect to the guessed initial conditions
are derived.

[3] The differential equation and the variational equations are
integrated along the x-direction as a set of simultaneous
initial value problems.

[4] The result of the sensitivities found in step [3] are used to
correct the guessed initial conditions.

[5] With the new (corrected) initial conditions, repeat steps [2],
[3] and [4] until the specified second (terminal) boundary
conditions are satisfied.
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The Shooting Method for a 2nd order BVP I/IV

Consider the BVP

d2y(x)

dx2
= f

(
x , y , y ′

)
, a ≤ x ≤ b, y(a) = ya, y ′(b) = y ′b

By introducing

y1(x) = y(x), y2(x) =
dy1(x)

dx
=

dy(x)

dx

we write the problem as a system of two first-order ODEs

y ′1(x) = y2(x)
y ′2(x) = f (x , y1, y2)
y1(a) = ya, y2(b) = y ′b
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The Shooting Method for a 2nd order BVP II/IV

To solve this as an initial value problem, we guess y2(a) = Y and
solve:

y ′1(x) = y2(x)
y ′2(x) = f (x , y1, y2)

y1(a) = ya
y2(a) = Y

for x ∈ [a, b].

The final value of y2 will now depend on the guess Y , i.e.
y2(b) = y2(b,Y ).

We define the discrepancy function

h(Y ) = y2(b,Y )− y ′b
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The Shooting Method for a 2nd order BVP III/IV

The truncated Taylor series expansion of h(Y +∆Y ) is

h(Y +∆Y ) = h(Y ) + ∆Y h′(Y )

We notice that (in the limit ∆Y → 0)

h′(y) =
∂

∂y
[y2(b,Y )− y ′

b] =
∂y2(b,Y )

∂Y

Since we are looking for the zero-discrepancy solution, we want

0 = h(Y ) + ∆Y h′(Y )

which gives

∆Y = −y2(b,Y )− y ′
b[

∂y2(b,Y )
∂Y

]

Note: we don’t have the quantity ∂y2(b,Y )
∂Y (yet).

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Boundary Value Problems – Introduction — (27/31)

Boundary Value Problems
Necessary Engineering Detour: The Area Moment of Inertia

Back to the Lecture at Hand...

Problems with Beams and Fins...
Method #1: Shooting

The Shooting Method for a 2nd order BVP IV/IV

The new initial guess of the initial condition on y2(x) becomes:

y2(a) = Y +∆Y = Y − y2(b,Y )− y ′b[
∂y2(b,Y )

∂Y

]

The “missing” quantity can be obtained in two ways —

[1] The “theoretical” way... by adding additional ODEs to the
system.

[2] The “practical” way... by computing finite differences of the
final values y2(b,Y

(1)), y2(b,Y
(2)), ...

Often, [2] is usually the way to go; but let’s look at approach [1]:
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Computing ∂y2(b,Y )
∂Y — Variational Approach

Computing the partial derivatives of the ODEs give

∂

∂Y

[
dy1
dx

]
=

d

dx

[
∂y1
∂Y

]
=

∂f1
∂y1

∂y1
∂Y

+
∂f1
∂y2

∂y2
∂Y

∂

∂Y

[
dy2
dx

]
=

d

dx

[
∂y2
∂Y

]
=

∂f2
∂y1

∂y1
∂Y

+
∂f2
∂y2

∂y2
∂Y

We define the sensitivity functions

g1 =
∂y1
∂Y

, g2 =
∂y2
∂Y

,

and get the following system of ODEs

dg1
dx

=
∂f1
∂y1

g1 +
∂f1
∂y2

g2

dg2
dx

=
∂f2
∂y1

g1 +
∂f2
∂y2

g2
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Computing ∂y2(b,Y )
∂Y — Variational Approach, II

The appropriate initial conditions for the system

dg1
dx

=
∂f1
∂y1

g1 +
∂f1
∂y2

g2

dg2
dx

=
∂f2
∂y1

g1 +
∂f2
∂y2

g2

are given by

g1(a) =
∂y1
∂Y

∣∣∣∣
x=a

= 0

g2(a) =
∂y2
∂Y

∣∣∣∣
x=a

= 1

Now, we can solve these ODEs together with the primary system,
and the final value g2(b) ≡ ∂y2(b,Y )

∂Y .
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Computing ∂y2(b,Y )
∂Y — Finite Difference Approach

Guess twice: Y (1) and Y (2).

Approximate the derivative

∂h(Y )

∂Y

∣∣∣∣
Y (2)

≈ h(Y (2))− h(Y (1))

Y (2) − Y (1)

Iteratively update your initial guess

Y (k+1) = Y (k) − h(Y (k))[
h(Y (k))−h(Y (k−1))

Y (k)−Y (k−1)

]

until
|h(Y (k))| ≤ tolerance
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