Outline

Numerical Solutions to Differential Equations

Lecture Notes \＃19－BVP：The Shooting Method，continued

Peter Blomgren，
〈blomgren．peter＠gmail．com〉
Department of Mathematics and Statistics
Dynamical Systems Group
computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／
Spring 2015

Peter Blomgren，〈blomgren．peter＠gmail．com〉
BVP：The Shooting Method，continued
$-(1 / 31)$
Introduction
Shooting for Systems of ODEs
Alternative：＂Purely＂Numerical Shooting

Recap
Rough Roadmap for This Lecture，and Beyond

（1）
Introduction
－Recap
（2）Shooting for Systems of ODEs
－Convert BVP \rightsquigarrow IVP
－．．．Taylor Expanding
－The Final Formulation
（3）Alternative：＂Purely＂Numerical Shooting
－The Idea
－Example：Euler－Bernoulli Beam Deflection

Last time：

－Physical motivation for boundary value problems－bending beams（constructing bridges and buildings）；cooling fins－ keeping those processors running！
－The shooting method－convert a BVP into a sequence of IVPs and apply techniques from the first half of the semester！
－Variational approach－add ODEs for the sensitivity variables．
－Finite difference approach－approximate the sensitivity by differences of the results of different initial guesses．
－Rough Roadmap for This Lecture，and Beyond
－Additional ODEs for the Sensitivity Functions

Peter Blomgren，〈blomgren．peter＠gmail．com〉 \quad BVP：The Shooting Method，continued \quad（2／31）

－Theory
－Generalize shooting methods to larger systems（ n simultaneous ODEs）．
－Example
－Shooting for a 4th order ODE－Beam Bending．
－Other Approaches
－Finite Difference Methods（next time）
－Higher Order Equations（FD）
－Nonlinear Equations
－＂Topics＂

Given a system of simultaneous ODEs

$$
\left\{\begin{aligned}
y_{1}^{\prime}(x) & =f_{1}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
y_{2}^{\prime}(x) & =f_{2}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
& \vdots \\
y_{n}^{\prime}(x) & =f_{n}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)
\end{aligned} \quad x \in[a, b]\right.
$$

with boundary conditions

$$
\begin{array}{ll}
y_{i}(b)=y_{i}^{b}, & i=1,2, \ldots, k \\
y_{i}(a)=y_{i}^{a}, & i=k+1, k+2, \ldots, n
\end{array}
$$

In order to convert this to an initial value problem，we have to replace the first k terminal conditions with k（guessed）initial conditions．

Peter Blomgren，〈blomgren．peter＠gmail．com〉
BVP：The Shooting Method，continued
Convert BVP \rightsquigarrow IVP
Alternative：＂Purely＂Numerical Shooting

Alition The Final Formulation
k－dimensional Discrepancy Functions
－Let $\tilde{\mathbf{Y}}=\left\{Y_{1}, Y_{2}, \ldots, Y_{k}\right\}^{T}$ be the vector of guessed initial values．
－Let $y_{i}(b ; \tilde{\mathbf{Y}}), i=1,2, \ldots, k$ be the terminal values．
－Define $h_{i}(\tilde{\mathbf{Y}})=y_{i}(b ; \tilde{\mathbf{Y}})-y_{i}^{b}, i=1,2, \ldots, k$ be the discrepancy functions－measuring how far off the computed terminal solutions are from the desired values of the terminal conditions．
－We are now looking for a correction $\Delta \tilde{\mathbf{Y}}$ to the guesses $\tilde{\mathbf{Y}}$ ，so that the corrected initial conditions lead to a solution with $h(\tilde{\mathbf{Y}}+\Delta \tilde{\mathbf{Y}})=0$ ．
－We use our favorite mathematical tool－the Taylor Expansion－to get an equation for the correction．

We want to find k initial guesses

$$
y_{i}(a)=Y_{i}, \quad i=1,2, \ldots, k
$$

so that the solution to the initial value problem

$$
\left\{\begin{aligned}
y_{1}^{\prime}(x) & =f_{1}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
y_{2}^{\prime}(x) & =f_{2}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
& \vdots \\
y_{n}^{\prime}(x) & =f_{n}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)
\end{aligned} \quad x \in[a, b]\right.
$$

with initial conditions

$$
\begin{array}{ll}
y_{i}(a)=Y_{i}, & i=1,2, \ldots, k \\
y_{i}(a)=y_{i}^{a}, & i=k+1, k+2, \ldots, n
\end{array}
$$

Satisfies the terminal conditions $y_{i}(b)=y_{i}^{b}, \quad i=1,2, \ldots, k$ ．

Introduction Shooting for Systems of ODEs	Convert BVP \leadsto IVP Taylor Expanding
Addernative：＂Purely＂Numerical Shooting ODEs for the Sensitivity Functions	

Taylor Expanding and Truncating
We Taylor expand，and throw out terms of order ≥ 2（just as in the Taylor－derivation of Newton＇s Method－Math 541）：

$$
0=h(\tilde{\mathbf{Y}}+\Delta \tilde{\mathbf{Y}})=h_{i}(\tilde{\mathbf{Y}})+\sum_{j=1}^{k}\left[\frac{\partial h_{i}}{\partial Y_{j}} \Delta Y_{j}\right], \quad i=1,2, \ldots, k
$$

We end up with the following $k \times k$ system of equations

$$
\begin{gathered}
{\left[\frac{\partial h_{1}}{\partial Y_{1}}\right] \Delta Y_{1}+\left[\frac{\partial h_{1}}{\partial Y_{2}}\right] \Delta Y_{2}+\cdots+\left[\frac{\partial h_{1}}{\partial Y_{k}}\right] \Delta Y_{k}=-h_{1}(\tilde{\mathbf{Y}})} \\
{\left[\frac{\partial h_{2}}{\partial Y_{1}}\right] \Delta Y_{1}+\left[\frac{\partial h_{2}}{\partial Y_{2}}\right] \Delta Y_{2}+\cdots+\left[\frac{\partial h_{2}}{\partial Y_{k}}\right] \Delta Y_{k}=-h_{2}(\tilde{\mathbf{Y}})} \\
\vdots \\
\vdots \\
{\left[\frac{\partial h_{k}}{\partial Y_{1}}\right] \Delta Y_{1}+\left[\frac{\partial h_{k}}{\partial Y_{2}}\right] \Delta Y_{2}+\cdots+\left[\frac{\partial h_{k}}{\partial Y_{k}}\right] \Delta Y_{k}=-h_{k}(\tilde{\mathbf{Y}})}
\end{gathered}
$$

－Let $\Delta \tilde{\mathbf{Y}}=\left\{\Delta Y_{1}, \Delta Y_{2}, \ldots, \Delta Y_{k}\right\}^{T}$ be the vector of updates．
－Let $\tilde{\mathbf{h}}(\tilde{\mathbf{Y}})=\left\{h_{1}(\tilde{\mathbf{Y}}), h_{2}(\tilde{\mathbf{Y}}), \ldots, h_{k}(\tilde{\mathbf{Y}})\right\}^{T}$ be the vector of discrepancy functions．
－Let the matrix $J(\tilde{\mathbf{Y}}, b)$ be the matrix the Jacobian，with entries

$$
J_{i, j}=\left.\frac{\partial h_{i}}{\partial Y_{j}}\right|_{x=b}
$$

－Then the equation for the update becomes

$$
\Delta \tilde{\mathbf{Y}}=-[J(\tilde{\mathbf{Y}}, \mathbf{b})]^{-1} \tilde{\mathbf{h}}(\tilde{\mathbf{Y}})
$$

We define the sensitivity functions

$$
g_{i j}=\frac{\partial y_{i}}{Y_{j}}\left[=\frac{\partial h_{i}}{\partial Y_{j}}\right]
$$

and get the following set of $n \times k$ ODEs：

$$
\frac{d g_{i j}}{d x}=\sum_{k=1}^{n}\left[g_{k j} \frac{\partial f_{i}}{\partial y_{k}}\right], \quad i=1,2, \ldots, n, \quad j=1,2, \ldots, k
$$

The entries of the Jacobian are the partial derivatives of the discrepancy functions with respect to the guessed initial values computed at the terminal point．

As in the one－constraint problem we looked at last time，we have to derive additional ODEs to get equations for the needed values．

We differentiate the ODEs we already have，with respect to the guessed initial values；apply the chain rule，and the fact that we can switch the order of differentiation．．．we get．．．

$$
\frac{\partial}{\partial Y_{j}}\left[\frac{d y_{i}}{d x}\right]=\frac{d}{d x}\left[\frac{\partial y_{i}}{\partial Y_{j}}\right]=\sum_{k=1}^{n} \frac{\partial f_{i}}{\partial y_{k}} \frac{\partial y_{k}}{\partial Y_{j}}
$$

where $i=1,2, \ldots, n$ and $j=1,2, \ldots, k$ ．

Peter Blomgren，〈blomgren．peter＠gmail．com〉	BVP：The Shooting Method，continued	－（10／31）
Introduction Shooting for Systems of ODEs Alternative：＂Purely＂Numerical Shooting	Convert BVP \leadsto IVP Taylor Expanding Additional ODEs for the Sensitivity Functions The Final Formulation	
Equations for the Sensitivity Functions		II／II

The initial conditions for the sensitivity functions are

$$
g_{i j}=\left\{\begin{array}{ll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array} ; \quad i=1,2, \ldots, n, \quad j=1,2, \ldots, k\right.
$$

This makes sense since at $x=a$ there is no mixing of the guessed values－
－$y_{i}(a) \equiv Y_{i}, i=1,2, \ldots, k$ ，and
－$y_{i}(a)=y_{i}^{a}, i=k+1, k+2, \ldots, n$ ．
．．Taylor Expanding

Now，we solve the following IVP consisting of $(n+n \times k)$ simultaneous ODEs：

$$
\left\{\begin{aligned}
y_{1}^{\prime}(x) & =f_{1}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
y_{2}^{\prime}(x) & =f_{2}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
& \vdots \\
y_{n}^{\prime}(x) & =f_{n}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
g_{i j}^{\prime} & =\sum_{k=1}^{n}\left[g_{k j} \frac{\partial f_{i}}{\partial y_{k}}\right], \quad i=1,2, \ldots, n, \quad j=1,2, \ldots, k
\end{aligned}\right.
$$

with initial conditions

$$
\begin{aligned}
& y_{i}(a)=Y_{i}, \quad i=1,2, \ldots, k \\
& y_{i}(a)=y_{i}^{a}, \\
& i=k+1, k+2, \ldots, n \\
& g_{i j}=\left\{\begin{array}{ll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array} ; \quad i=1,2, \ldots, n, \quad j=1,2, \ldots, k\right.
\end{aligned}
$$

－We started with n ODEs．
－The equations for the sensitivity functions added（ $\mathbf{n} \times \mathbf{k}$ ） ODEs．
－That can be a high price to pay！If $n=1000$ and $k=500$（a very reasonably sized problem），then the extended system has 501，000 equations！
－The good news：The ODEs and initial conditions for the additional equations are very easy to write down：

$$
\begin{aligned}
& g_{i j}^{\prime}=\sum_{k=1}^{n}\left[g_{k j} \frac{\partial f_{i}}{\partial y_{k}}\right], \quad i=1,2, \ldots, n, \quad j=1,2, \ldots, k \\
& g_{i j}(a)=\delta_{i j}
\end{aligned}
$$

At the terminal point $x=b$ ，we compute the discrepancy functions $\tilde{\mathbf{h}}(\tilde{\mathbf{Y}})$ ，and the entries of the Jacobian $J_{i, j}=g_{i, j}(b)$ ．

If

$$
\|\tilde{\mathbf{h}}(\tilde{\mathbf{Y}})\|>\text { tolerance }
$$

（or other stopping criteria）then we update the guess

$$
\tilde{\mathbf{Y}}^{(s+1)}=\tilde{\mathbf{Y}}^{(s)}-\left[J\left(\tilde{\mathbf{Y}}^{(s)}, b\right)\right]^{-1} \tilde{\mathbf{h}}\left(\tilde{\mathbf{Y}}^{(s)}\right)
$$

and start over．
－If／When the price is too high，we can compute numerical （difference）approximations of the terminal values of the sensitivity functions．
－Let $\tilde{\mathbf{Y}}_{j}^{\epsilon}=\epsilon\left\{\delta_{1 j}, \delta_{2 j}, \ldots, \delta_{k j}\right\}$ ，i．e．the vector of all zeros，except the value ϵ in the j th position．
－If we solve the initial value problem for the two initial guesses $\tilde{\mathbf{Y}}$ and $\tilde{\mathbf{Y}}+\tilde{\mathbf{Y}}_{j}^{\epsilon}$ we can compute the difference approximations

$$
\left.\frac{\partial h_{i}}{\partial Y_{j}}\right|_{x=b} \approx \frac{h_{i}\left(\tilde{\mathbf{Y}}+\tilde{\mathbf{Y}}_{j}^{\epsilon}\right)-h_{i}(\tilde{\mathbf{Y}})}{\epsilon}, \quad i=1,2, \ldots, k
$$

Let $j=1,2, \ldots, k$ gives us approximations to all entries of the Jacobian．
－The price：Solving the system of n ODEs $(\mathbf{k}+1)$ times．

Our problem is：

$$
\frac{d^{4} w(x)}{d x^{4}}=e^{\frac{(x-L / 2)^{2}}{(L / 8)^{2}}},
$$

subject to

$$
w(0)=w^{\prime}(0)=w(1)=w^{\prime}(1)=0
$$

We introduce $y_{i}=\frac{d^{i-1} y(x)}{d x^{i-1}}, i=1,2,3,4$ and get the following system of ODEs：

$$
\frac{d}{d x}\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=\left[\begin{array}{c}
y_{2} \\
y_{3} \\
y_{4} \\
e^{\frac{(x-L / 2)^{2}}{(L / 8)^{2}}}
\end{array}\right], \quad\left\{\begin{array}{l}
y_{1}(0)=0 \\
y_{2}(0)=0 \\
y_{1}(1)=0 \\
y_{2}(1)=0
\end{array}\right.
$$

Peter Blomgren，〈blomgren．peter＠gmail．com〉 BVP：The Shooting Method，continued

	The Idea Example：Euler－Bernoulli Beam Deflection
Code：RKF45 Shooting for Beam	ding

Code：Shooting

Segment \＃1
\％Shooting for a uniform fixed Beam－－－Octave Code［www．octave．org］
$\% E(x)=$ Constant，$I(x)=$ Constant
clear all
\％Length of the Beam
global L；
$\mathrm{L}=1$ ；
\％The Load Function
function $\mathrm{p}=\mathrm{p}(\mathrm{x})$
global L
$\mathrm{p}=-\exp \left(-(\mathrm{x}-\mathrm{L} / 2) \cdot \sim 2 /(\mathrm{L} / 8)^{\wedge} 2\right) ;$
endfunction
\％The Forcing Function of the System of ODEs
function rhs＿rkf45＝rhs＿rkf45（x，w）
rhs＿rkf45＝［w（2：4）；p（x）］；
endfunction

Code：Shooting

Segment \＃2
function $[y, x v]=\operatorname{RKF45}(\mathrm{y} 0, \mathrm{x} 0, \mathrm{~L})$
$\mathrm{C}=\left[\begin{array}{llllll}0 & 1 / 4 & 3 / 8 & 12 / 13 & 1 & 1 / 2\end{array}\right] ;$

$\mathrm{A}=\left[\begin{array}{llllll}\mathrm{A} ; & -8 / 27 & 2 & -3544 / 2565 & 1859 / 4104 & -11 / 40\end{array}\right]$ ．
b1 $=\left[\begin{array}{lllll}25 / 216 & 0 & 1408 / 2565 & 2197 / 4104 & -1 / 5\end{array}\right]$ 0 ；
b2 $=\left[\begin{array}{lllll}16 / 135 & 0 & 6656 / 12825 & 28561 / 56430 & -9 / 50 \\ 16 / 55\end{array}\right] ;$
$\mathrm{E}=\left[\begin{array}{lllllll}1 / 360 & 0 & -128 / 4275 & -2197 / 75240 & 1 / 50 & 2 / 55\end{array}\right] ;$
$\mathrm{h}=\mathrm{L} / 16 ;$
$\mathrm{TOL}=1 \mathrm{e}-12$
$y=y 0 ; \quad y N=y 0 ; \quad x v=x 0 ; \quad x=x 0$
while $(x<L)$
if $(x+h>L)$
if $(x+h>L)$
$h=L-x ;$
end
$\mathrm{k}=\operatorname{zeros}(4,6)$ ；

$k(:, 4)=$ rhs＿rkf45（ $x+h * c(4), y N+h *(A(4,:) * k) .,$.
$k(:, 5)=r h s _r k f 45(x+h * c(5), y N+h *(A(5) * k,),$,
$\mathrm{k}(:, 6)=$ rhs＿rkf45（ $\mathrm{x}+\mathrm{h} * \mathrm{c}(6), \mathrm{yN}+\mathrm{h} *(\mathrm{~A}(6,:)$ ） k.$)$ ），）

Peter Blomgren，〈blomgren．peter＠gmail．com〉 BVP：The Shooting Method，continued

Alternative：＂Purely＂Numerical Shooting

The Idea

Code：RKF45 Shooting for Beam Bending

Code：Shooting

Segment \＃4
\％Initial initial Values
w0 $=\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right] .^{\prime}$ ；
tol $=1 \mathrm{e}-8$ ；
Perturb $=10 *$ tol；
Err＝ 2 ＊tol；
while（ Err＞tol ）
［y，xv］$=\operatorname{RKF} 45(w 0,0, L)$ ；
Y＿nonperturbed＝y；
Y＿np＿final＝y（：，length（xv））；
W1＿discr $\quad=y(1$, length（xv））；
$=y(1$, length（xv））；
$=y(2, l e n g t h(x v)) ;$
$P_{-} f a c t o r=\min (\operatorname{diff}(x v))$ ；
Err＝norm（［W1＿discr W2＿discr］）
\％Skip out of the loop when tolerance is met
if（ Err＜＝tol ）break；end

Code：Shooting

yNext $=y N+h *(b 1 * k . ') . ' ;$
yErr $=h *\left(E * k .^{\prime}\right) .^{\prime}$ ；
yErrAbs＝norm（yErr）
if（ yErrAbs＜TOL ）
$\mathrm{y} \quad=[\mathrm{y}$ yNext $]$ ；
$\mathrm{yN} \quad=\mathrm{yNext}$ ；
$\mathrm{xv} \quad=[\mathrm{xv} \mathrm{x}+\mathrm{h}]$ ；
$\mathrm{x} \quad=\mathrm{x}+\mathrm{h}$ ；
if（ yErrAbs＊20＜TOL ）
$\mathrm{h}=\mathrm{h} * 2$ ；
end
else
$h=h / 2 ;$
end
end
endfunction

Peter Blomgren，〈blomgren．peter＠gmail．com〉	BVP：The Shooting Method，continued	－（22／31）
Introduction Shooting for Systems of ODEs Alternative：＂Purely＂Numerical Shooting	The Idea Example：Euler－Bernoulli Beam Deflection	
Code：RKF45 Shooting for Beam B	ing	V／V

Iteration	Discrepancy
1	0.029003
2	$1.7206 \mathrm{e}-11$

Figure 1：The distributed load．
Peter Blomgren，〈blomgren．peter＠gmail．com〉 BVP：The Shooting Method，continued
The Idea

Alternative：＂Purely＂Numerical Shooting
Beam Bending：Numerical Results $-w^{\prime}(x)$

Bending Moment

A bending moment exists in a structural element when a moment is applied to the element so that the element bends．Moments and torques are measured as a force multiplied by a distance so they have as unit newton－metres（ $\mathrm{N} \cdot \mathrm{m}$ ），or foot－pounds force（ $\mathrm{ft} \cdot \mathrm{lbf}$ ）．
Tensile stresses and compressive stresses increase proportionally with bending moment，but are also dependent on the second moment of area of the cross－section of the structural element．Failure in bending will occur when the bending moment is sufficient to induce tensile stresses greater than the yield stress of the material throughout the entire cross－section．It is possible that failure of a structural element in shear may occur before failure in bending，however the mechanics of failure in shear and in bending are different．

Shearing（physics）
Shearing in continuum mechanics refers to the occurrence of a shear strain，which is a deformation of a material substance in which parallel internal surfaces slide past one another．It is induced process that causes a plastic shear strain in a material，rather than causing a merely elastic one．A plastic shear strain is a continuous （non－fracturing）deformation that is irreversible，such that the material is yielding．

