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Finite Difference Methods

Shooting methods converge very rapidly when they work, but
convergence cannot be guaranteed. They tend to be unstable
(especially when shooting with many variables.) — Remember that
Newton’s method has a small basin of attraction (i.e it only
converges for “good enough” initial guesses.)

Finite Difference Methods have better (more predictable) stability
characteristics. The downside is that they generally require more
computation to obtain a specified accuracy.

We replace the derivatives in the equation with difference
approximations, and thus convert the ODE into a set of
simultaneous algebraic equations.

The set of algebraic equations is linear (non-linear) if the ODE is
linear (nonlinear).

Finite Difference Methods can be applied directly to higher order
ODEs — no need to convert to a system of 1st order ODEs.
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Finite Difference Formulas — Derivation

We can derive finite difference approximation to derivatives using
two methods:

[1] By differentiating the Lagrange Interpolating Polyno-
mial of appropriate order, at the desired grid-point(s).
[Math 541]

[2] By Taylor expansions (and matching coefficients), e.g.

yn+1 = y(xn+1) = y(xn) + hy ′(xn) +
h2

2
y ′′(xn) +

h3

6
y ′′′(xn) + . . .

yn−1 = y(xn−1) = y(xn)− hy ′(xn) +
h2

2
y ′′(xn)−

h3

6
y ′′′(xn) + . . .

yn+1 − yn−1 = 2hy ′(xn) +
h3

3
y ′′′(xn)

yn+1 − yn−1

2h
= y′(xn) +O(h2)
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Finite Difference Formulas — O(h) [Review / Reference]

Forward Differences, truncation error O(h)

y ′n ≈ [yn+1 − yn]/h

y ′′n ≈ [yn+2 − 2yn+1 + yn]/h
2

y ′′′n ≈ [yn+3 − 3yn+2 + 3yn+1 − yn]/h
3

y ′′′′n ≈ [yn+4 − 4yn+3 + 6yn+2 − 4yn+1 + yn]/h
4

Backward Differences, truncation error O(h)

y ′n ≈ [yn − yn−1]/h

y ′′n ≈ [yn − 2yn−1 + yn−2]/h
2

y ′′′n ≈ [yn − 3yn−1 + 3yn−2 − yn−3]/h
3

y ′′′′n ≈ [yn − 4yn−1 + 6yn−2 − 4yn−3 + yn−4]/h
4
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Finite Difference Formulas — O(h2) [Review / Reference]

Central Differences, truncation error O(h2)

y ′n ≈ [yn+1 − yn−1]/2h

y ′′n ≈ [yn+1 − 2yn + yn−1]/h
2

y ′′′n ≈ [yn+2 − 2yn+1 + 2yn−1 − yn−2]/2h
3

y ′′′′n ≈ [yn+2 − 4yn+1 + 6yn − 4yn−1 + yn−2]/h
4

Forward Differences, truncation error O(h2)

y ′n ≈ [−yn+2 + 4yn+1 − 3yn]/2h

y ′′n ≈ [−yn+3 + 4yn+2 − 5yn+1 + 2yn]/h
2

y ′′′n ≈ [−3yn+4 + 14yn+3 − 24yn+2 + 18yn+1 − 5yn]/2h
3

y ′′′′n ≈ [−2yn+5 + 11yn+4 − 24yn+3 + 26yn+2 − 14yn+1 + 3yn]/h
4
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Finite Difference Formulas — O(h2) and O(h4) [Review / Reference]

Backward Differences, truncation error O(h2)

y ′n ≈ [3yn − 4yn−1 + yn−2]/2h

y ′′n ≈ [2yn − 5yn−1 + 4yn−2 − yn−3]/h
2

y ′′′n ≈ [5yn − 18yn−1 + 24yn−2 − 14yn−3 + 3yn−4]/2h
3

y ′′′′n ≈ [3yn − 14yn−1 + 26yn−2 − 24yn−3 + 11yn−4 − 2yn−5]/h
4

Central Differences, truncation error O(h4)

y ′n ≈ [−yn+2 + 8yn+1 − 8yn−1 + yn−2]/12h

y ′′n ≈ [−yn+2 + 16yn+1 − 30yn + 16yn−1 − yn−2]/12h
2

y ′′′n ≈ [−yn+3 + 8yn+2 − 13yn+1 + 13yn−1 − 8yn−2 + yn−3]/8h
3

y ′′′′n ≈ [−yn+3 + 12yn+2 − 39yn+1 + 56yn − 39yn−1 + 12yn−2

[−yn−3]/6h
4
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Solution of 2nd Order Linear ODEs I/III

We consider the problem

y ′′(x) + p(x)y ′(x) + q(x)y(x) = r(x), x ∈ [a, b] (ODE)
y(a) = ya, y(b) = yb (BCs)

If we use the second-order accurate finite difference approximations

y ′′(xn) ≈
yn+1 − 2yn + yn−1

h2
, y ′(xn) ≈

yn+1 − yn−1

2h

we get the following set of algebraic equations

yn+1 − 2yn + yn−1

h2
+ pn

yn+1 − yn−1

2h
+ qnyn = rn (ALG)

where we have used the notation

pn = p(xn), qn = q(xn), rn = r(xn), yn = y(xn)
xn = a+ nh, n = 0, 1, . . . ,N, N = (b − a)/h
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Solution of 2nd Order Linear ODEs II/III

Note that (ALG) only makes sense in the interior, i.e. for
n = 1, 2, . . . , (N − 1), and not at n = 0, and n = N:

yn+1 − 2yn + yn−1

h2
+ pn

yn+1 − yn−1

2h
+ qnyn = rn (ALG)

the boundary conditions (BCs)

y0 = ya, yN = yb, (at n = 0, and n = N)

close the system — we have (N − 1) unknowns {y1, y2, . . . , yN−1}
and (N − 1) equations.

With a little bit of “massage” (ALG) becomes
[

1 +
h

2
pn

]

yn+1+
[
h2qn − 2

]
yn+

[

1−
h

2
pn

]

yn−1 = h2rn (ALG’)
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Solution of 2nd Order Linear ODEs Book-keeping III/III

Note that (ALG’)
[

1 +
h

2
pn

]

yn+1 +
[
h2qn − 2

]
yn +

[

1−
h

2
pn

]

yn−1 = h2rn (ALG’)

contains y0 when n = 1, and yN when n = (N − 1), i.e.
[

1 +
h

2
p1

]

y2 +
[
h2q1 − 2

]
y1 +

[

1−
h

2
p1

]

y0 = h2r1
[

1 +
h

2
pN−1

]

yN +
[
h2qN−1 − 2

]
yN−1 +

[

1−
h

2
pN−1

]

yN−2 = h2rN−1

since these values are known (Boundary Conditions), we move
them to the right-hand-side:
[

1 +
h

2
p1

]

y2 +
[
h2q1 − 2

]
y1 = h2r1 −

[

1−
h

2
p1

]

ya

[
h2qN−1 − 2

]
yN−1 +

[

1−
h

2
pN−1

]

yN−2 = h2rN−1 −

[

1 +
h

2
pN−1

]

yb
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Some Book-keeping... Matrix Notation I/II

We have the following equations:

[

h
2
q1 − 2

]

y1 +

[

1 +
h

2
p1

]

y2 = h2r1 −
[

1 − h
2
p1

]

ya

[

1 −
h

2
pn

]

yn−1 +
[

h
2
qn − 2

]

yn +

[

1 +
h

2
pn

]

yn+1 = h2rn n = 2, 3, . . . , (N − 2)

[

1 −
h

2
pN−1

]

yN−2 +
[

h
2
qN−1 − 2

]

yN−1 = h2rN−1 −
[

1 + h
2
pN−1

]

yb

This is a matrix equation, Aỹ = b̃, where...

ỹ =










y1
y2
...

yN−2

yN−1










, b̃ =










b1
b2
...

bN−2

bN−1










=










h2r1 −
[
1− h

2p1
]
ya

h2r2
...

h2rN−2

h2rN−1 −
[
1 + h

2pN−1

]
yb
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Some Book-keeping Matrix Notation II/II

We have the following equations:

[

h
2
q1 − 2

]

y1 +

[

1 +
h

2
p1

]

y2 = h2r1 −
[

1 − h
2
p1

]

ya

[

1 −
h

2
pn

]

yn−1 +
[

h
2
qn − 2

]

yn +

[

1 +
h

2
pn

]

yn+1 = h2rn n = 2, 3, . . . , (N − 2)

[

1 −
h

2
pN−1

]

yN−2 +
[

h
2
qN−1 − 2

]

yN−1 = h2rN−1 −
[

1 + h
2
pN−1

]

yb

This is a matrix equation, Aỹ = b̃, where...

A =





















d1 s+1
s
−

2 d2 s+2

.
. .

.
. .

.
. .

s
−

N−2
dN−2 s+

N−2

s
−

N−1
dN−1





















,



















dn = h2qn − 2 n = 1, 2, (N − 1)

s+n = 1 + h
2
pn n = 1, 2, . . . , (N − 2)

s−n = 1 − h
2
pn n = 2, 3, . . . , (N − 1)
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Code: 2nd Order ODE/BVP Solver I/III

Code: 2nd Order ODE/BVP Solver Segment #1

% Solve 2nd Order ODE/BVPs. --- Octave code [www.octave.org]

%

% y’’(x) + p(x)y’(x) + q(x)y(x) = r(x), a<=x<=b

% BC: y(a) = ya, y(b) = yb

clear all

% Boundary Conditions

a = 1; ya = 1;

b = 2; yb = 2;

% Number of interior grid points

N = 64;

% Grid size

h = (b-a)/(N+1);

% The grid

x = ((a+h):h:(b-h))’;
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Code: 2nd Order ODE/BVP Solver II/III

Code: 2nd Order ODE/BVP Solver Segment #2

function p = p(x)

p = 2./x;

endfunction

function q = q(x)

q = 2./(x.^2);

endfunction

function r = r(x)

r = sin(log(x))./(x.^2);

endfunction

% Set up the linear system Ay=b

% the right-hand-side

rhs = h^2*r(x);

rhs(1) = rhs(1) - (1-h/2*p(x(1)))*ya;

rhs(N) = rhs(N) - (1+h/2*p(x(N)))*yb;
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Code: 2nd Order ODE/BVP Solver III/III

Code: 2nd Order ODE/BVP Solver Segment #3

% the diagonal of the matrix A

d = h^2*q(x(1:N))-2;

% the superdiagonal of A

sp = 1 + h/2*p(x(1:(N-1)));

% the subdiagonal of A

sm = 1 - h/2*p(x(2:N));

% Assemble the matrix

A = diag(sm,-1) + diag(d,0) + diag(sp,1);

% Solve

y = A\rhs;

xs = [a; x; b];

ys = [ya; y; yb];
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Example #1

The code solves the following BVP:

y ′′(x)− y ′(x) + y(x) = 3e2x − 2 sin(x)

y(1) = 6.308447, y(2) = 55.430436
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Accuracy of the Solutions

Since we used second-order accurate finite difference
approximations to the derivatives, the numerical solution is second
order accurate.

If (when) we need higher order accuracy, there are two ways to
proceed:

[1] (Pointwise) Richardson Extrapolation.

[2] More accurate finite difference approximations.
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Improving the Accuracy: Richardson Extrapolation

If we are using a symmetric second order accurate method, then at
each grid point we have

y numerical
i (h) = y exact

i + Ch2 +O(h4)

Due to symmetry, there are no h2k+1 terms in the error expansion.

We can combine two numerical solutions (at the same point)

4y num
i (h/2)− y num

i (h)

3
= y e

i +
4C(h/2)2 − C(h)2

3
+O(h4) = y e

i +O(h4)

The error is now ∼ O(h4)!

The procedure can be continued — see the review on the following
three slides.
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Richardson’s Extrapolation [Review]

What it is: A method for generating high-accuracy results using
low-order formulas (or results).

Applicable: When the approximation technique has an error term
of predictable form, e.g.

M − Nj(h) =
∞∑

k=j

Ekh
k ,

where M is the unknown value we are trying to ap-
proximate, and Nj(h) the approximation (which has
an error O(hj).)
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Building High Accuracy Approximations, I/II [Review]

Consider:

M − N1(h) =
∞∑

k=1

Ekh
k ,

and

M − N1(h/2) =
∞∑

k=1

Ek

hk

2k
.

If we let N2(h) = 2N1(h/2)− N1(h), then

M − N2(h) = 2E1
h

2
− E1h

︸ ︷︷ ︸

0

+
n∑

k=2

E
(2)
k hk ,

where

E
(2)
k = Ek

(
1

2k−1
− 1

)

.
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Building High Accuracy Approximations, II/II [Review]

We can play the game again, and combine N2(h) with N2(h/2) to
get a third-order accurate approximation, etc.

N3(h) =
4N2(h/2)− N2(h)

3
= N2(h/2) +

N2(h/2)− N2(h)

3

N4(h) = N3(h/2) +
N3(h/2)− N3(h)

7

N5(h) = N4(h/2) +
N4(h/2)− N4(h)

24 − 1

Nj+1(h) = Nj(h/2) +
Nj(h/2)− Nj(h)

2j − 1
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Comment on the Richardson Extrapolation Technique

Note that we can only compute the Richardson extrapolation on
the coarsest grid:

If we have the solutions for h, h/2, and h/4 we can extrapolate
three times:

E1 := combine h, and h/2, error ∼ O(h4).
E2 := combine h/2, and h/4, error ∼ O(h4).
E3 := combine E1, and E2, error ∼ O(h6).

However, the extrapolated solution is only available on the
h-spaced grid.
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Improving the Accuracy: Higher Order Finite Differences

If we use the 4th order accurate finite differences:

y ′n ≈ [−yn+2 + 8yn+1 − 8yn−1 + yn−2]/12h
y ′′n ≈ [−yn+2 + 16yn+1 − 30yn + 16yn−1 − yn−2]/12h

2

we can build a 4th order accurate scheme... but we run into some
trouble.

Consider the point n = 1 (one grid-point from the left boundary
point), and use the boundary condition y0 = ya:

y ′1 ≈ [−y3 + 8y2 − 8ya + y−1]/12h
y ′′1 ≈ [−y3 + 16y2 − 30y1 + 16ya − y−1]/12h

2

But, but, but... y−1 does not exist.
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The Curse of Boundaries...

As we continue to solve ODEs, and especially PDEs we will see
that dealing with boundary conditions is often the most
challenging part of the problem.

In this case we can solve the problem by using a non-symmetric
expression for the derivatives at n = 1 and n = (N − 1)...
Generating those 4th order accurate stencils using either Taylor
expansions, or Lagrange interpolating polynomials is left as an
exercise...

Note that if we use non-symmetric stencils, the error expansion is
going to contain all powers of h (h4, h5, h6, h7...)
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Checking the Road-Map

We have a number of issues that require our attention:

[1] Other types of Boundary Conditions, including mixed
(Robin-type: αu + βu′ = γ).

[2] Non-linear equations.

[3] Higher order equations.

[4] Solving the resulting linear system Aỹ = b̃ in an efficient
way. [Full details in Math 543]
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Mixed Boundary Conditions I/II

Sometimes boundary conditions are stated in more complicated
ways. Frequently it is stated as a linear combination of the
function value, and its derivative, i.e.

c1y(a) + c2y
′(a) = c3

Note that this discussion covers the case c1 = 0 (flux-only
condition).

If we discretize the derivative using a forward difference we get

c1y(a) + c2
y(a + h)− y(a)

h
= c3

or
[hc1 − c2] y0 + c2y1 = hc3
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Mixed Boundary Conditions II/II

If we solve
[hc1 − c2] y0 + c2y1 = hc3

for y0, we get

y0 =

[
hc3 − c2y1

hc1 − c2

]

.

If we use this value in the equation at node n = 1:

[

1 +
h

2
p1

]

y2 +
[

h
2
q1 − 2

]

y1 +

[

1 −
h

2
p1

]

y0 = h
2
r1

[

1 +
h

2
p1

]

y2 +
[

h
2
q1 − 2

]

y1 +

[

1 −
h

2
p1

]

[

hc3 − c2y1

hc1 − c2

]

= h
2
r1

[

1 +
h

2
p1

]

y2 +

[

h
2
q1 − 2 −

[

1 −
h

2
p1

]

[

c2

hc1 − c2

]]

y1 = h
2
r1 −

[

1 −
h

2
p1

]

[

hc3

hc1 − c2

]

The rest of the linear system is unchanged.
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Impact on Accuracy: The Curse of BCs, part II

The forward difference we used

c1y(a) + c2
y(a + h)− y(a)

h
= c3

is only first-order accurate.

Even though the rest of the equations in the system are based on
second-order accurate approximations, the overall order of
accuracy is one.
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A Different Approach: Finite Difference Methods
Accuracy of Solutions
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Boundary Conditions
BCs... and Accuracy

Fixing the Boundary Conditions I/III [White Magic]

In order to overcome the lack of accuracy in the boundary condition, we
add an external (fictitious) node to the grid (x

−1).
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Interior Nodes

Boundary Node

Exterior Node

We can now express the boundary condition using the second-order
accurate central difference:

c1y(a) + c2
y(a + h)− y(a − h)

2h
= c3

or

c1y0 + c2
y1 − y

−1

2h
= c3, 2hc1y0 + c2y1 − c2y−1 = 2hc3
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Fixing the Boundary Conditions II/III

We solve for y
−1:

y
−1 =

[
2hc1
c2

]

y0 + y1 −

[
2hc3
c2

]

If we use this value in the equation at node n = 0:

[

1 +
h

2
p0

]

y1 +
[

h
2
q0 − 2

]

y0 +

[

1 −
h

2
p0

]

y
−1 = h

2
r0

[

1 +
h

2
p0

]

y1 +
[

h
2
q0 − 2

]

y0 +

[

1 −
h

2
p0

]

[[

2hc1

c2

]

y0 + y1 −

[

2hc3

c2

]]

= h
2
r0

[

1 +
h

2
p0 +

[

1 −
h

2
p0

]]

y1 +

[

h
2
q0 − 2 +

2hc1

c2
−

h2p0c1

c2

]

y0 =

= h
2
r0 +

2hc3

c2
−

h2c3p0

c2

This equation is in addition to the system on slides 11-12 — the
additional unknown is y0.
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A Different Approach: Finite Difference Methods
Accuracy of Solutions
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Boundary Conditions
BCs... and Accuracy

Fixing the Boundary Conditions III/III

The changed system Ã˜̃y = ˜̃
b looks like
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The new top row corresponds to the new equation (at n = 0), the
equation at n = 1 gains a sub-diagonal element (s−1 = 1− h

2p1),
and the right-hand-side simplifies to h2r1. The remainder of the
new column is filled with zeros.
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Higher Order Boundary Conditions

If we need higher degrees of accuracy, or higher order derivatives
at the boundaries, we can use the same idea, but we have to add
even more external / fictitious / “ghost” points.

Soon... Higher order equations, non-linear problems.
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